

ID-ONE COSMO V8.2

Public Security Target

 ID-ONE COSMO V8.2
Public Security Target

 2 | 210

© IDEMIA. All rights reserved.

Specifications and information are subject to change without notice.

The products described in this document are subject to continuous development and improvement.

All trademarks and service marks referred to herein, whether registered or not in specific countries, are the properties of their respective owners.

- Printed versions of this document are uncontrolled -

About IDEMIA

OT-Morpho is now IDEMIA, the global leader in trusted identities for an increasingly digital world,
with the ambition to empower citizens and consumers alike to interact, pay, connect, travel and
vote in ways that are now possible in a connected environment.

Securing our identity has become mission critical in the world we live in today. By standing for
Augmented Identity, we reinvent the way we think, produce, use and protect this asset, whether
for individuals or for objects. We ensure privacy and trust as well as guarantee secure,
authenticated and verifiable transactions for international clients from Financial, Telecom,
Identity, Security and IoT sectors.

With close to €3bn in revenues, IDEMIA is the result of the merger between OT (Oberthur
Technologies) and Safran Identity & Security (Morpho). This new company counts 14,000
employees of more than 80 nationalities and serves clients in 180 countries.

| For more information, visit www.idemia.com / Follow @IdemiaGroup on Twitter

 ID-ONE COSMO V8.2
Public Security Target

 3 | 210

Document Management

Identification

Business Unit - Department PSI - R&D

Document type: FQR

Document Title: ID-One Cosmo V8.2 – Public Security Target

FQR No: 110 9067

FQR Issue: 4

Document revision

Date Revision-Issue Modification Modified by

03 -2019 1 Creation IDEMIA

04-2019 2 Update optional patch Identification code in

section 2.3 TOE Reference and issue of

[R41]

IDEMIA

06-2019 3 Courbevoie is added IDEMIA

07-2019 4 Update section 2.4.4 IDEMIA

 ID-ONE COSMO V8.2
Public Security Target

 4 | 210

Table of contents

Document Management 3

Identification 3

Document revision 3

1 PREFACE 9

1.1 OBJECTIVES OF THE DOCUMENT 9

1.2 SCOPE OF THE DOCUMENT 9

1.3 Abbreviations and Notations 9
1.3.1 Abbreviations 9
1.3.2 Notations 10

2 Security Target Introduction 12

2.1 Product family 12

2.2 Public Security Target reference 12

2.3 TOE Reference 13

2.4 TOE Identification 14
2.4.1 Product Commercial Version (DO ‘DF66’) 14
2.4.2 IC Card Manufacturing Data (tag ‘DF50’) 14
2.4.3 Card Identification Data (tag ‘DF52’) 15
2.4.4 Applications included in the TOE 16

3 TOE overview 18

3.1 TOE Configuration 18

3.2 TOE Type 19
3.2.1 Defensive Java Card Platform 19
3.2.2 Global Platform 20
3.2.3 Integrated Circuit (IC) 21
3.2.4 Operating System (OS) 22

3.3 Major Security feature of the TOE 24

3.4 NON-TOE HW/SW/FW AVAILABLE TO THE TOE 28

3.5 TOE usage 29

3.6 TOE Guidances 30
3.6.1 Platform isolation 30
3.6.2 Sensitive applications 31

3.7 TOE Life cycle 31
3.7.1 Phases 33
3.7.2 Phase 1: Security IC Embedded Software development 34
3.7.3 Phase 2: Security IC Development 37
3.7.4 Phase 3: Security IC Manufacturing 37

 ID-ONE COSMO V8.2
Public Security Target

 5 | 210

3.7.5 Phase 4: JavaCard Platform Packaging 38
3.7.6 Phase 5: Composite Product Integration 38
3.7.7 Phase 6: Composite Product Personalisation 41
3.7.8 Phase 7: Operational Usage 44

3.8 Software Components Life Cycle 47
3.8.1 Card Life Cycle 47
3.8.2 Security Domain Life Cycle States 49
3.8.3 Load File Life Cycle 51
3.8.4 Application Life Cycle 52

4 Common Criteria conformance claim 55

4.1 Common Criteria 55

4.2 Protection Profile 55

4.3 Conformance claim rationale 55
4.3.1 TOE Type conformance 56
4.3.2 SPD Statement Consistency 56
4.3.3 Objectives 57
4.3.4 SFR and SARs Statements consistency 57

5 Security aspects 61

5.1 Confidentiality 61

5.2 Integrity 62

5.3 Unauthorized executions 62

5.4 Bytecode verification 63
5.4.1 CAP file verification 63
5.4.2 Integrity and authentication 64
5.4.3 Linking and authentication 64

5.5 Card management 64

5.6 Services 65

6 Security Problem Definition 68

6.1 Assets 68
6.1.1 User data 68
6.1.2 TSF data 69
6.1.3 Additional assets 69

6.2 Users / Subjects 70
6.2.1 Additional Users / Subjects 70
6.2.2 Miscellaneous 71

6.3 Threats 72
6.3.1 CONFIDENTIALITY 72
6.3.2 INTEGRITY 72
6.3.3 IDENTITY USURPATION 73
6.3.4 UNAUTHORIZED EXECUTION 73
6.3.5 DENIAL OF SERVICE 74
6.3.6 CARD MANAGEMENT 74

 ID-ONE COSMO V8.2
Public Security Target

 6 | 210

6.3.7 SERVICES 74
6.3.8 MISCELLANEOUS 74
6.3.9 Additional threats 75

6.4 Organisational Security Policies 75

6.5 Assumptions 75

7 Security Objectives 77

7.1 Security Objectives for the TOE 77
7.1.1 IDENTIFICATION 77
7.1.2 EXECUTION 77
7.1.3 SERVICES 78
7.1.4 OBJECT DELETION 78
7.1.5 APPLET MANAGEMENT 79
7.1.6 Additional security objectives for the TOE 79

7.2 Security objectives for the Operational Environment 80

7.3 Security Objectives Rationale 82
7.3.1 Threats 82
7.3.2 Organisational Security Policies 87
7.3.3 Assumptions 87
7.3.4 SPD and Security Objectives 87

8 Extended Requirements 93

8.1 Extended Families 93
8.1.1 Extended Family FCS_–NG - FCS_RNG: Random Number Generation 93

9 Security Requirements 95

9.1 Security Functional Requirements 95
9.1.1 CoreG_LC Security Functional Requirements 99
9.1.2 InstG Security Functional Requirements 117
9.1.3 ADELG Security Functional Requirements 120
9.1.4 ODELG Security Functional Requirements 124
9.1.5 CarG Security Functional Requirements 125

9.2 Security Assurance Requirements 147

9.3 Security Requirements Rationale 148
9.3.1 Objectives 148
9.3.2 Rationale tables of Security Objectives and SFRs 156
9.3.3 Dependencies 165
9.3.4 Rationale for the Security Assurance Requirements 174
9.3.5 AVA_VAN.5 Advanced methodical vulnerability analysis 174
9.3.6 ALC_DVS.2 Sufficiency of security measures 174

10 TOE Summary Specification 175

10.1 TOE Summary Specification 175

10.2 SFRs and TSS 183
10.2.1 SFRs and TSS - Rationale 183
10.2.2 Association tables of SFRs and TSS 198

 ID-ONE COSMO V8.2
Public Security Target

 7 | 210

11 Rationale for the composition with the IC 207

12 RELATED DOCUMENTS 208

 ID-ONE COSMO V8.2
Public Security Target

 8 | 210

List of tables

Table 1: GET DATA P1/P2 – Supported data objects tags............................... 14
Table 2: Product Commercial Version data ... 14
Table 3: IC Card Manufacturing data... 15
Table 4: Card identification data ... 16
Table 5: Aid(s) of applications included in the TOE 17
Table 6: Guidance references ... 30
Table 7: TOE Life Cycle – Summary ... 32
Table 8: Security IC Embedded Software development Environment & Roles 36
Table 9: Javacard Platform Packaging Roles ... 38
Table 10: Composite Product Integration – Administrators 39
Table 11: Composite Product Integration – Keysets ... 41
Table 12: Composite Product Personalisation – Administrators 42
Table 13: Composite Product Personalisation – Keysets ... 44
Table 14: Operational Usage – Administrators ... 45
Table 15: Operational Usage – Keysets ... 46
Table 16: CC conformance rationale ... 55
Table 17: Threats and Security Objectives – Coverage ... 89
Table 18: Security Objectives and Threats – Coverage ... 90
Table 19: OSPs and Security Objectives – Coverage ... 90
Table 20: Security Objectives and OSPs – Coverage ... 91
Table 21: Assumptions and Security Objectives for the Operational Environment –

Coverage ... 91
Table 22: Security Objectives for the Operational Environment and Assumptions –

Coverage ... 92
Table 23– Security Objectives and SFRs - Coverage ...158
Table 24: SFRs and Security Objectives ..165
Table 25: SFRs Dependencies ...172
Table 26: SARs Dependencies ...174
Table 27: SFRs and TSS – Coverage ...204

 ID-ONE COSMO V8.2
Public Security Target

 9 | 210

1 PREFACE

1.1 OBJECTIVES OF THE DOCUMENT

The objective of this document is to present the public security target of the ID-One Cosmo
v8.2 family.

1.2 SCOPE OF THE DOCUMENT

This document describes the Public Security Target for the ID-One Cosmo v8.2 family.

This Public Security Target covers the development of the family which is able to receive and
manage different types of applications:

 Basic: applications that do not require certificate, with no assets to protect. This is the
case for fidelity applications, Information-on-demand (IOD) applications, etc.

 Secure: applications that require a Common criteria certificate.

The objectives of this Public Security Target are:

- To describe the Target of Evaluation (TOE), its life cycle and to position it in the
smart card life cycle.

- To describe the security environment of the TOE including the assets to be
protected and the threats to be countered by the TOE and by the operational
environment during the platform active phases.

- To describe the security objectives of the TOE and its supporting environment in
terms of integrity and confidentiality of sensitive information. It includes protection of
the TOE (and its documentation) during the platform active phases.

- To specify the security requirements which include the TOE functional
requirements, the TOE assurance requirements and the security requirements for
the environment.

1.3 Abbreviations and Notations

1.3.1 Abbreviations

AES Advanced Encryption Standard

AID Applet Identifier

APDU Application Protocol Data Unit

API Application Programmer Interface

APSD Application Provider Security Domain

BIOS Basic Input/Output System

CASD Controlling Authority Security Domain

CC Common Criteria

CM Card Manager

CPLC Card Production Life Cycle

DAP Data Authentication Pattern

 ID-ONE COSMO V8.2
Public Security Target

 10 | 210

DES Cryptographic module "Data Encryption Standard"

EAL Evaluation Assurance Level

EC Elliptic Curves

EEPROM Electrically Erasable and Programmable Read Only Memory

ES Embedded Software

FAT File Allocation Table

GP Global Platform

IC Integrated Circuit

ISD Issuer Security Domain

IT Information Technology

JCP Java Card Platform

JCRE Java Card Runtime Environment

OSP Organizational Security Policy

PP Protection Profile

RNG Random Number Generation

ROM Read Only Memory

RSA Cryptographic module "Rivest, Shamir, Adleman"

SF Security Function

SFP Security Function Policy

SHA-1 Cryptographic module "Secure hash standard"

ST Security Target

TOE Target of Evaluation.

TSC TSF Scope of Control

TSF TOE Security Functions

TSP TOE Security Policy

VASD Validation Authority Security Domain

VHBR Very High Bit Rates (contactless data transfer beyond the ISO14443)

VM Virtual Machine

1.3.2 Notations

Applet Application which can be loaded and executed with the environment of the
Java Card platform

Card Issuer Entity that owns the card and is ultimately responsible for the behavior of the
card

Card Manager Main entity which represents the issuer and supervises the whole services
available on the card. The Card Manager entity encompasses the Open and
the Issuer Security domain.

 ID-ONE COSMO V8.2
Public Security Target

 11 | 210

DAP Part of the Load File used for ensuring authenticity of the Load File. The
DAP is the signature of the Load File Data Block Hash and is provided
during the loading.

Issuer Security Domain
The primary on-card entity providing support for the control, security, and
communication requirements of the Card Issuer.

Load File Data Block Hash
The Load File Data Block Hash provides integrity of the Load File Data
Block following receipt of the complete Load File Data Block.

OPEN Part of the Card Manager entity which has the responsibilities to provide an
API to applications, command dispatch, Application selection, logical
channel management, and Card Content management. The OPEN also
manages the installation of applications loaded to the card. The OPEN is
responsible for enforcing the security policy defined for Card Content
management.

Security Domain On-card entity providing support for the control, security, and communication
requirements of an off-card entity (e.g. the Card Issuer, an Application
Provider or a Controlling Authority).

 ID-ONE COSMO V8.2
Public Security Target

 12 | 210

2 Security Target Introduction

This Public Security Target aims to satisfy the requirements of Common Criteria level EAL5+,
augmented with AVA_VAN.5, ALC_DVS.2 in defining the security enforcing functions of the
Target Of Evaluation and describing the environment in which it operates.

The basis for this composite evaluation is the composite evaluation of Platform and the
hardware plus the cryptographic and Mifare libraries.

2.1 Product family

This Public Security target addresses a family ID-One Cosmo V8.2 based on a NXP
component.

Family
Name

Product Name

IDEMIA
reference

code

Chip
Reference

IDEMIA
reference

Chip Reference/Chip
configuration

In the public ST lite

ID-One
Cosmo v8.2

ID-One Cosmo v8.2
on P60D145

091121

P60D145

P6022y VB

The platform ‘ID-One Cosmo v8.2 on P60D145’ Platform embeds several javacard
applications, i.e. 2.4.4. Applications included in the TOE

The present public security target addresses only the platform, regardless the ROMed
applications.

2.2 Public Security Target reference

The following table defines the information related to the security target and associated
evaluation.

Title: ID-ONE COSMO v8.2 – Public Security Target

Product Family Name: ID-One Cosmo v8.2

Editor: IDEMIA

IDEMIA registration: FQR 110 9067

EAL:
EAL5+, augmented with:
ALC_DVS.2
AVA_VAN.5

ITSEF: CEA LETI

Certification Body: ANSSI

Evaluation scheme: French

 ID-ONE COSMO V8.2
Public Security Target

 13 | 210

More precisely, the security target describes:

 The Target Of Evaluation (TOE), including the TOE components, the components in
the TOE environment, the product type and its life cycle

 The TOE security environment TOE, including assets to be protected and threats to
be countered by the TOE and by the operational environment during the development
and the platform active phases

 The TOE security objectives and its supporting environment in terms of integrity and
confidentiality of sensitive information of the TOE

 The organizational security policies and the assumptions

 The security requirements which include the TOE functional requirements, the TOE
assurance requirements and the security requirements for the environment

 The summary of the TOE specification including a description of the security functions
and assurance measures that meet the TOE security requirements

This ID-One Cosmo v8.2 on P60D145 platform is able to receive and manage different types
of applications, Basic and Sensitive one (CombICAO, IAS, LDS, PIV, Authentic and ID-One
Classic for example…).

Some of these applications are in ROM (already loaded in the platform), others can be
loaded in EEPROM at the Personalisation phase or at the use phase. The product is open at
use phase.

2.3 TOE Reference

TOE Name ID-One Cosmo v8.2 Platform

Mask / Hardware Identification 091121

Patch ID (if any)
In case the patch is related to a given
application in composition, its ID is
managed in the related ST.
Here are managed the patches affecting
the Platform.

093082 see [R41] for identification details
This patch is out of the evaluation scope as it does
not implement any SFR and does not interfere with
the security functionality provided by the platform.
Indeed, it deal with Mifare/TCL protocol.

Label GIT code IDOne_Cosmo_V8.2_091121

IC reference version NXP P60D145

IC configuration NXP P6022Y VB

IC ST identification

NXP Secure Smart Card
Controller P6022y VB

Security Target Lite

Rev. 2.1 — 6 April 2018
BSI-DSZ-CC-1059

IC EAL
EAL6 with augmentations:

LC_FLR.1 and ASE_TSS.2

 ID-ONE COSMO V8.2
Public Security Target

 14 | 210

TOE Name ID-One Cosmo v8.2 Platform

IC certificate BSI-DSZ-CC-1059

Date of IC certification 2018-05-18

NB:

Additional Patches can be loaded on the platform.

The loading mechanism, part of the TOE, is under the present evaluation.

2.4 TOE Identification

This chapter described the TOE identification information that can be retrieved over the GET
DATA command.

This command is used to retrieve following data objects from the card’s EEPROM. This
command works when the Resident Application is active, i.e. when no applet (including the
Card Manager itself) is selected or in terminated phase. In use life phase, this command is a
Card Manager command.

DO Tag DO Length Meaning Reference

‘DF50’ ‘16’ IC Card Manufacturing Proprietary tag

‘DF52’ Variable Card identification Proprietary tag

‘DF66’ ‘0D’ Product Commercial Version Proprietary tag

‘DF67’ ‘07’ Product Internal Version Proprietary tag

Table 1: GET DATA P1/P2 – Supported data objects tags

2.4.1 Product Commercial Version (DO ‘DF66’)

This command is used to retrieve the Product Commercial Version.

The response of the GET DATA ‘DF66’ is structured as following:

OS SAAAAR code Commercial Version

Length 4 bytes 4 bytes

Value ‘091121FF’ ‘08020000’

Table 2: Product Commercial Version data

2.4.2 IC Card Manufacturing Data (tag ‘DF50’)

The 37 bytes of the IC Card Manufacturing are structured as following:

 ID-ONE COSMO V8.2
Public Security Target

 15 | 210

Die number

Wafer
number

Batch
number

Wafer XY
Coordinates

Time
stamp

Version
subcode

Device code
ROM
code

number

4 bytes 1 byte 4 bytes 2 bytes

2
bytes

1 byte 5 bytes 3 bytes

P60D145 ‘XXXXXXXX’ ‘XX’ ‘XXXXXXXX’ ‘XXXX’ ‘XXXX’ ‘42’ ’2230XX1700’ ‘423932’

Table 3: IC Card Manufacturing data

2.4.3 Card Identification Data (tag ‘DF52’)

This command is used to retrieve the card identification as the mask identification, locks
identification and patches identification.

Tag Length Value

‘01’ ‘01’

Hardware platform identifier

Length Content Value Meaning

1 Component number

‘30’
Version of the component

‘02’ ‘03’

Hardware platform version

Length Content Value Meaning

1 Chip interface

’00’
Enable all available
interfaces

‘04’ TCL / contact is available

‘05’ Only TCL is available

‘06’ Only contact is available

2

 Maximum NVM Size

NVM Size
Configuration ‘8E’ for example

‘03’ ‘02’

Mask identification

Length Content Value Meaning

1 Mask number ‘6F’
ID-One Cosmo V8.2

1 Mask version ‘01’

‘04’ ‘XX’

Optional codes identification

Length Content

36

Optional Code based on integrity algorithm
SHA 256

06

Optional Code based on integrity algorithm

First codop (optional code) identification (if any)

Length Content

3 Identification in BCD

1 Internal Version in BCD

 ID-ONE COSMO V8.2
Public Security Target

 16 | 210

CRC 16
32

02

Optional code Integrity (SHA 256)

Optional code Integrity

(CRC 16)

36 or 06 Second codop (optional code) identification

… …

‘05’ ‘01’ FIPS Mode (‘00’ card not configured, ‘01’ card configured for FIPS-140 – see FIPS card lock)

‘06’ ‘xx’

Locks identification

Length Content

1 Checksum lock

1 FIPS lock

1 FIPS card lock

4 Post lock

1 CVM lock

1 RFU

1 TCL management
lock

1 EC and RSA lock

1 Security lock

1 Biometry lock

1 Rotation lock

1 DLATCH

2 Erase lock

1 MSK Div lock

1 MSK Div verify lock

‘07’ ‘01’ Card state (life cycle)

‘08’ ‘xx’ TCL Historical bytes (only through TCL interface)

‘09’ ‘07’ TCL area

‘0A’ ‘09’ ’A0 XXXX 80 XXXX 81 XXXX’ Key Check Values (MASTER_MSK KCV, MSK KCV & LSK KCV)

‘0B’ ‘06’ ’08020000 0000’ Commercial version & Extended Commercial version

‘0C’ ‘04’ ‘091121 FF’ Item number encoded in BCD (‘F’ byte used for not signifying digits)

‘0D’
‘02’
‘11’

xxxx Mifare identification : MFPOPTN configuration and MDFOPTN configuration

Table 4: Card identification data

Application Note: tag ‘04’ ‘XX’, this tag indicates the code optional; if any.

2.4.4 Applications included in the TOE

Some applications, Java card applets are included in the product, some are sensitive and
others are basic.
Except the Card Manager applet, part of the present evaluation; applications listed are not in
the scope of the TOE evaluation and are considered as know applet as defined in [R29].

 ID-ONE COSMO V8.2
Public Security Target

 17 | 210

Applet name
Version

AID Package name

CHV2.2
V2.2

A0000000770108080720000000000003 Chv

 A0000000770108080720000000000002 Cvm

 A0000000770108080720000000000001 id3

 A0000000770108080720000000000006 Pw

 A0000000770108080720000000000005 pw_fp

SAC Server
V1.1

A0000000770108000710000000000015 SAC Applet Manager

 A0000000770108000710000000000018 SAC Java Applet

 A000000077010000071000000000000E Ldslib

LDS V10
V10.1

A0000000770100000710000000000005 Ldseac

 A000000077010800071000000000000B Server Applet Manager

 A000000077010800071000000000000D IAS ECC API

IAS ECC V2
V2.0

A0000000770108000710000000000013 IAS light Add-On

PIV 2.4.1
V2.4.1

A0000000770100000610000000000024 PIV

CPS2ter V2 A0000000 77010800 07100000 0000000C CPS2ter

 Table 5: Aid(s) of applications included in the TOE

 ID-ONE COSMO V8.2
Public Security Target

 18 | 210

3 TOE overview

The Smart Card intended to support the TOE is composed of hardware and software
components, as listed below and described in Figure 1.

Figure 1: Java Platform Architecture

The TOE includes the BIOS, the Virtual Machine, the APIs, the Global Platform application,
the Resident application and the IC component. Details of components are presented in the
TOE description.

3.1 TOE Configuration

As for composition with the IC, MIFARE functionality does not implement any SFR and its
functionality therefore does not interfere with the security functionality provided by the IC
hardware neither the current Java card platform.
However, the TOE implements the Post Delivery Configuration (PDC) mechanism in order to
tailor the TOE to the specific Mifare options as following:

PDC configuration True Maximum NVM Size

NO MIFARE ‘8E’

MIFARE CLASSIC 1K ‘8C’

MIFARE CLASSIC 4K ‘89’

MIFARE PLUS 2K ‘8A’

MIFARE PLUS 4K ‘87’

 ID-ONE COSMO V8.2
Public Security Target

 19 | 210

PDC configuration True Maximum NVM Size

MIFARE DESFIRE 2K ‘8B’

MIFARE DESFIRE 4K ‘88’

MIFARE DESFIRE 8K ‘85’

MIFARE DESFIRE 16K ‘7D’

MIFARE DESFIRE 32K ‘6D’

3.2 TOE Type

The ID-One Cosmo v8.2 on NXP is a contact/dual/contactless Java Card platform based,
compatible with multi-application ID-One Cosmo product family.

The functional level of the OS will be based on a Java™ based multi-application platform,
compliant with Java Card 3.0.4 Classic Edition and Global Platform 2.2.1 specifications.

3.2.1 Defensive Java Card Platform

The Java technology, embedded on the TOE, combines a subset of the Java programming
language with a runtime environment optimized for smart cards and similar small-memory
embedded devices.

The Java CardTM platform is a smart card platform enabled with Java CardTM technology
(also called, for short, a “Java Card”). This technology allows for multiple applications to run
on a single card and provides facilities for secure interoperability of applications. Applications
running on the Java Card platform (“Java Card applications”) are called applets.

The TOE is compliant with the version of the Java Card 3.0.4 classic edition, specified by
three documents related to Java Card API, Java Card Runtime Environment and Java Card
Virtual Machine Specifications, defined respectively in [R6], [R7] and [R8]. The next
paragraph introduces those three elements.

As the terminology is sometimes confusing, the term “Java Card System” has been
introduced in [R5] that defines the set constituted by the Java Card RE, the Java Card VM
and the Java Card API.
The Java Card System provides an intermediate layer between the operating system of the
card and the applications. This layer allows applications written for one smart card platform
enabled with Java Card technology to run on any other such platform.

The Java Card VM is a bytecode interpreter embedded in the smart card. The Java Card RE
is responsible for card resource management, communication, applet execution, on-card
system and applet security.

Applet isolation is achieved through the Java Card Firewall mechanism defined in [R7]. This
mechanism confines an applet to its own designated memory area. Thus, each applet is
prevented from accessing fields and operations related to objects owned by other applets,

 ID-ONE COSMO V8.2
Public Security Target

 20 | 210

unless those applets provide a specific interface (shareable interface) for that purpose. This
access control policy is enforced at runtime by the Java Card VM.
However, applet isolation cannot be entirely granted by the firewall mechanism if certain well-
formedness conditions are not satisfied by loaded applications.

Therefore, a bytecode verifier (BCV) formally verifies those conditions. The BCV is out of the
scope of the Java Card System defined in [R5].

The IDEMIA platform implements dynamic Verifier that allows the platform to be
defensive. Verifications are done during execution of the byte code.

And as this security target claims a demonstrable conformance to PP SUN Java Card™
System Protection Profile Open Configuration V3.0, May 2012. The off card verifier is also
used. All applications are verified by the latest Oracle off card verifier.

Possible Verifier Type When?

Off-card bytecode
verifier

Static Once, outside of the card

Runtime verifier Dynamic Every time, during execution

The Java Card API (JCAPI) provides classes and interfaces for the core functionality of a
Java Card application. It defines the calling conventions by which an applet may access the
JCRE and services such as, among others, I/O management functions, PIN and
cryptographic specific management and the exceptions mechanism. The JCAPI is
compatible with formal international standards, such as ISO/IEC 7816 and industry specific
standards.

3.2.2 Global Platform

The TOE is compliant with the Global Platform 2.2.1 (GP) standard [R9] which provides a set
of APIs and technologies to perform in a secure way, the operations involved in the
management of the applications hosted by the card. Using GP maximizes the compatibility
and the opportunities of communication as it becomes the current card management
standard.

The main features addressed by GP are:

 The authentication of users through secure channels

 The downloading, installation removal, and selection for execution of Java Card
applications

 The life cycle management of both the card and the applications

 The sharing of a global common PIN among all the applications installed on the card

These operations are addressed by a set of APIs used by the applications hosted on the
card in order to communicate with the external world on a standard basis.

The version considered in this document is version 2.2.1 of the GP Card specification. The
following GP functionalities, at least, are present within the TOE:

 ID-ONE COSMO V8.2
Public Security Target

 21 | 210

 Card content loading

 Extradition

 Asymmetric keys

 DAP support, Mandated DAP support

 DAP calculation with asymmetric cryptography

 Logical channels

 SCP02 support

 SCP03 support [R12]

 Support for contact and contactless cards different implicit selection on different
interfaces and channels

 Support for Supplementary Security Domains

 Trusted path privileges

 Post-issuance personalisation of Security Domain [R12]

 Application personalisation [R12]

3.2.3 Integrated Circuit (IC)

The platform is designed on NXP components: NXP P60D145/NXP Secure Smart Card
Controller P6022y VB.

The configuration used is the P6022Y VB for MIFARE Classic, MIFARE Plus and DESFire
implementations.

ROM = 512KB

RAM = 11KB

EEPROM = 144KB

The IC is an NXP dual interface component that supports ISO/IEC 14443 Type A.

It is a hardware device composed of a processing unit, memories, security components and
I/O interfaces. It has to implement security features able to ensure:

- The confidentiality and the integrity of information processed and flowing through the
device,

- The resistance of the security IC to externals attacks such as physical tampering,
environmental stress or any other attacks that could compromise the sensitive assets
stored or flowing through it.

 The IC configuration used in this project doesn’t include any optional software or optional
toolbox.

The IC Dedicated Software with MIFARE Classic or MIFARE Plus MF1PLUSx0 or MIFARE
DESFire EV1, or both MIFARE Plus MF1PLUSx0 and MIFARE DESFire EV1 or both

 ID-ONE COSMO V8.2
Public Security Target

 22 | 210

MIFARE Classic and MIFARE DESFire EV1 are included in the Used IC for the ID-One
Cosmo v8.2 Family.

More information regarding the components is available in the public security target of the
chip [R26].

3.2.4 Operating System (OS)

The TOE relies on an Operating System (OS) which is an embedded piece of software
loaded into the Security IC. The Operating System manages the features and resources
provided by the underneath chip. It is, generally divided into two levels:

1. Low level:
a. Drivers related to the I/O, RAM, ROM, EEPROM, , and any other hardware

component present on the Security IC
2. High level:

a. Protocols and handlers to manage I/O
b. Memory and file manager
c. Cryptographic services and any other high level services provided by the OS

3.2.4.1 BIOS

The BIOS is an interface between hardware and native components like VM and APIs. The
BIOS implements the following functionalities:

- APDU management, using T=0, T=1 and T=CL protocols (Type A and type A VHBR)

- Timer management

- Exceptions management

- Transaction management

- EEPROM access

3.2.4.2 Cryptographic features

The following crypto services are included in the OS:

 ID-ONE COSMO V8.2
Public Security Target

 23 | 210

Cryptographic Services

RSA from 1024 to 4096-bits by step of 256-bits

References are standard ones

ECC with , 192, 256, 384, 512 and 521-bits key sizes

TDES with 56, 112 and 168-bits key sizes

AES with 128, 192, 256 key sizes

SHA-1, SHA 224, 256, 384 and 512, SHA3-224, SHA3-
256, SHA3-384 and SHA3-512

RSA, ECC Key generation

CRC 16 and 32

RNG FIPS AES SP800-90

RSA signature/verification Based on supported RSA key sizes

ECDSA signature/verification Based on supported ECC key sizes

ECDH Based on supported ECC key sizes

AES secure messaging
References are standard ones

TDES secure messaging

HMAC with SHA1 up to SHA 512

ECC with 508, 511-bits key sizes Curve lengths are proprietary.

3.2.4.3 Biometric feature

ID-One Cosmo v8.2 embeds the MOC V5.2.0 algorithm.
The biometric feature allows matching a CANDIDATE Template with REFERENCE
Templates (up to 10)

3.2.4.4 Virtual Machine

The Virtual Machine, which is compliant with the Java Card 3.0.4 classic edition, interprets
the byte code of Java Card applets.

The Virtual Machine supports logical channels; this means that it allows an applet to be
selected on a channel, while a different applet is selected on another channel.

It also supports secure execution of applets loaded and stored in ROM.

The Virtual Machine is activated upon the selection of an applet.

3.2.4.5 The Java Card Runtime Environment

The Java Card Runtime Environment (JCRE) contains the Java Card Virtual Machine (VM),
the Java Card Application Programming Interface (API) classes and industry-specific
extensions, and support services. For details, please refer to reference [R7].

3.2.4.6 APIs

The APIs, compliant with the Java Card 3.0.4 classic edition, support key generation, Key
Agreement, signature, ciphering of messages and proprietary IDEMIA API.

Proprietary APIs have been developed like ISOSecureMessaging to assure the data are
exchanged in confidentiality and integrity; OTPinBio to compare a candidate fingerprint
template with one of the reference fingerprint template previously store in the card;
utilBER_Reader to read BER-TLV; SecureStore to store integrity sensitive information

 ID-ONE COSMO V8.2
Public Security Target

 24 | 210

3.2.4.7 Open and isolating Platform

This security target claims conformance to the Application Note 10 on Open and Isolating
platform, issued by ANSSI [R29].

An “open platform” can host new applications:

- Before its delivery to the end user (during phases 4, 5 or 6 of the traditional smartcard
lifecycle). Such loadings are called “pre-issuance”.

- After its delivery to the end user (phase 7). Such loadings are called “post-issuance”.

An “isolating platform” is a platform that maintains the separation of the execution domains of
all embedded applications on a platform, as of the platform itself. “Isolation” refers here to
domain separation of applications as well as protection of application’s data.

3.2.4.8 Resident Application

It provides a native code application, with a basic main dispatcher, to receive the card
commands and dispatch them to the application and module functions to implement the
application commands.

It also deals with the Card Manufacturer authentication and logical channels management.

The dispatcher is always activated. Some card commands (for administration) are only
available during prepersonalisation phase.

3.2.4.9 Applets

Applets bytecodes shall go thru the latest Oracle or IDEMIA off card verifiers before the
loading.

The platform evaluation shall identify, if any, recommendations in order to maintain isolation
properties. These recommendations then shall be followed by the applet developer and shall
be checked before loading.

3.3 Major Security feature of the TOE

The main goal of the TOE is to provide a sound and secure execution environment to critical
assets that need to be protected against unauthorized disclosure and/or modification.

The TOE with its security function has to protect itself and protect applets from bypassing,
abuse or tampering of its services that could compromise the security of all sensitive data.
Even if the applets are not in the scope of this evaluation.

Atomic Transactions

The TOE shall provide a transaction mechanism. It shall execute a sequence of
modifications and allocations on the persistent memory so that either all of them are
completed, or the TOE behaves as if none of them had been attempted.

The transaction mechanism shall permit to update internal TSF data as well as to
perform different functions of the TOE, like installing a new package on the card.

 ID-ONE COSMO V8.2
Public Security Target

 25 | 210

This mechanism shall be available for applet instances

The TOE shall perform the necessary actions to roll back to a safe state upon
interruption.

Card Content Management

The TOE shall control the loading, installation, and deletion of packages and applet
instances.

To remove the code of a package from the card, or to definitely deactivate an applet
instance, so that it becomes no longer selectable; it shall perform physical removal of
those packages and applet data stored in memories (except applet in ROM memory
that shall only be logically removed).

Card Management Environment

This function shall initialize and manage the internal data structure of the Card
Manager. During the initialization phase of the card, it creates the Installer and the
Applet Deletion Manager and initializes their internal data structures. The internal
data structure of the Card Manager includes the Package and Applet Registries,
which respectively contains the currently loaded packages and the currently installed
applet instances, together with their associated AIDs.

This function shall also be in charge of dispatching the APDU commands to the
applet instances installed on the card and keeping trace of the currently active ones.

It therefore handles sensitive TSF data of other security functions, like the Firewall or
the Remote Access Control function.

Cardholder Verification

The TOE shall implement mechanisms to identify and authenticate the user of the
product. This function is available to applet instances.

Clearing of sensitive information

The TOE shall ensure that no residual information is available from memories, and
shall protect sensitive information that is no longer used. The Platform has to securely
clear and destroy this information. It concerns PINs, keys, sensitive data (such as
D.BIO), buffer APDU.

This function is also available to applet.

DAP Verification

An Application Provider may require that its Application code to be loaded on the card
shall be checked for integrity and authenticity. The DAP Verification privilege of the
Application Provider’s Security Domain shall provide this service on behalf of the
Application Provider. A Controlling Authority may require that all Application code to
be loaded onto the card shall be checked for integrity and authenticity. The Mandated
DAP Verification privilege of the Controlling Authority’s Security Domain shall provide
this service on behalf of the Controlling Authority.

Data coherency

As coherency of data should be maintained, and as power is provided by the CAD
and might be stopped at all moment (by tearing or attacks), a transaction mechanism
need to be implemented.

 ID-ONE COSMO V8.2
Public Security Target

 26 | 210

When updating data, before writing the new ones, the old ones are saved in a specific
memory area. If a failure appears, at the next start-up, if old data are valid in the
transaction area, the system restores them for staying in a coherent state.

Data integrity

Sensitive data have to be protected from modifications: keys, pins, patch code and
sensitive applet data.

Encryption and Decryption

The TOE provides the applet instances with a mechanism for encrypting and
decrypting the contents of a byte array.

Ciphering operations are implemented to resist environmental stress and glitches and
include measures for preventing information leakage through covert channels.

Entity authentication/secure Channel

Off-card entity authentication is achieved through the process of initiating a Secure
Channel and provides assurance to the card that it is communicating with an
authenticated off-card entity.

If any step in the off-card authentication process fails, the process shall be restarted
(i.e. new session keys generated).

The Secure Channel initiation and off-card entity authentication implies the creation of
session keys derived from card static key(s).

Exception

In case of abnormal event: data unavailable on an allocation or illegal access to a
data, the system shall own an internal mechanism allowing it to stop the code
execution and raise an exception.

Firewall

The TOE with the Firewall shall control information flow at runtime. It shall ensure
controls object sharing between different applet instances, and between applet
instances and the Java Card RE.

GP_Dispatcher

While a Security Domain or Card Manager is selected, the TOE shall test for every
command if Security Domain Owner authentication is required. If a secure channel is
opened, the TOE tests according to the Security Domain state and the Card state for
every command if secure messaging is required.

Hardware operating

The TOE shall boot after the IC has successfully powered-up. The TOE boot
operations shall ensure the correct initialization of the TOE functionalities and the
integrity of the code and data.

The TOE shall monitor IC detectors (e.g. out-of-range voltage, temperature,
frequency, active shield, memory aging) and shall provide automatic answers to
potential security violations through interruption routines that leave the device in a
secure state.

Key Access

 ID-ONE COSMO V8.2
Public Security Target

 27 | 210

The TOE shall enforce secure access to all cryptographic keys on the card: RSA
keys, DES keys, EC keys, AES keys

Key Agreement

The TOE shall provide to applet instances a mechanism for supporting key
agreement algorithms such as EC Diffie-Hellman.

Key destruction

The TOE shall provide secure key destruction, such as keys cannot be retrieved from
erased data.

Key Distribution

The TOE shall enforce the distribution of all the cryptographic keys of the card using a
specific method.

Key Generation

The TOE shall enforce the creation and the on card generation of all the
cryptographic keys of the card using a specific method.

Key management

The TOE shall manage key set: Loading keys, adding a new key set (version and
value of the key) or updating a key set (update key value).

Manufacturer Authentication

During prepersonalisation phase, manufacturer authentication at the beginning of a
communication session shall be mandatory prior to any relevant data being
transferred to the TOE.

Memory failure

This security functionality is in charge of the management of bad usage of the
memory.

Message Digest

Message digest generation shall be implemented to resist environmental stress and
glitches and include measures for preventing information leakage through covert
channels.

The TOE shall provide the applet instances with a mechanism for generating an
(almost) unique value for the contents of a byte array. This value can be used as a
short representative of the information contained in the whole byte array.

For Hashing algorithms that do not pad the messages, the TSF checks that the
information is block aligned before computing its hash value.

Pre-personalisation

This function shall permit to pre-initialize the internal data structures, to load the
configuration of the card and to load patch code if needed and locks.

The TOE shall allow loading of TOE sensitive data: configuration data. Configuration
data can contain patches. The TOE shall check the integrity of the incoming data.
Unless stated otherwise, the origin of the incoming data shall be ensured by
organisational means. The TOE shall ensure that TOE code and patches installed

 ID-ONE COSMO V8.2
Public Security Target

 28 | 210

after delivery cannot be bypassed. The loading functionality of patches shall be
disabled before entering the final usage phase. The TOE identification shall take into
account the patches installed after delivery.

Random Number

This TOE functionality provides the card manager, the resident application and the
applets a mechanism for generating challenges and key values.

The Number Generator is a combination of hardware and software RNG. The RNG is
compliant with [R30].

Resident Application dispatcher

During prepersonalisation phase, this function shall verify for every command if
manufacturer authentication is required.

Remote access

During prepersonalisation phase, this function shall verify for every command if
manufacturer authentication is required.

Runtime Verifier

This security functionality ensures the secure processing of the stack, heap and
transient by ensuring additional controls.

Security functions of the IC

This TOE functionality ensures the correct execution of the IC functionalities.

Signature

This TSF shall provide the applet instances with a mechanism for generating an
electronic signature of the contents of a byte array and verifying an electronic
signature contained in a byte array.

An electronic signature is made of a hash value of the information to be signed,
encrypted with a secret key. The verification of the electronic signature includes
decrypting the hash value and checking that it actually corresponds to the block of
signed bytes. Signature operations shall be implemented to resist environmental
stress and glitches and include measures for preventing information leakage through
covert channels.

Unobservability

The TOE shall use and manipulate sensitive information without revealing any
element of this information.

3.4 NON-TOE HW/SW/FW AVAILABLE TO THE TOE

The only non-TOE component required on the product is the bytecode verifier. The bytecode
verifier is a program that performs static checks on the bytecodes of the methods of a CAP
file.

Bytecode verification is a key component of security: applet isolation, for instance, depends
on the file satisfying the properties a verifier checks to hold. A method of a CAP file that has
been verified shall not contain, for instance, an instruction that allows forging a memory

 ID-ONE COSMO V8.2
Public Security Target

 29 | 210

address or an instruction that makes improper use of a return address as if it were an object
reference. In other words, bytecodes are verified to hold up to the intended use to which they
are defined. This TOE considers static bytecode verification; it has to be performed on the
host at off-card verification and prior to the loading of the file on the card in any case.

3.5 TOE usage

This Platform is an open and isolating platform that is compliant with the ANSSI Application
Note 10 that deals with open and isolating platforms.

Smart cards are used as data carriers that are secure against forgery and tampering as well
as personal, highly reliable, small size devices capable of replacing paper transactions by
electronic data processing. Data processing is performed by a piece of software embedded
in the smart card chip, called an application.

The Java Card System is intended to transform a smart card into a platform capable of
executing applications written in a subset of the Java programming language. The intended
use of a Java Card platform is to provide a framework for implementing IC independent
applications conceived to safely coexist and interact with other applications into a single
smart card.

Applications installed on a Java Card platform can be selected for execution when the card
communicates with a card reader.

Notice that these applications may contain other confidentiality (or integrity) sensitive data
than usual cryptographic keys and PINs; for instance, passwords or pass-phrases are as
confidential as the PIN, or the balance of an electronic purse.

So far, the most typical applications are:

- Financial applications, like Credit/Debit ones, stored value purse, or electronic
commerce, among others.

- Transport and ticketing, granting pre-paid access to a transport system like the metro
and bus lines of a city.

- Telephony, through the subscriber identification module (SIM) or the NFC chip for
mobile phones.

- Personal identification, for granting access to secured sites or providing identification
credentials to participants of an event.

- Electronic passports and identity cards.

- Secure information storage, like health records, or health insurance cards.

- Loyalty programs, like the “Frequent Flyer” points awarded by airlines. Points are
added and deleted from the card memory in accordance with program rules. The total
value of these points may be quite high and they must be protected against improper
alteration in the same way that currency value is protected.

This platform provides a highly secure technology for smartcards applications. The Match-
On-Card technology is an entire part of the product, and enables the Authentication by way
of digital prints.

 ID-ONE COSMO V8.2
Public Security Target

 30 | 210

3.6 TOE Guidances

The ID-One Cosmo v8.2 is evaluated with its guidance. The guidance’s of the Platform are
listed hereafter:

Audience Mandatory Ref Title

Developer of
sensitive
applications

Yes
[R37]

ID-One Cosmo V8.2 Security
Recommendations

Guidance for
application
developer

No [R38]
ID-One Cosmo V8.2
Reference Guide

For pre-
personalisation

Yes [R39]
ID-One Cosmo v8.2 Pre-Perso
Guide

Issuer of the
platform that
aims to load
applications

Yes [R40]
COSMO V8.1-N Application
Loading Protection Guidance

For pre-
personalisation

Yes [R41]
OPTIONAL CODE R1.0 APPLI
DESELECTION BEFORE
DESFIRE

Table 6: Guidance references

Some guidance are mandatory, they shall be used by its users. Some guidance are not
mandatory, they constitute a help to users of the TOE or developer of applet to load on the
TOE.

3.6.1 Platform isolation

To ensure the platform isolation, see objective OE1 [R29] the following verifications must
be done:

1: For library packages intended to be loaded on the platform, the versioning rules described
in the Java Card Virtual Machine Specification at chapter “Binary Compatibility” and chapter
“Package Version“ must be applied in particular to determine the binary compatibility or
incompatibility of this package with a previous version. These rules are also summarized in
“GlobalPlatform Card Composition Model Security Guidelines for Basic Applications” at
chapter “Versioning”.

2: The byte code verification (required for any package intended to be loaded on the
platform) must be done using export files provided by IDEMIA.

Those verifications shall be done for all application intended to be loaded on the platform.

 ID-ONE COSMO V8.2
Public Security Target

 31 | 210

3.6.2 Sensitive applications

For sensitive application, the recommendations listed in [R37] are mandatory. The evaluator
of the sensitive application, checks that the guidance is followed by the sensitive application
developer.

The integrity and optionally the confidentiality of the application shall be maintained after the
Off card verifier check or after the evaluation and the loading on the TOE.

This check shall be ensured by the organisational measures or by security mechanisms.

The platform is evaluated without applications.

[R37]

If the applet needs to have a security certification, the applet must follow recommendations
listed in the document.
If the applet is a basic application, and does not need security certification with the platform,
the certificate of the Platform is still valid if the applet go through the verifier before the
loading of this applet (the security function of the platform are still ok).
This guide is provided to the Developer and evaluator of a sensitive application to be
certified.

[R38]

This document describes the ID-One Cosmo v8.2 smart card usage. It describes how to use
the card from an APDU commands point of view and gets onto topics such as common
platform APDU commands, secure channels and security domains.
This document also describes the available JavaCard and proprietary APIs for applet
developers.
This guide is provided to the Developer of an application to be certified or not.

[R39]

This document describes the pre-personalisation steps that should be followed to correctly
initialize the ID-One Cosmo v8.2 platforms. The TOE is finalized once it’s prepersonalised.
This guide is provided to the user (in phases 4-5).

[R40]

This document describes the loading procedure, in compliance with ANSSI Note 10 and the
Java Card Open Platform protection profile.

The [R40] is provided to the Loading Authority, who is in charge of loading an application.

3.7 TOE Life cycle

The development and manufacturing processes of the Composite Product is separated into
seven distinct phases to be in accordance with the Java Card™ System Protection Profile
(section 2.4, figure 3). Each phase is under the control of one (or several) administrator(s)
and protected by an environment. Each phase is covered by the assurance components.

 ID-ONE COSMO V8.2
Public Security Target

 32 | 210

Phase Phase name Description
Covered
by

Reference from

[R29] for loading
application

1
Security IC
Embedded Software
development

3.7.2 Phase 1
3.7.2.2 Environment &
Roles

ALC NA

2
Security IC
Development

3.7.3 Phase 2
3.7.3.2 Environment &
Roles

ALC [IC] NA

3
Security IC
Manufacturing

3.7.4 Phase 3
3.7.4.2 Environment &
Roles

ALC [IC] NA

4 Security IC Packaging
3.7.5 Phase 4
3.7.5.2 Environment &
Roles

AGD_PRE NA

5
Composite Product
Integration

3.7.6 Phase 5
3.7.6.2 Environment &
Roles

AGD_PRE
[ISO_VERIF]:
[ORG_LOAD]

6
Composite Product
Personalisation

3.7.7 Phase 6
3.7.7.2 Environment &
Roles

AGD_OPE

[ISO_VERIF]:
[ORG_LOAD]
Or
[TECH_LOAD]

7 Operational Usage
3.7.8 Phase 7
3.7.8.2 Environment &
Roles

AGD_OPE
[ISO_VERIF]
[TECH_LOAD]

Table 7: TOE Life Cycle – Summary

[ISO_VERIF]: is related to chapter 3.6.1.
[ORG_LOAD] is related organisational measure to ensure the integrity and authenticity of the
application after the verifications defined in chapter 3.6.1. This guidance is defined in [R40]
[TECH_LOAD] is related to the mandatory use of the mandated DAP specified in the present
security target. The guidance is defined in [R40]
NB:
The patch loading mechanism is evaluated.

No patch code can be loaded after phase 5, as the patch loading mechanism is deactivated.

The loading, if performed, is done in accordance with ANSSI Note 6 [R33].

 ID-ONE COSMO V8.2
Public Security Target

 33 | 210

3.7.1 Phases

Figure 2: TOE Life Cycle – Overviews

Phase 1

Security IC
Embedded
Software

User Data & Supplement
for Security IC Embedded

Software

Phase 2

Phase 5

Phase 6

Card Manager
Card Content Management

Card Manager
Card Content Management

Phase 7

Phase 4

P
R
O

D
U

C
T
 C

O
N

S
T
R
U

C
T
IO

N

P
R
O

D
U

C
T
 U

S
A
G

E

Delivery

Phase 3

Delivery Delivery

Card Manager
Card Content Management

Resident Application
Card Content Management

TOE Delivery TOE is self protected

 ID-ONE COSMO V8.2
Public Security Target

 34 | 210

3.7.2 Phase 1: Security IC Embedded Software development

3.7.2.1 Description

The Phase 1 of the Composite Product life cycle covers:
o User Data definition:

o Data written during the Security IC manufacturing (Phase 3) and used by the

Security IC Embedded Software – covered by ALC [COSMO V8.2]
o Data written during the Composite Product Integration (Phase 5) configuring

the Security IC Embedded Software – covered by AGD_PRE [COSMO V8.2]
o Writing User Data:

o Data not requiring encryption during the Security IC manufacturing (Phase 3)
– covered by ALC [COSMO V8.2]

o Data not requiring encryption during the Composite Product Integration
(Phase 5) – covered by AGD_PRE [COSMO V8.2]

o Data requiring encryption during the Composite Product Integration (Phase 5)
– covered by AGD_PRE [COSMO V8.2]

o Security IC Embedded Software development. The software components described
in TOE are delivered to the Security IC Manufacturer (Phase 3).

This includes conception, design, implementation, testing and documentation by respecting
the Environment & Roles (3.7.2.2).

The phase fulfils requirements defined in the TOE Reference.

At the end of this phase, the Security IC Embedded Software, User Data (written in Phase 3
or Phase 5) and Supplement for Security IC Embedded Software (required in Phase 3 or
Phase 5) are transferred by the administrators from the premises of IDEMIA to the IC
Manufacturer or Card Manufacturer (by respecting the rules for integrity and confidentiality).

 ID-ONE COSMO V8.2
Public Security Target

 35 | 210

3.7.2.2 Environment & Roles

The Security IC Embedded Software described in this document is developed in places under the control of administrators.

Phase

Phase name Task Company / Administrator Locations Destination

1

Security IC
Embedded
Software

development

User Data definition
IDEMIA / Security IC Embedded Software

Integrator
IDEMIA Courbevoie AGD_PRE

Writing User Data
without encryption

IDEMIA / Security IC Embedded Software
Integrator

IDEMIA Courbevoie

IDEMIA / Key Administrator –
MSK

AGD_PRE

Writing User Data with
encryption

IDEMIA / Security IC Embedded Software
Integrator – LSK

IDEMIA Courbevoie

IDEMIA / Key Administrator –
MSK

AGD_PRE

IDEMIA / Key Administrator – LSK IDEMIA Courbevoie
IDEMIA / Key Administrator –

MSK

Transferring User Data IDEMIA / Key Administrator – MSK IDEMIA Courbevoie IC Manufacturer

Software component
development

ID3 (Biometry algorithm) / Software
Developer

Grenoble
IDEMIA and ID3 / Security IC

Embedded Software Integrator

IDEMIA / Software Developer
IDEMIA Courbevoie

Pessac
IDEMIA / Security IC

Embedded Software Integrator

 ID-ONE COSMO V8.2
Public Security Target

 36 | 210

Phase

Phase name Task Company / Administrator Locations Destination

Security IC Embedded
Software development

IDEMIA / Security IC Embedded Software
Integrator

IDEMIA Courbevoie
IDEMIA / Key Administrator –

MSK

Transferring Security IC
Embedded Software

IDEMIA / Key Administrator – MSK IDEMIA Courbevoie

IC Manufacturer

Card Manufacturer

Supplement for Security
IC Embedded Software

(patch code)
development

IDEMIA / Software Developer &
IDEMIA / Security IC Embedded Software

Integrator
IDEMIA Courbevoie

IDEMIA / Security IC
Embedded Software Integrator

– LSK

IDEMIA / Key Administrator –
LSK

Supplement for Security
IC Embedded Software
(patch code) encryption

IDEMIA / Security IC Embedded Software
Integrator – LSK

IDEMIA Courbevoie

IDEMIA / Key Administrator –
MSK

IDEMIA / Key Administrator – LSK IDEMIA Courbevoie

Transferring Supplement
for Security IC

Embedded Software
(patch code)

IDEMIA / Key Administrator – MSK IDEMIA Courbevoie

IC Manufacturer

Card Manufacturer

Table 8: Security IC Embedded Software development Environment & Roles

 ID-ONE COSMO V8.2
Public Security Target

 37 | 210

To ensure security, access to development tools and products elements (computer,
emulator, card reader, documentation, source code including patches, locks, etc...) is
protected. The protection is based on measures for prevention and detection of unauthorized
access. The following levels of protection are applied:

o Access control to IDEMIA offices and sensitive areas,
o Access control to ID3 offices and sensitive areas, that lay on the ID3 site audit,
o Access to development data through the use of a secure computer system to design,

implement and test software.

The Software Developers are in charge to develop software components (BIOS, Resident
Application, API, ...) and Supplement for Security IC Embedded Softwares.

The Security IC Embedded Software Integrators are in charge to build the Security IC
Embedded Software from the software components and define data managed by the
Security IC Embedded Software (User Data). They may cipher User Data requiring a secure
writing and the Supplement for Security IC Embedded Software by using LSK key.

The Key Administrators may cipher the User Data requiring a secure writing (not already
ciphered by Security IC Embedded Software Integrators) and the Supplement for Security IC
Embedded Software requiring a secure loading (not already ciphered by Security IC
Embedded Software Integrators) by using LSK key. They transfer User Data (required in
Phase 3), the Security IC Embedded Software and Supplement for Security IC Embedded
Software (required in Phase 3) to IC Manufacturer by using MSK. They transfer the
Supplement for Security IC Embedded Software (required in Phase 5) to Card Manufacturer
by using MSK.

3.7.3 Phase 2: Security IC Development

3.7.3.1 Description

The Phase 2 of the Composite Product life cycle covers Security IC development which is
described in the IC ST identification (see TOE Reference).

3.7.3.2 Environment & Roles

The Security IC Development is described in the certification reference of the Security IC (2.3
TOE Reference).

3.7.4 Phase 3: Security IC Manufacturing

3.7.4.1 Description

The Phase 3 of the Composite Product life cycle covers Security IC Manufacturing which is
described in the IC ST identification (see TOE Reference).

The Security IC manufacturer writes:
o Security IC Embedded Software developed in Phase 1 in persistent memory (ROM)
o User Data (static or dynamic) needed by the Security IC Embedded Software in

volatile memory (EEPROM)
o Supplement for Security IC Embedded Software (if required in TOE Reference)

developed in Phase 1 in volatile memory (EEPROM)

The delivery of the Security IC occurs at the end of this phase in form of wafers. The Security
IC Embedded Software is protected by a secret (MSK).

The delivery of the TOE occurs at the end of the Phase 3.

 ID-ONE COSMO V8.2
Public Security Target

 38 | 210

3.7.4.2 Environment & Roles

The Security IC Manufacturing is described in the certification reference of the Security IC
(2.3 TOE Reference).

3.7.5 Phase 4: JavaCard Platform Packaging

3.7.5.1 Description

The JavaCard Platform delivered by the IC Manufacturer to the Card Issuer / Integrator is
integrated in an appropriate form factor (card, token …) required by the end-consumer.

3.7.5.2 Environment & Roles

The JavaCard Platform described in this document is packaged in places under the control of
administrators.

Phase
Phase
name

Tasks Administrators

4
Javacard
Platform
Packaging

Javacard Platform Packaging IC Packaging Manufacturer

Packaging Testing IC Packaging Manufacturer

Table 9: Javacard Platform Packaging Roles

3.7.6 Phase 5: Composite Product Integration

3.7.6.1 Description

From this phase, the Javacard Platform Embedded Software is activated. The Card Life
Cycle is defined by the Card Manager Life cycle. The states in this phase are
Pre_production, OP_READY and INITIALIZED.

This Card Life Cycle begins in state Pre_production. During this state, the Resident
Application manages the Javacard Platform Embedded Software and ensures the security.
This state supports:

o the Javacard Platform Embedded Software configuration (by loading User Data in
clear, User Data ciphered, Supplement for Javacard Platform Embedded Software
ciphered by LSK),

o the Card Content Management (activating Load File from persistent memory, loading,
installation, and deletion of Load Files and applet instances),

o Card Manager configuration (first key-set, …).

By switching from the Pre_production state up to OP_READY, the Card Manager replaces
the Resident Application. From this state, the Card Manager ensures the Card Content
Management (loading, installation, and deletion of Load Files and applet instances) and
provides security in place of the Resident Application.

At the end of this phase, the Card Life Cycle state is INITIALIZED.

 ID-ONE COSMO V8.2
Public Security Target

 39 | 210

3.7.6.2 Environment & Roles

The Composite Product described in this document is integrated under the control of administrators. This table below summarizes the administrators
available during this phase and the secret securing it.

Phase Phase Name Card life cycle state Target Selected Target State

Authentication

Administrator Secret

5
Composite Product

Integration

Pre_production Resident Application Pre_production Card Manufacturer MSK (Table 11)

OP_READY

Issuer SD (ISD) OP_READY Card Issuer / ISK Admin (ISK)d (Table 11)

Supplementary SD
(SSD)

INSTALLED

SELECTABLE

The Security Domain can only be used if the keys have been
populated (PERSONALIZED). In these states, the Issuer Security
Domain is used for the Card Content Management. The possible

actions are consistent with the selection of ISD.

PERSONALIZED Application Provider (AMK)d (Table 11)

INITIALIZED

Issuer SD (ISD) INITIALIZED Card Issuer / KMC Admin (KMC)d (Table 11)

Supplementary SD
(SSD)

INSTALLED

SELECTABLE

The Security Domain can only be used if the keys have been
populated (PERSONALIZED). In these states, the Issuer Security
Domain is used for the Card Content Management. The possible

actions are consistent with the selection of ISD.

PERSONALIZED Application Provider (AMK)d (Table 11)

Table 10: Composite Product Integration – Administrators

 ID-ONE COSMO V8.2
Public Security Target

 40 | 210

The Card Manufacturer is the entity responsible for producing smart cards on behalf of the
Card Issuer. This entity manages applications through a secure communication channel with
the card until the card manager is initialized (OP_READY state). It is in charge of:

o Authentication,

o configuring the Javacard Platform Embedded Software by writing the User Data (in
clear or encrypted),

o loading securely Supplement for Javacard Platform Embedded Software (patch code
developed in Phase 1) in volatile memory (EEPROM),

o activating Load Files from immutable persistent memory (ROM),

o instantiating the Card Manager and populating the initialization key (ISK),

o Card Content Management,

o Switching the Card Life Cycle from Pre_production to OP_READY .

The Card Issuer is the entity that owns the card and is ultimately responsible for the
behaviour of the card. It is initially the only entity authorized to manage applications through
a secure communication channel with the card. According to the secret managed by the
Card Issuer, we separate this entity in several:

o Card Issuer / ISK Admin (this entity replaces Card Manufacturer)

o Card Issuer / KMC Admin (this entity replaces the Card Issuer / ISK Admin)

Each one is in charge of:

o Authentication,

o Card Content Management,

o Card Life Cycle administration.

The Application Provider personalizes their applications and Security Domains (SSD) in a
confidential manner. It has Security Domain keysets enabling them to be authenticated to the
corresponding Security Domain and to establish a trusted channel between the TOE and an
external trusted device. These Security Domain final keysets are not known by the Card
issuer. The Application Provider is in charge of:

o Authentication,

o Providing the Load Files,

o Personalizing the SSD associated (if required by the Application Provider).

The Application Administrator is in charge of:

o Personalizing the application.

 ID-ONE COSMO V8.2
Public Security Target

 41 | 210

The table below summarizes the secret used by the administrators during this phase.

Secret Name Definition

MSK
Manufacturer MSK shared between the the Card Manufacturer and the Card Issuer and protects the card
from any entity besides the Card Manufacturer and the Card Issuer.

(ISK)d
First key-set if the Card Issuer to protect the card during the transport if this step of personalisation is shared
by two entities.

(KMC)d
Initial key-set of the Card Issuer that ensures mutual authentication, provides command integrity during the
Secure Channel initiation and provides confidentiality for keys within Secure Channel session.

(AMK)d
Application Key-set that ensures mutual authentication, provides command integrity during the Secure
Channel initiation and provides confidentiality for keys within Secure Channel session.

Kdap
This key ensures that application code being loaded to the card has been verified by the Controlling Authority
or the Application Provider.

Table 11: Composite Product Integration – Keysets

3.7.7 Phase 6: Composite Product Personalisation

3.7.7.1 Description

The Card Life Cycle states defined in this phase are INITIALIZED and then SECURED.
These states allow the Card Content Management. According to the “Environment & Roles”,
the applets already instantiated may be personalized. Additional Load Files may be loaded.
The applets may be instantiated and personalized.

At the end of this phase:
o Card Life Cycle state is SECURED the Security Domain Mandated DAP is fully

operational (PERSONALIZED) and protects the Load File loading during Phase 7.

 ID-ONE COSMO V8.2
Public Security Target

 42 | 210

3.7.7.2 Environment & Roles

The Composite Product described in this document is personalized in places under the control of administrators.

Phase Phase Name Card life cycle state Target Selected Target State

Authentication

Administrator Secret

6
Composite Product

Personalisation

INITIALIZED

Issuer SD (ISD) INITIALIZED Card Issuer / KMC Admin (KMC)d (Table 13)

Supplementary SD
(SSD)

INSTALLED

SELECTABLE

The Security Domain can only be used if the keys have been
populated (PERSONALIZED).

In these states, the Issuer Security Domain is used for the Card
Content Management. The possible actions are consistent with the

selection of ISD.

PERSONALIZED Application Provider (AMK)d (Table 13)

SECURED

Issuer SD (ISD) SECURED Card Issuer / CMK Admin (CMK)d (Table 13)

Supplementary SD
(SSD)

INSTALLED

SELECTABLE

The Security Domain can only be used if the keys have been
populated (PERSONALIZED).

 In these states, the Issuer Security Domain is used for the Card
Content Management. The possible actions are consistent with the

selection of ISD.

PERSONALIZED Application Provider (AMK)d (Table 13)

Table 12: Composite Product Personalisation – Administrators

 ID-ONE COSMO V8.2
Public Security Target

 43 | 210

The Card Issuer is the entity that owns the card and is ultimately responsible for the
behaviour of the card. It is an entity authorized to manage applications through a secure
communication channel with the card. According to the secret managed by the Card Issuer,
we separate this entity in several:

o Card Issuer / KMC Admin

o Card Issuer / CMK Admin (this entity replaces the Card Issuer / KMC Admin)

Each one is in charge of:

o Authentication,

o Card Content Management,

o Card Life Cycle administration.

The Application Provider personalizes their applications and Security Domains (SSD) in a
confidential manner. It has Security Domain keysets enabling them to be authenticated to the
corresponding Security Domain and to establish a trusted channel between the TOE and an
external trusted device. These Security Domain keysets are not known by the Card issuer.
The Application Provider is in charge of:

o Authentication,

o Providing and Loading the Load Files

o Personalizing the SSD associated (if required by the Application Provider).

The Application Administrator is in charge of:

o Instantiating and personalizing the application.

The Controlling Authority is a trusted third party which ensures the integrity of the Load
Files. This Controlling Authority gives a DAP signature for all Load Files requiring a loading
during the Phase 7. Without this signature, no more Load File can be added into the card.
The Controlling Authority creates the Verification Authority into the card (SSD mandated DAP
initialized with Kdap).

The Verification Authority, trusted third party represented on the card by a SSD mandated
DAP is responsible for the verification of applications signatures during the loading process.
This SSD is personalized by a Controlling Authority. This SSD is protected by a keyset
(AMK)d. The key verification is named Kdap. This DAP signature is optional during this
phase, but becomes mandatory during the Phase 7.

 ID-ONE COSMO V8.2
Public Security Target

 44 | 210

Secret Name Definition

(KMC)d
Initial key-set of the Card Issuer that ensures mutual authentication, provides command integrity during the
Secure Channel initiation and provides confidentiality for keys within Secure Channel session.

(AMK)d
Application Key-set that ensures mutual authentication, provides command integrity during the Secure
Channel initiation and provides confidentiality for keys within Secure Channel session.

Kdap This key ensures that application code being loaded to the card has been verified by the Controlling Authority

(CMK)d
Final key-set of the Card Issuer that ensures mutual authentication, provides command integrity during the
Secure Channel initiation and provides confidentiality for keys within Secure Channel session.

Table 13: Composite Product Personalisation – Keysets

3.7.8 Phase 7: Operational Usage

3.7.8.1 Description

In this phase, the Card Life Cycle state is SECURED.

This state allows the Card Content Management. According to the “Environment & Roles”,
the applets may be instantiated and personalized from Load File already present or from
additional Load File loaded during this phase. The applets already instantiated may be
personalized.

Additional Load File may be loaded but requires a DAP Verification to ensure the Load File
integrity. This verification is carried out by Security Domain Mandated DAP (see Protection
Profile).

 ID-ONE COSMO V8.2
Public Security Target

 45 | 210

3.7.8.2 Environment & Roles

The Composite Product described in this document may be personalized in unprotected environment under the control of administrators.

Phase Phase Name Card life cycle state Target Selected Target State

Authentication

Administrator Secret

7 Operational Usage SECURED

Issuer SD (ISD) SECURED Card Issuer / CMK Admin (CMK)d (Table 15)

Supplementary SD
(SDD)

INSTALLED

SELECTABLE

The Security Domain can only be used if the keys have been
populated (PERSONALIZED). In these states, the Issuer Security
Domain is used for the Card Content Management. The possible

actions are consistent with the selection of ISD.

PERSONALIZED Application Provider (AMK)d (Table 15)

Table 14: Operational Usage – Administrators

 ID-ONE COSMO V8.2
Public Security Target

 46 | 210

The Card Issuer is the entity that owns the card and is ultimately responsible for the
behaviour of the card. It manages applications through a secure communication channel with
the card by using a secret. During this phase, the Card Issuer is named:

o Card Issuer / CMK Admin

It is in charge of:

o Authentication,

o Card Content Management,

o Card Life Cycle administration.

The Application Provider personalizes their applications and Security Domains (SSD) in a
confidential manner. It has Security Domain keysets enabling them to be authenticated to the
corresponding Security Domain and to establish a trusted channel between the TOE and an
external trusted device. These Security Domain keysets are not known by the Card issuer.
The Application Provider is in charge of:

o Authentication,

o Providing and Loading Load Files including the DAP signature (from the Controlling
Authority). The Verification Authority ensures the verification of the DAP signature.

o Instantiating and personalizing the SSD associated (if required).

The Application Administrator is in charge of:

o Instantiating and personalizing the application.

The Controlling Authority is a trusted third party which ensures the integrity of the Load
Files. This Controlling Authority gives a DAP signature for all Load Files requiring a loading
during this phase. Without this signature, no Load File can be added into the card. The
Controlling Authority creates the Verification Authority into the card (SSD mandated DAP
initialized with Kdap).
The Verification Authority, trusted third party represented on the card by a SSD mandated
DAP is responsible for the verification of applications signatures during the loading process.
This SSD is in the state PERSONALIZED (keyset and Kdap initialized). This DAP signature
is mandatory during this phase for loading all new Load Files.

Keyset
Name

Definition

(AMK)d

Application Key-set that ensures mutual authentication, provides command
integrity during the Secure Channel initiation and provides confidentiality for
keys within Secure Channel session.

Kdap
This key ensures that application code being loaded to the card has been
verified by the Controlling Authority

(CMK)d
Final key-set of the Card Issuer that ensures mutual authentication, provides
command integrity during the Secure Channel initiation and provides
confidentiality for keys within Secure Channel session.

Table 15: Operational Usage – Keysets

 ID-ONE COSMO V8.2
Public Security Target

 47 | 210

3.8 Software Components Life Cycle

3.8.1 Card Life Cycle

Figure 3: Card Life Cycle

Pre_production

This initial life state of the Card allows managing the prepersonalisation of the Javacard
Platform Embedded Software up to the Card Manager Life Cycle OP_READY.
During this state, the Resident Application provides a set of APDU commands which allows:

o Writing User Data for configuring the Javacard Platform Embedded Software. This
configuration (by using lock mechanism) is only carried out during this state.

o Writing Supplement for Javacard Platform Embedded Software (patch code). It is
developed at IDEMIA premises (Phase 1), delivered and loaded securely in volatile
memory (EEPROM) during the Composite Product Integration (Phase 5). The
security of this loading is fully enforced by technical measures provided by the TOE,
and evaluated by the ITSEF. This task is only carried out during this state.

o Activating Load Files from immutable persistent memory (ROM). This task is only
carried out during this state.

o Loading Load Files from mutable persistent memory (EEPROM).

o Instantiating the Issuer Security Domain (Card Manager). Only one ISD is available
by card.

 ID-ONE COSMO V8.2
Public Security Target

 48 | 210

o Populating with initialization key (ISK) and Chip CPLC. The Card Life Cycle switchs
automatically in OP_READY state when the initialization key (ISK) is populated in the
ISD.

The APDU commands depend on the mutual authentication carries out (by using MSK).

The next states possible are OP_READY or TERMINATED. The transition is irreversible.

OP_READY

During this life cycle state, all the basic functionalities of the runtime environment are
available and the Card Manager is ready to receive, execute and respond to APDU
commands. During this state, a new keyset have to be loaded before switching to
INITIALIZED life state.
The card is assumed to have the following functionalities in the OP_READY state:

o The runtime environment is ready for execution.
o An Initialization key is available within the Card Manager.
o Card Content Management operations are supported.
o Post-issuance personalisation of applets belonging to the Card Issuer can be carried

out via the Card Manager.

The next states possible are INITIALIZED or TERMINATED. The transition is irreversible.

INITIALIZED

This life state is an administrative card production state. Most of the personalisation of the
Card Manager is performed when entering in this state.

The card is assumed to have the following functionalities in the INITIALIZED state:
o The runtime environment is ready for execution.
o A keyset is available within the Card Manager.
o Card Content Management operations are supported.
o Post-issuance personalisation of applets belonging to the Card Issuer can be carried

out via the Card Manager.

The next states possible are SECURED or TERMINATED. The transition is irreversible.

SECURED

The Card life cycle state SECURED is the normal operating life cycle state of the card after
issuance. This state is the indicator for the Card Manager to enforce the Card Issuer’s
security policies related to post-issuance card behaviour such as applet loading and
activation.

The card is assumed to have the following functionality in the state SECURED:
o The Card Manager contains all necessary key sets and security elements for full

functionality.
o Card Issuer initiated card content changes can be carried out through the Card

Manager.
o Card Content Management operations are supported.
o Post-issuance personalisation of applets belonging to the Card Issuer can be carried

out via the Card Manager.

The next states possible are CM_LOCKED or TERMINATED.

 ID-ONE COSMO V8.2
Public Security Target

 49 | 210

The transition in the TERMINATED state is irreversible.

CM_LOCKED

The state CM_LOCKED is used to instruct the Card Manager to temporarily disable all
applets on the card except for the Card Manager. This state is created to give the Card
Issuer the ability to temporarily disable functionality of the card on detection of security
threats (either internal or external to the card).

Setting the Card Manager to this state implies that the card will no longer work, except via
the Card Manager which is controlled by the Card Issuer. No Card Content Management
operation is possible.

The next states possible are SECURED or TERMINATED.

The transition in the TERMINATED state is irreversible.

TERMINATED

The Card Manager is set to the life cycle state TERMINATED to permanently disable all card
functionalities including the functionality of the Card Manager itself. This state is created as a
mechanism for the Card Issuer to logically ‘destroy’ the card for such reasons as the
detection of a severe security threat or upon expiration of the card.

Only GET DATA (CPLC) command is available. No Card Content Management operation is
possible.

The Card Manager state TERMINATED is irreversible and signals the end of the card’s life
cycle.

3.8.2 Security Domain Life Cycle States

The Security Domain Life Cycle begins when a Security Domain is instantiated in the card.
The Security Domain Life Cycle States defined by Global Platform are INSTALLED,
SELECTABLE, PERSONALIZED and LOCKED. There are no proprietary Security Domain
Life Cycle States.

Figure 4: Security Domain Life Cycle illustrates the state transition diagram for the Security
Domain Life Cycle. This can typically be viewed as a sequential process with certain
possibilities for reversing a state transition or skipping states.

 ID-ONE COSMO V8.2
Public Security Target

 50 | 210

Figure 4: Security Domain Life Cycle

INSTALLED

The state INSTALLED means that the Security Domain becomes an entry in the Global
Platform Registry and this entry is accessible to off-card entities authenticated by the
associated Security Domain. The Security Domain is not yet available for selection. It cannot
be associated with Executable Load Files or Applications yet and therefore its Security
Domain services are not available to Applications.

SELECTABLE

The state SELECTABLE means that the Security Domain is able to receive commands
(specifically personalisation commands) from off-card entities. As they still do not have keys,
the Security Domains cannot be associated with Executable Load Files or Applications and
therefore their services are not available to Applications when they are in this state. The state
transition from INSTALLED to SELECTABLE is irreversible. The transition to SELECTABLE
may be combined with the Security Domain installation process.

PERSONALIZED

The definition of what is required for a Security Domain to transition to the state
PERSONALIZED is Security Domain dependent but is intended to indicate that the Security
Domain has all the necessary personalisation data and keys for full runtime functionality (i.e.
usable in its intended environment). The transition from SELECTABLE to PERSONALIZED
is irreversible.

In the state PERSONALIZED, the Security Domain may be associated with Applications and
its services become available to these associated Applications.

LOCKED

The OPEN, the Security Domain itself, the Security Domain’s associated Security Domain (if
any), an Application with the Global Lock privilege or a Security Domain with the Global Lock
privilege uses the state LOCKED as a security management control to prevent the selection
of the Security Domain.

 ID-ONE COSMO V8.2
Public Security Target

 51 | 210

If the OPEN detects a threat from within the card and determines that the threat is associated
with a particular Security Domain, that Security Domain may be prevented from further
selection by the OPEN setting the Security Domain’s Life Cycle State to LOCKED.

Alternatively, the off-card entity may determine that a particular Security Domain on the card
needs to be locked for a business or security reason and may initiate the state transition via
the OPEN.

Locking a Security Domain prevents this Security Domain from being associated with new
Executable Load Files or Applications. In this state DAP verification, extradition and access
to that Security Domain’s services shall fail. In summary, if a Security Domain is in the
lifecycle state LOCKED, it shall reject all received commands.

Once the Life Cycle State is LOCKED, only the Security Domain’s associated Security
Domain (if any), an Application with Global Lock privilege or a Security Domain with Global
Lock privilege is allowed to unlock the Security Domain. The OPEN shall ensure that the
Security Domain’s Life Cycle returns to its previous state.

DELETED

At any point in the Security Domain Life Cycle, the OPEN may receive a request to delete a
Security Domain.

The space previously used to store a physically deleted Security Domain is reclaimed and
may be reused. The entry within the Global Platform Registry shall no longer be available,
and the OPEN is not required to maintain a record of the deleted Security Domain’s previous
existence.

3.8.3 Load File Life Cycle

The Load Files Life Cycle begins when a Load File is activated from immutable persistent
memory (ROM) or loaded in mutable persistent memory (EEPROM).

Figure 5: Load File Life Cycle illustrates the state transition diagram for the Load File Life
Cycle. This can typically be viewed as a sequential process.

Figure 5: Load File Life Cycle

The Load Files activated (Phase 5) or loaded (Phase 5 and/or 6) must satisfy a process
using the following tools:

o Compiler: software that generates machine-independent code (bytecode)

o Converter: software that preprocesses all of the Java programming language class
files that make up a package, and converts the package to a standard file format for
the binary compatibility of the Java Card platform (CAP file). The Converter also
produces an export file.

 ID-ONE COSMO V8.2
Public Security Target

 52 | 210

o Loader: software that transfers the Load File.

During the Phase 7, the TOE must prevent the installation of a package that has not been
bytecode verified, or that has been modified after bytecode verification. The loading process
requires adding the proof of the origin of the Load File (computed by off-card entity) and
verifying it by a Security Domain with Mandated DAP privilege. The following tools are used:

o Compiler: software that generates machine-independent code (bytecode)

o Converter: software that preprocesses all of the Java programming language class
files that make up a package, and converts the package to a standard file format for
the binary compatibility of the Java Card platform (CAP file). The Converter also
produces an export file.

o Verifier: software that performs static checks on the bytecodes of the methods of a
CAP file and generates a signature <DAPBlock>.

o Loader: software that transfers the Load File (including the <DAPBlock>).

The bytecode, CAP file, DAP Block can be generated from any software.

LOADED

The state LOADED is the initial life state just after it has been activated (from the Resident
Application) or loaded (from the Resident Application or the Card Manager).

This state is independent of the visibility of the Load File (Get Status command of the Card
Manager) and just depends on the presence in the Global Platform registry.

DELETED

The OPEN may receive a request to delete a Load File. For Load Files in EEPROM, the
space previously used to store a physically deleted Load File is reclaimed and may be
reused. For Load Files in ROM, a flag definitely prohibits further use. The entry within the
Global Platform Registry is also removed, and the OPEN is not required to maintain a record
of the deleted Load File’s previous existence.

3.8.4 Application Life Cycle

The Application Life Cycle begins when an applet is instantiated in the card. This
instantiation may occur directly after loading transaction or alternatively from a Load File
which is present on the card. The Application Life Cycle States defined by Global Platform
are INSTALLED, SELECTABLE or LOCKED.

Figure 6: Application Life Cycle, illustrates the state transition diagram for the Application Life
Cycle. This can typically be viewed as a sequential process with certain possibilities for
reversing a state transition or skipping states.

In addition to these states, the Application may define its own Application dependent states.
Once the Application reaches the SELECTABLE state, it is responsible for managing the
next steps of its own Life Cycle. It may use any Application specific states as long as these
do not conflict with the states already defined by Global Platform. The OPEN may not
perform these transitions without instruction from the Application and the Application is
responsible for defining state transitions and ensuring that these transitioning rules are
respected.

 ID-ONE COSMO V8.2
Public Security Target

 53 | 210

Figure 6: Application Life Cycle

INSTALLED

The INSTALLED state means that the Application executable code has been properly linked
and that any necessary memory allocation has taken place. The Application becomes an
entry in the Global Platform Registry and this entry is accessible to authenticated off-card
entities. The Application is not yet selectable. The installation process is not intended to
incorporate personalisation of the Application, which may occur as a separate step.

SELECTABLE

The SELECTABLE state implies that the applet is able to receive commands from off-card
entities. The state transition from INSTALLED to SELECTABLE is irreversible. The
Application shall be properly installed and functional before it may be set to the
SELECTABLE state. The transition to SELECTABLE may be combined with the Application
installation process. The behaviour of the Application in the SELECTABLE state is beyond
the scope of this Specification.

LOCKED

The OPEN or the off-card entity authenticated by the Issuer Security Domain uses the state
LOCKED as a security management control to prevent the selection, and therefore the
execution, of the Application. If the OPEN detects a threat from within the card and
determines that the threat is associated to a particular Application, this Application may be
prevented from further selection by the OPEN setting its state to LOCKED. Alternatively, the
off-card entity authenticated by the Issuer Security Domain may determine that a particular
Application on the card needs to be locked for a business or security reason and may initiate
the Application Life Cycle transition via the OPEN. Once the state is LOCKED, only the
Issuer Security Domain is allowed to unlock the Application. The OPEN shall ensure that the
Application Life Cycle returns to its previous state.

DELETED

At any point in the Application Life Cycle, the OPEN may receive a request to delete an
Application. The space previously used to store a physically deleted Application is reclaimed
and may be reused. The entry within the Global Platform Registry is also removed, and the
OPEN is not required to maintain a record of the deleted Application’s previous existence.

 ID-ONE COSMO V8.2
Public Security Target

 54 | 210

Application Specific Life Cycle States

These states are Application specific. The behaviour of the Applet during these states is
determined by the Applet itself and is beyond the scope of this document. The OPEN does
not enforce any control on Application specific Life Cycle State transitions.

 ID-ONE COSMO V8.2
Public Security Target

 55 | 210

4 Common Criteria conformance claim

4.1 Common Criteria

This security Target claims conformance to the Common Criteria version 3.1 revision 5, with
the following documents:

[1] “Common Criteria for information Technology Security Evaluation, Part 1:
Introduction and general model”, April 2017, Version 3.1 revision 5.

[2] “Common Criteria for information Technology Security Evaluation, Part 2: Security
Functional component”, April 2017, Version 3.1 revision 5.

[3] “Common Criteria for information Technology Security Evaluation, Part 3: Security
Assurance components”, April 2017, Version 3.1 revision 5.

The Conformance to the Common Criteria is claims as follows:

Common
Criteria

Conformance rationale

Part 1 conformance

Part 2
Conformance to the extended part.

FCS_RNG.1: “Random number generation”

Part 3

Compliant to EAL5 +, augmented with

- ALC_DVS.2: “Sufficiency of security measures”
(highest component)

- AVA_VAN.5: “Advanced methodical vulnerability analysis”
(highest component)

Table 16: CC conformance rationale

4.2 Protection Profile

This security target claims a demonstrable conformance to:

PP SUN Java Card™ System Protection Profile Open Configuration V3.0, May 2012.

The product is in conformance with the minimum assurance level EAL5+ augmented with
ALC_DVS.2 and AVA_VAN.5 described in paragraph 3.2 of the Protection Profile by claiming
an evaluation level EAL5+ augmented with ALC_DVS.2 and AVA_VAN.5.

4.3 Conformance claim rationale

This paragraph presents the consistency between the security target and the Java Card
System Open configuration profile Protection Profile.

 ID-ONE COSMO V8.2
Public Security Target

 56 | 210

4.3.1 TOE Type conformance

The TOE type is in conformance with the TOE type described in the protection profile. For
more information on this point, please refer to chapter 2.1 of this security target.

4.3.2 SPD Statement Consistency

4.3.2.1 Assets

All assets from the protection profile are included in the security target.

The following assets have been added:

Assets Rationale

D.CONFIG
This asset defines the elements of configuration during the
prepresonalization phase

D.SENSITIVE_DATA This asset describes the set of sensitive data to be protected

D.ARRAY This asset describes the applets sensitive data

D.JCS_KEYS
This asset describes two cryptographic keys used during the
loading of a file in the card

D.BIO This asset describes the biometric sensitive data

NB:

D.BIO asset is already described in the protection profile in the appendix.

4.3.2.2 Threats

All threats from the protection profile are included in the security target.

Three additional threats have been added in the security target:

Threats Rationale

T.CONFIGURATION This threat is directly linked to D.CONFIG

T.CONF_DATA_APPLET This threat is directly linked to D.ARRAY

T.PATCH_LOADING This threat is directly linked to patch loading

4.3.2.3 OSPs

All the OSP from the protection profile is included in the security target, no additional OSP
have been added.

4.3.2.4 Assumptions

 ID-ONE COSMO V8.2
Public Security Target

 57 | 210

All the assumptions from the protection profile have been added in the security target, except
A.DELETION.

A.DELETION has been removed from the security target because the deletion of applets is in
the scope of the evaluation, as O.CARD_MANAGEMENT is an objective in this security
target.

4.3.3 Objectives

4.3.3.1 Security Objectives for the TOE

All the security objectives for the TOE from the protection profile are included in the security
target.

The following security objectives have been added:

Security objectives for the
TOE

Rationale

O.SCP.SUPPORT
This security objective comes from a security objective for
the operational environment

O.SCP.IC
This security objective comes from a security objective for
the operational environment

O.SCP.RECOVERY
This security objective comes from a security objective for
the operational environment

O.RESIDENT_APPLICATION
This security objective deals with the security of the resident
application

O.CARD_MANAGEMENT
This security objective comes from a security objective for
the operational environment

O.SECURE_COMPARE This security objective is linked to D.ARRAY

O.PATCH_LOADING This security objective is related to patch loading

4.3.3.2 Security Objectives for the Operational Environment

All the security objectives for the operational environment are included in the security target.

Some security objectives for the operational environment has been transformed in security
objectives for the TOE, the rationale is presented in the previous chapter.

4.3.4 SFR and SARs Statements consistency

4.3.4.1 SFRs Consistency

All the SFR from the protection profile have been added in the security target.

The following SFR have been added in the security target:

Additional SFR for the Card Manager

 ID-ONE COSMO V8.2
Public Security Target

 58 | 210

SFR Rationale

FPT_TST.1 Initial startup test in case of future requirement

FCO_NRO.2/CM_DAP Refinement of the requirements in terms of non-repudiation of
the origin to the Card Manager during the DAP process

FIA_AFL.1/CM Concerns applets composition evaluation

FIA_UAU.1/CM Concerns smartcard product and composition

FIA_UAU.4/CardIssuer Prevents from Card Issuer authentication reuse

FIA_UAU.7/CardIssuer Defines the authentication process

FPR_UNO.1/Key_CM Prevents from observation of import key operation

FPT_TDC.1/CM Technical requirement for communication with another trusted IT
product

FMT_SMR.2/CM Defines several roles

FCS_COP.1/CM Defines the Cryptographic algorithm available to the CM for the
Card Issuer authentication

Additional SFR for the resident application

SFR Rationale

FDP_ACC.2/PP Access control policy during prepersonalisation

FDP_ACF.1/PP Access control functions during prepersonalisation

FDP_UCT.1/PP Precision of the prepersonalisation access control regarding
inter-TSF user data confidentiality transfer protection

FDP_ITC.1/PP Precision of the import of user data during prepersonalisation

FIA_AFL.1/PP Precision of the authentication failures during prepersonalisation

FIA_UAU.1/PP Precision of the user accessible functions before user
authentication during prepersonalisation

FIA_UID.1/PP Precision of the user accessible functions before user
identification during prepersonalisation

FMT_MSA.1/PP Precision of the management of the security attributes during
prepersonalisation

FMT_SMF.1/PP Precision of the specification of the management functions
during prepersonalisation

FIA_ATD.1/CardManu Precision of the user attribute during prepersonalisation

FIA_UAU.4/CardManu Prevents from Card Manufacturer authentication reuse during
prepersonalisation

FIA_UAU.7/CardManu Defines the authentication process of the Card Manufacturer
during prepersonalisation

FMT_MOF.1/PP Management of functions of the TSF during prepersonalisation,
especially for the resident application

 ID-ONE COSMO V8.2
Public Security Target

 59 | 210

FMT_SMR.2/PP Restrictions on security roles during prepersonalisation

FMT_MSA.3/PP Precision of the security attribute initialization during
prepersonalisation

FCS_COP.1/PP Cryptographic operation available during prepersonalisation

FCS_CKM.4/PP Cryptographic key destruction during prepersonalisation

FDP_UIT.1/PP Ensures the integrity of the patch loaded

FCS_CKM.1/PP Provides the MSK diversification

FTP_ITC.1/PP Defines the trusted channel for the patch and locks loading

FAU_STG.2 Provides the patch identification evidence

Additional SFR for the SmartCard Platform

SFR Rationale

FPT_PHP.3/SCP Additional security features are added in the product, using
security features of the IC

FPT_FLS.1/SCP Technical requirement for composition

FPT_RCV.3/SCP Additional SFR regarding operational objective on the
operational environment transformed in security objectives

FPT_RCV.4/SCP Additional SFR regarding operational objective on the
operational environment transformed in security objectives

FRU_FLT.1/SCP Additional SFR regarding operational objective on the
operational environment transformed in security objectives

FCS_RNG.1/SCP Additional SFR for RNG management

FPR_UNO.1/USE_KEY Additional SFR for the unobservability of keys

FIA_AFL.1/PIN Precision of the authentication failures for the PIN

FMT_MTD.2/GP_PIN Additional SFR for the management of limits on TSF data
regarding the GP PIN

FPR_UNO.1/Applet Additional SFR for the unobservability of array comparison by
applets, regarding D.ARRAY

FMT_MTD.1/PIN Additional SFR for the management of TSF data regarding the
PIN

FIA_AFL.1/GP_PIN Precision of the authentication failures for the GP PIN

Additional SFR for the BIO

SFR Rationale

FIA_AFL.1/PIN_BIO Precision of the authentication failures for the PIN BIO

FMT_MTD.1/PIN_BIO Additional SFR for the management of TSF data regarding the
PIN BIO

 ID-ONE COSMO V8.2
Public Security Target

 60 | 210

Additional SFR for the stack control

SFR Rationale

FDP_ACC.2/RV_Stack Access control policy for stack control

FDP_ACF.1/RV_Stack Access control functions for stack control

FMT_MSA.1/RV_Stack Precision of the Stack access control SFP

FMT_MSA.2/RV_Stack Precision of the secure security attributes for stack control

FMT_MSA.3/RV_Stack Precision of the static attribute initialization for stack control

FMT_SMF.1/RV_Stack Specification of management functions for stack control

Additional SFR for the heap access

SFR Rationale

FDP_ACC.2/RV_Heap Access control policy for heap access

FDP_ACF.1/RV_Heap Access control functions for heap access

FMT_MSA.1/RV_Heap Precision of the heap access control SFP

FMT_MSA.2/RV_Heap Precision of the secure security attributes for heap control

FMT_MSA.3/RV_Heap Precision of the static attribute initialization for heap control

FMT_SMF.1/RV_Heap Specification of management functions for heap control

Additional SFR for the transient control

SFR Rationale

FDP_ACC.2/RV_Transient Access control policy for transient control

FDP_ACF.1/RV_Transient Access control functions for transient control

FMT_MSA.1/RV_Transient Precision of the transient access control SFP

FMT_MSA.2/RV_Transient Precision of the secure security attributes for transient control

FMT_MSA.3/RV_Transient Precision of the static attribute initialization for transient control

FMT_SMF.1/RV_Transient Specification of management functions for transient control

 ID-ONE COSMO V8.2
Public Security Target

 61 | 210

5 Security aspects

This chapter describes the main security issues of the Java Card System and its
environment addressed in this Security Target, called “security aspects”, in a CC-
independent way. In addition to this, they also give a semi-formal framework to express the
CC security environment and objectives of the TOE. They can be instantiated as
assumptions, threats, objectives (for the TOE and the environment) or organizational security
policies.

For instance, we will define hereafter the following aspect:

#.OPERATE (1) The TOE must ensure continued correct operation of its security
functions. (2) The TOE must also return to a well-defined valid state before a service
request in case of failure during its operation.

TSFs must be continuously active in one way or another; this is called “OPERATE”. The
Security Target may include an assumption, called “A.OPERATE”, stating that it is assumed
that the TOE ensures continued correct operation of its security functions, and so on.
However, it may also include a threat, called “T.OPERATE”, to be interpreted as the negation
of the statement #.OPERATE. In this example, this amounts to stating that an attacker may
try to circumvent some specific TSF by temporarily shutting it down. The use of “OPERATE”
is intended to ease the understanding of this document.

This section presents security aspects that will be used in the remainder of this document.
Some being quite general, we give further details, which are numbered for easier cross-
reference within the document. For instance, the two parts of #.OPERATE, when instantiated
with an objective “O.OPERATE”, may be met by separate SFRs in the rationale. The
numbering then adds further details on the relationship between the objective and those
SFRs.

5.1 Confidentiality

#.CONFID-APPLI-DATA:
Application data must be protected against unauthorized disclosure. This concerns logical
attacks at runtime in order to gain read access to other application’s data.

#.CONFID-JCS-CODE:
Java Card System code must be protected against unauthorized disclosure. Knowledge of
the Java Card System code may allow bypassing the TSF. This concerns logical attacks at
runtime in order to gain a read access to executable code, typically by executing an
application that tries to read the memory area where a piece of Java Card System code is
stored.

#.CONFID-JCS-DATA:
Java Card System data must be protected against unauthorized disclosure. This concerns
logical attacks at runtime in order to gain a read access to Java Card System data. Java
Card System data includes the data managed by the Java Card RE, the Java Card VM and
the internal data of Java Card platform API classes as well.

 ID-ONE COSMO V8.2
Public Security Target

 62 | 210

5.2 Integrity

#.INTEG-APPLI-CODE:
Application code must be protected against unauthorized modification. This concerns logical
attacks at runtime in order to gain write access to the memory zone where executable code
is stored. In post-issuance application loading, this threat also concerns the modification of
application code in transit to the card.

#.INTEG-APPLI-DATA:
Application data must be protected against unauthorized modification. This concerns logical
attacks at runtime in order to gain unauthorized write access to application data. In post-
issuance application loading, this threat also concerns the modification of application data
contained in a package in transit to the card. For instance, a package contains the values to
be used for initializing the static fields of the package.

#.INTEG-JCS-CODE:
Java Card System code must be protected against unauthorized modification. This concerns
logical attacks at runtime in order to gain write access to executable code.

#.INTEG-JCS-DATA:
Java Card System data must be protected against unauthorized modification. This concerns
logical attacks at runtime in order to gain write access to Java Card System data. Java Card
System data includes the data managed by the Java Card RE, the Java Card VM and the
internal data of Java Card API classes as well.

5.3 Unauthorized executions

#.EXE-APPLI-CODE:
Application (byte)code must be protected against unauthorized execution. This concerns (1)
invoking a method outside the scope of the accessibility rules provided by the access
modifiers of the Java programming language ([JAVASPEC], §6.6); (2) jumping inside a
method fragment or interpreting the contents of a data memory area as if it was executable
code; (3) unauthorized execution of a remote method from the CAD.

#.EXE-JCS-CODE:
Java Card System bytecode must be protected against unauthorized execution. Java Card
System bytecode includes any code of the Java Card RE or API. This concerns (1) invoking
a method outside the scope of the accessibility rules provided by the access modifiers of the
Java programming language([JAVASPEC], §6.6); (2) jumping inside a method fragment or
interpreting the contents of a data memory area as if it was executable code. Note that
execute access to native code of the Java Card System and applications is the concern of
#.NATIVE.

#.FIREWALL:
The Firewall shall ensure controlled sharing of class instances, and isolation of their data and
code between packages (that is, controlled execution contexts) as well as between packages
and the JCRE context. An applet shall not read, write, compare a piece of data belonging to
an applet that is not in the same context, or execute one of the methods of an applet in
another context without its authorization.

 ID-ONE COSMO V8.2
Public Security Target

 63 | 210

#.NATIVE:
Because the execution of native code is outside of the JCS TSF scope, it must be secured
so as to not provide ways to bypass the TSFs of the JCS. Loading of native code, which is as
well outside those TSFs, is submitted to the same requirements. Should native software be
privileged in this respect, exceptions to the policies must include a rationale for the new
security framework they introduce.

5.4 Bytecode verification

#.VERIFICATION
Bytecode must be verified prior to being executed. Bytecode verification includes (1) how
well-formed CAP file is and the verification of the typing constraints on the bytecode, (2)
binary compatibility with installed CAP files and the assurance that the export files used to
check the CAP file correspond to those that will be present on the card when loading occurs.

5.4.1 CAP file verification

Bytecode verification includes checking at least the following properties: (3) bytecode
instructions represent a legal set of instructions used on the Java Card platform; (4)
adequacy of bytecode operands to bytecode semantics; (5) absence of operand stack
overflow/underflow; (6) control flow confinement to the current method (that is, no control
jumps to outside the method); (7) absence of illegal data conversion and reference forging;
(8) enforcement of the private/public access modifiers for class and class members; (9)
validity of any kind of reference used in the bytecodes (that is, any pointer to a bytecode,
class, method, object, local variable, etc actually points to the beginning of piece of data of
the expected kind); (10) enforcement of rules for binary compatibility (full details are given in
[R8], [R42], [R43]). The actual set of checks performed by the verifier is implementation-
dependent, but shall at least enforce all the “must clauses” imposed in [R8] on the bytecodes
and the correctness of the CAP files’ format.

As most of the actual Java Card VMs do not perform all the required checks at runtime,
mainly because smart cards lack memory and CPU resources, CAP file verification prior to
execution is mandatory. On the other hand, there is no requirement on the precise moment
when the verification shall actually take place, as far as it can be ensured that the verified file
is not modified thereafter. Therefore, the bytecodes can be verified either before the loading
of the file on to the card or before the installation of the file in the card or before the
execution, depending on the card capabilities, in order to ensure that each bytecode is valid
at execution time. This Security Target assumes bytecode verification is performed off-card.

Another important aspect to be considered about bytecode verification and application
downloading is, first, the assurance that every package required by the loaded applet is
indeed on the card, in a binary-compatible version (binary compatibility is explained in [R8]
§4.4), second, that the export files used to check and link the loaded applet have the
corresponding correct counterpart on the card.

 ID-ONE COSMO V8.2
Public Security Target

 64 | 210

5.4.2 Integrity and authentication

Verification off-card is useless if the application package is modified afterwards. The usage
of cryptographic certifications coupled with the verifier in a secure module is a simple means
to prevent any attempt of modification between package verification and package installation.
Once a verification authority has verified the package, it signs it and sends it to the card.
Prior to the installation of the package, the card verifies the signature of the package, which
authenticates the fact that it has been successfully verified. In addition to this, a secured
communication channel is used to communicate into the card, ensuring that no modification
has been performed on it.

Alternatively, the card itself may include a verifier and perform the checks prior to the
effective installation of the applet or provide means for the bytecodes to be verified
dynamically.

5.4.3 Linking and authentication

Beyond functional issues, the installer ensures at least a property that matters for security:
the loading order shall guarantee that each newly loaded package references only packages
that have been already loaded on the card. The linker can ensure this property because the
Java Card platform does not support dynamic downloading of classes.

5.5 Card management

#.CARD_MANAGEMENT:

(4) The card manager (CM) shall control the access to card
management functions such as the installation, update or deletion of
applets. (2) The card manager shall implement the card issuer’s
policy on the card.

#.INSTALL:

(5) The TOE must be able to return to a safe and consistent state when
the installation of a package or an applet fails or be cancelled
(whatever the reasons). (2) Installing an applet must have no effect
on the code and data of already installed applets. The installation
procedure should not be used to bypass the TSFs. In short, it is an
atomic operation, free of harmful effects on the state of the other
applets. (3) The procedure of loading and installing a package shall
ensure its integrity and authenticity.

#.SID:

(6) Users and subjects of the TOE must be identified. (2) The identity of
sensitive users and subjects associated with administrative and
privileged roles must be particularly protected; this concerns the
Java Card RE, the applets registered on the card, and especially the
default applet and the currently selected applet (and all other active
applets in Java Card System 2.2.x). A change of identity, especially
standing for an administrative role (like an applet impersonating the
Java Card RE), is a severe violation of the Security Functional
Requirements (SFR). Selection controls the access to any data

 ID-ONE COSMO V8.2
Public Security Target

 65 | 210

exchange between the TOE and the CAD and therefore, must be
protected as well. The loading of a package or any exchange of data
through the APDU buffer (which can be accessed by any applet) can
lead to disclosure of keys, application code or data, and so on.

#OBJ-DELETION:

(7) Deallocation of objects should not introduce security holes in the
form of references pointing to memory zones that are not longer in
use, or have been reused for other purposes. Deletion of collection
of objects should not be maliciously used to circumvent the TSFs. (2)
Erasure, if deemed successful, shall ensure that the deleted class
instance is no longer accessible.

#DELETION:

(8) Deletion of installed applets (or packages) should not introduce
security holes in the form of broken references to garbage collected
code or data, nor should they alter integrity or confidentiality of
remaining applets. The deletion procedure should not be maliciously
used to bypass the TSFs. (2) Erasure, if deemed successful, shall
ensure that any data owned by the deleted applet is no longer
accessible (shared objects shall either prevent deletion or be made
inaccessible). A deleted applet cannot be selected or receive APDU
commands. Package deletion shall make the code of the package no
longer available for execution. (3) Power failure or other failures
during the process shall be taken into account in the implementation
so as to preserve the SFRs. This does not mandate, however, the
process to be atomic. For instance, an interrupted deletion may
result in the loss of user data, as long as it does not violate the
SFRs.

The deletion procedure and its characteristics (whether deletion is either physical or logical,
what happens if the deleted application was the default applet, the order to be observed on
the deletion steps) are implementation-dependent. The only commitment is that deletion shall
not jeopardize the TOE (or its assets) in case of failure (such as power shortage).
Deletion of a single applet instance and deletion of a whole package are functionally different
operations and may obey different security rules. For instance, specific packages can be
declared to be undeletable (for instance, the Java Card API packages), or the dependency
between installed packages may forbid the deletion (like a package using super classes or
super interfaces declared in another package).

5.6 Services

#.ALARM:
The TOE shall provide appropriate feedback upon detection of a potential security violation.
This particularly concerns the type errors detected by the bytecode verifier, the security
exceptions thrown by the Java Card VM, or any other security-related event occurring during
the execution of a TSF.

#.OPERATE:

(9) The TOE must ensure continued correct operation of its security
functions. (2) In case of failure during its operation, the TOE must

 ID-ONE COSMO V8.2
Public Security Target

 66 | 210

also return to a well-defined valid state before the next service
request.

#.RESOURCES:
The TOE controls the availability of resources for the applications and enforces quotas and
limitations in order to prevent unauthorized denial of service or malfunction of the TSFs. This
concerns both execution (dynamic memory allocation) and installation (static memory
allocation) of applications and packages.

#.CIPHER:
The TOE shall provide a means to the applications for ciphering sensitive data, for instance,
through a programming interface to low-level, highly secure cryptographic services. In
particular, those services must support cryptographic algorithms consistent with
cryptographic usage policies and standards.

#.KEY-MNGT:
The TOE shall provide a means to securely manage cryptographic keys. This includes: (1)
Keys shall be generated in accordance with specified cryptographic key generation
algorithms and specified cryptographic key sizes, (2) Keys must be distributed in accordance
with specified cryptographic key distribution methods, (3) Keys must be initialized before
being used, (4) Keys shall be destroyed in accordance with specified cryptographic key
destruction methods.

#.PIN-MNGT:
The TOE shall provide a means to securely manage PIN objects. This includes: (1) Atomic
update of PIN value and try counter, (2) No rollback on the PIN-checking function, (3)
Keeping the PIN value (once initialized) secret (for instance, no clear-PIN-reading function),
(4) Enhanced protection of PIN’s security attributes (state, try counter…) in confidentiality
and integrity.

#.SCP:
The smart card platform must be secure with respect to the SFRs. Then: (1) After a power
loss, RF signal loss or sudden card removal prior to completion of some communication
protocol, the SCP will allow the TOE on the next power up to either complete the interrupted
operation or revert to a secure state. (2) It does not allow the SFRs to be bypassed or altered
and does not allow access to other low-level functions than those made available by the
packages of the Java Card API. That includes the protection of its private data and code
(against disclosure or modification) from the Java Card System. (3) It provides secure low-
level cryptographic processing to the Java Card System. (4) It supports the needs for any
update to a single persistent object or class field to be atomic, and possibly a low-level
transaction mechanism. (5) It allows the Java Card System to store data in “persistent
technology memory” or in volatile memory, depending on its needs (for instance, transient
objects must not be stored in non-volatile memory). The memory model is structured and
allows for low–level control accesses (segmentation fault detection). (6) It safely transmits
low–level exceptions to the TOE (arithmetic exceptions, checksum errors), when applicable.
Finally, I required that (7) the IC is designed in accordance with a well-defined set of policies
and standards (for instance, those specified in [R24]), and will be tamper resistant to actually
prevent an attacker from extracting or altering security data (like cryptographic keys) by using
commonly employed techniques (physical probing and sophisticated analysis of the chip).
This especially matters to the management (storage and operation) of cryptographic keys.

#.TRANSACTION:

 ID-ONE COSMO V8.2
Public Security Target

 67 | 210

The TOE must provide a means to execute a set of operations atomically. This mechanism
must not jeopardise the execution of the user applications. The transaction status at the
beginning of an applet session must be closed (no pending updates).

 ID-ONE COSMO V8.2
Public Security Target

 68 | 210

6 Security Problem Definition

6.1 Assets

Assets are security-relevant elements to be directly protected by the TOE. Confidentiality of
assets is always intended with respect to un-trusted people or software, as various parties
are involved during the first stages of the smart card product life-cycle; details are given in
threats hereafter.

Assets may overlap, in the sense that distinct assets may refer (partially or wholly) to the
same piece of information or data. For example, a piece of software may be either a piece of
source code (one asset) or a piece of compiled code (another asset), and may exist in
various formats at different stages of its development (digital supports, printed paper). This
separation is motivated by the fact that a threat may concern one form at one stage, but be
meaningless for another form at another stage.

The assets to be protected by the TOE are listed below. They are grouped according to
whether it is data created by and for the user (User data) or data created by and for the TOE
(TSF data). For each asset it is specified the kind of dangers that weigh on it.

6.1.1 User data

D.APP_CODE

The code of the applets and libraries loaded on the card.

To be protected from unauthorized modification.

D.APP_C_DATA

Confidential sensitive data of the applications, like the data contained in an object, a static
field of a package, a local variable of the currently executed method, or a position of the
operand stack.

To be protected from unauthorized disclosure.

D.APP_I_DATA

Integrity sensitive data of the applications, like the data contained in an object, a static
field of a package, a local variable of the currently executed method, or a position of the
operand stack.

To be protected from unauthorized modification.

D.APP_KEYs

Cryptographic keys owned by the applets.

To be protected from unauthorized disclosure and modification.

D.PIN

Any end-’ser's PIN.

To be protected from unauthorized disclosure and modification.

 ID-ONE COSMO V8.2
Public Security Target

 69 | 210

6.1.2 TSF data

D.API_DATA

Private data of the API, like the contents of its private fields.

To be protected from unauthorized disclosure and modification.

D.CRYPTO

Cryptographic data used in runtime cryptographic computations, like a seed used to
generate a key.

To be protected from unauthorized disclosure and modification.

D.JCS_CODE

The code of the Java Card System.

To be protected from unauthorized disclosure and modification.

D.JCS_DATA

The internal runtime data areas necessary for the execution of the Java Card VM, such
as, for instance, the frame stack, the program counter, the class of an object, the length
allocated for an array, any pointer used to chain data-structures.

To be protected from unauthorized disclosure or modification.

D.SEC_DATA

The runtime security data of the Java Card RE, like, for instance, the AIDs used to identify
the installed applets, the currently selected applet, the current context of execution and
the owner of each object.

To be protected from unauthorized disclosure and modification.

6.1.3 Additional assets

D.CONFIG

The configuration DATA are put at prepersonalisation phase. These elements of
configuration have to be loaded securely. To be protected from unauthorized disclosure or
modification.

D.SENSITIVE_DATA

The other sensitive data are grouped in the same D.Sensitive Data. The list is presented
below:

o D.NB_AUTHENTIC: Number of authentications. This number is specified in the
SFR

o D.NB_REMAINTRYOWN: Number of remaining tries for owner PIN. This number
is specified in the SFR

o D.NB_REMAINTRYGLB: Number of remaining tries for a global PIN. This number
is specified in the SFR

o ASG.CARDREG: Card registry (AS.APID: Applet Identifier (AID), AS.CMID: Card
Manager ID (AID))

o ASG.APPRIV: Applet privileges group (Card Manager lock privilege, Card
terminate privilege, Default selected privilege, PIN change privilege, Security

 ID-ONE COSMO V8.2
Public Security Target

 70 | 210

Domain privilege, Security Domain with DAP verification privilege, Security
Domain with Mandated DAP verification privilege)

o AS.AUTH_MSK_STATUS: Authentication MSK Status

o AS.AUTH_CM_STATUS: Authentication CM Status

o AS.CMLIFECYC: Card life cycle state

o AS.MSKKEY: MSK (Manufacturer Secret Key)

o AS.SECURITY_LEVEL: Security levels of a Secure Channel (Confidentiality,
Integrity or both) To be protected from unauthorized disclosure and modification.

o D.NB_REMAINTRYOTPINBIO: Number of remaining tries for PIN BIO object.
This number is specified by the applet.

o D.TRESHOLDOTPINBIO: Threshold value used for Match On Card comparison.
This value is specified by the applet.

D.ARRAY

Applets are enabled to store confidential data. To be protected from unauthorized
disclosure and modification.

D.BIO

Any biometric template.

To be protected from unauthorized disclosure and modification.

Application note:

This asset is similar to D.PIN asset. The handling of D.BIO is performed in the same
way than D.PIN. The same objectives (for the conformity, we added the O.BIO-
MNGT, issued from appendix 2, chapter2), threats, SFR and others relevant security
elements applicable to D.PIN are applicable to D.BIO.

D.JCS_KEYS

AS.KEYSET_VERSION and AS.KEYSET_Value Cryptographic keys used when loading a
file into the card. To be protected from unauthorized disclosure and modification.

6.2 Users / Subjects

6.2.1 Additional Users / Subjects

S.RESIDENT_APPLICATION

The resident application

R.personaliser

Card Issuer or card Manufacturer

R.Prepersonaliser

Card manufacturer

U.Card_Issuer

 ID-ONE COSMO V8.2
Public Security Target

 71 | 210

The Card Issuer is the entity that own the card and is ultimately responsible for the
behaviour of the card. It is initially the only entity authorized to manage applications
through a secure communication channel with the card.

U.Card_Manufacturer

The Card Manufacturer is the entity responsible for producing smart cards on behalf of the
Card Issuer.

6.2.2 Miscellaneous

S.ADEL

The applet deletion manager which also acts on behalf of the card issuer. It may be an
applet ([R7], §11), but its role asks anyway for a specific treatment from the security
viewpoint. This subject is unique and is involved in the ADEL security policy defined in
§7.1.3.1.

S.APPLET

Any applet instance.

S.BCV

The bytecode verifier (BCV), which acts on behalf of the verification authority who is in
charge of the bytecode verification of the packages. This subject is involved in the
PACKAGE LOADING security policy

S.CAD

The CAD represents the actor that requests, by issuing commands to the card, for RMI
services. It also plays the role of the off-card entity that communicates with the
S.INSTALLER.

S.INSTALLER

The installer is the on-card entity which acts on behalf of the card issuer. This subject is
involved in the loading of packages and installation of applets.

S.JCRE

The runtime environment under which Java programs in a smart card are executed.

S.JCVM

The bytecode interpreter that enforces the firewall at runtime.

S.LOCAL

Operands stack of a JCVM frame, or local variable of a JCVM frame containing an object
or an array of references.

S.MEMBER

Any ob’ect's field, static field or array position.

S.PACKAGE

 ID-ONE COSMO V8.2
Public Security Target

 72 | 210

A package is a namespace within the Java programming language that may contain
classes and interfaces, and in the context of Java Card technology, it defines either a user
library, or one or several applets.

S.TOE

Source code.

6.3 Threats

This section introduces the threats to the assets against which specific protection within the
TOE or its environment is required. Several groups of threats are distinguished according to
the configuration chosen for the TOE and the means used in the attack. The classification is
also inspired by the components of the TOE that are supposed to counter each threat.

6.3.1 CONFIDENTIALITY

T.CONFID-APPLI-DATA

The attacker executes an application to disclose data belonging to another application.
See #.CONFID-APPLI-DATA for details.

Directly threatened asset(s): D.APP_C_DATA, D.PIN and D.APP_KEYs, D.BIO.

T.CONFID-JCS-CODE

The attacker executes an application to disclose the Java Card System code. See
#.CONFID-JCS-CODE for details.

Directly threatened asset(s): D.JCS_CODE.

T.CONFID-JCS-DATA

The attacker executes an application to disclose data belonging to the Java Card System.
See #.CONFID-JCS-DATA for details.

Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA, D.CRYPTO and
D.JCS_KEYS.

6.3.2 INTEGRITY

T.INTEG-APPLI-CODE

The attacker executes an application to alter (part of) its own code or another applica’ion's
code. See #.INTEG-APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE.

T.INTEG-APPLI-CODE.LOAD

The attacker modifies (part of) its own or another application code when an application
package is transmitted to the card for installation. See #.INTEG-APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE.

T.INTEG-APPLI-DATA

The attacker executes an application to alter (part of) another applica’ion's data. See
#.INTEG-APPLI-DATA for details.

 ID-ONE COSMO V8.2
Public Security Target

 73 | 210

Directly threatened asset(s): D.APP_I_DATA, D.PIN, D.BIO and D.APP_KEYs.

T.INTEG-APPLI-DATA.LOAD

The attacker modifies (part of) the initialization data contained in an application package
when the package is transmitted to the card for installation. See #.INTEG-APPLI-DATA for
details.

Directly threatened asset(s): D.APP_I_DATA and D_APP_KEY.

T.INTEG-JCS-CODE

The attacker executes an application to alter (part of) the Java Card System code. See
#.INTEG-JCS-CODE for details.

Directly threatened asset(s): D.JCS_CODE.

T.INTEG-JCS-DATA

The attacker executes an application to alter (part of) Java Card System or API data. See
#.INTEG-JCS-DATA for details.

Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA, D.JCS_KEYS
and D.CRYPTO.

Other attacks are in general related to one of the above, and aimed at disclosing or
modifying on-card information. Nevertheless, they vary greatly on the employed means and
threatened assets, and are thus covered by quite different objectives in the sequel. That is
why a more detailed list is given hereafter.

6.3.3 IDENTITY USURPATION

T.SID.1

An applet impersonates another application, or even the Java Card RE, in order to gain
illegal access to some resources of the card or with respect to the end user or the
terminal. See #.SID for details.

Directly threatened asset(s): D.SEC_DATA (other assets may be jeopardized should this
attack succeed, for instance, if the identity of the JCRE is usurped), D.PIN, D.BIO,
D.JCS_KEYS and D.APP_KEYs.

T.SID.2

The attacker modifies the’TOE's attribution of a privileged role (e.g. default applet and
currently selected applet), which allows illegal impersonation of this role. See #.SID for
further details.

Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized should
this attack succeed, depending on whose identity was forged).

6.3.4 UNAUTHORIZED EXECUTION

T.EXE-CODE.1

An applet performs an unauthorized execution of a method. See #.EXE-JCS-CODE and
#.EXE-APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE.

 ID-ONE COSMO V8.2
Public Security Target

 74 | 210

T.EXE-CODE.2

An applet performs an execution of a method fragment or arbitrary data. See #.EXE-JCS-
CODE and #.EXE-APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE.

T.NATIVE

An applet executes a native method to bypass a TOE Security Function such as the
firewall. See #.NATIVE for details.

Directly threatened asset(s): D.JCS_DATA.

6.3.5 DENIAL OF SERVICE

T.RESOURCES

An attacker prevents correct operation of the Java Card System through consumption of
some resources of the card: RAM or NVRAM. See #.RESOURCES for details.

Directly threatened asset(s): D.JCS_DATA.

6.3.6 CARD MANAGEMENT

T.DELETION

The attacker deletes an applet or a package already in use on the card, or uses the
deletion functions to pave the way for further attacks (putting the TOE in an insecure
state). See #.DELETION for details).

Directly threatened asset(s): D.SEC_DATA and D.APP_CODE.

T.INSTALL

The attacker fraudulently installs post-issuance of an applet on the card. This concerns
either the installation of an unverified applet or an attempt to induce a malfunction in the
TOE through the installation process. See #.INSTALL for details.

Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized should
this attack succeed, depending on the virulence of the installed application).

6.3.7 SERVICES

T.OBJ-DELETION

The attacker keeps a reference to a garbage collected object in order to force the TOE to
execute an unavailable method, to make it to crash, or to gain access to a memory
containing data that is now being used by another application. See #.OBJ-DELETION for
further details.

Directly threatened asset(s): D.APP_C_DATA, D.APP_I_DATA and D.APP_KEYs.

6.3.8 MISCELLANEOUS

T.PHYSICAL

The attacker discloses or modifies the design of the TOE, its sensitive data or application
code by physical (opposed to logical) tampering means. This threat includes IC failure
analysis, electrical probing, unexpected tearing, and DPA. That also includes the
modification of the runtime execution of Java Card System or SCP software through
alteration of the intended execution order of (set of) instructions through physical
tampering techniques.

 ID-ONE COSMO V8.2
Public Security Target

 75 | 210

This threatens all the identified assets.

This threat refers to the point (7) of the security aspect #.SCP, and all aspects related to
confidentiality and integrity of code and data.

6.3.9 Additional threats

T.CONFIGURATION

The attacker tries to observe or modify configuration information exchanged between the
TOE and 75nitializatment. The TOE in this phase must protect itself from modification or
theft. Even the field is protected by assurance measures, each operations realised in this
phase has to be protected.

T.CONF_DATA_APPLET

The attacker tries to observe the operation of comparison between two byte arrays in
order to catch confidential information manipulated.

T.PATCH_LOADING

The attacker tries to avoid the loading of a genuine patch, alter a patch (during loading or
once loaded), or to exploit the patch loading mechanism to load unauthenticated code on
the TOE, in order to get access to the assets, the TSF data or the TOE user data, or to
modify the TSF.

6.4 Organisational Security Policies

This section describes the organizational security policies to be enforced with respect to the
TOE environment.

OSP.VERIFICATION

This policy shall ensure the consistency between the export files used in the verification
and those used for installing the verified file. The policy must also ensure that no
modification of the file is performed in between its verification and the signing by the
verification authority. See #.VERIFICATION for details. OE.VERIFICATION guarantees
the correct integrity and authenticity evidences for each application, by means of elements
provided by OE.CODE-EVIDENCE.

6.5 Assumptions

This section introduces the assumptions made on the environment of the TOE.

Due to the Protection Profile and Security Target definition, T.DELETION replaces
A.DELETION as O.CARD_MANAGEMENT replaces OE.CARD_MANAGEMENT.

A.APPLET

Applets loaded post-issuance do not contain native methods. The Java Card specification
explici“ly "does not include support for native met”ods" ([R8], §3.3) outside the API.

A.VERIFICATION

All the bytecodes are verified at least once, before the loading, before the installation or
before the execution, depending on the card capabilities, in order to ensure that each
bytecode is valid at execution time.

 ID-ONE COSMO V8.2
Public Security Target

 76 | 210

 ID-ONE COSMO V8.2
Public Security Target

 77 | 210

7 Security Objectives

7.1 Security Objectives for the TOE

This section defines the security objectives to be achieved by the TOE.

7.1.1 IDENTIFICATION

O.SID

The TOE shall uniquely identify every subject (applet, or package) before granting it
access to any service.

7.1.2 EXECUTION

O.FIREWALL

The TOE shall ensure controlled sharing of data containers owned by applets of different
packages or the JCRE and between applets and the TSFs. See #.FIREWALL for details.

O.GLOBAL_ARRAYS_CONFID

The TOE shall ensure that the APDU buffer that is shared by all applications is always
cleaned upon applet selection.

The TOE shall ensure that the global byte array used for the invocation of the install
method of the selected applet is always cleaned after the return from the install method.

O.GLOBAL_ARRAYS_INTEG

The TOE shall ensure that only the currently selected applications may have a write
access to the APDU buffer and the global byte array used for the invocation of the install
method of the selected applet.

O.NATIVE

The only means that the Java Card VM shall provide for an application to execute native
code is the invocation of a method of the Java Card API, or any additional API. See
#.NATIVE for details.

O.OPERATE

The TOE must ensure continued correct operation of its security functions. See
#.OPERATE for details.

O.REALLOCATION

The TOE shall ensure that the re-allocation of a memory block for the runtime areas of the
Java Card VM does not disclose any information that was previously stored in that block.

O.RESOURCES

The TOE shall control the availability of resources for the applications. See
#.RESOURCES for details.

 ID-ONE COSMO V8.2
Public Security Target

 78 | 210

7.1.3 SERVICES

O.ALARM

The TOE shall provide appropriate feedback information upon detection of a potential
security violation. See #.ALARM for details.

O.CIPHER

The TOE shall provide a means to cipher sensitive data for applications in a secure way.
In particular, the TOE must support cryptographic algorithms consistent with cryptographic
usage policies and standards. See #.CIPHER for details.

O.KEY-MNGT

The TOE shall provide a means to securely manage cryptographic keys. This concerns
the correct generation, distribution, access and destruction of cryptographic keys. See
#.KEY-MNGT.

O.PIN-MNGT

The TOE shall provide a means to securely manage PIN objects. See #.PIN-MNGT for
details.

Application Note:

PIN objects may play key roles in the security architecture of client applications. The way
they are stored and managed in the memory of the smart card must be carefully
considered, and this applies to the whole object rather than the sole value of the PIN. For
instance, the try cou’ter's value is as sensitive as that of the PIN.

O.BIO-MNGT
The TOE shall provide a means to securely manage biometric templates. This concerns
the package javacardx.biometry of the Java Card platform.

Application note:

This objective is similar to O.PIN-MNGT. It answers to the same threats.

O.TRANSACTION

The TOE must provide a means to execute a set of operations atomically. See
#.TRANSACTION for details.

O.KEY-MNGT, O.PIN-MNGT, O.BIO-MNGT, O.TRANSACTION, O.PIN-MNGT, O.BIO-
MNGT and O.CIPHER are actually provided to applets in the form of Java Card APIs.
Vendor-specific libraries can also be present on the card and made available to applets;
those may be built on top of the Java Card API or independently. These proprietary libraries
will be evaluated together with the TOE.

7.1.4 OBJECT DELETION

O.OBJ-DELETION

The TOE shall ensure the object deletion shall not break references to objects. See
#.OBJ-DELETION for further details.

 ID-ONE COSMO V8.2
Public Security Target

 79 | 210

7.1.5 APPLET MANAGEMENT

O.DELETION

The TOE shall ensure that both applet and package deletion perform as expected. See
#.DELETION for details.

O.LOAD

The TOE shall ensure that the loading of a package into the card is safe. Besides, for
code loaded post-issuance, the TOE shall verify the integrity and authenticity evidences
generated during the verification of the application package by the verification authority.
This verification by the TOE shall occur during the loading or later during the install
process.

Application Note:

Usurpation of identity resulting from a malicious installation of an applet on the card may
also be the result of perturbing the communication channel linking the CAD and the card.
Even if the CAD is placed in a secure environment, the attacker may try to capture,
duplicate, permute or modify the packages sent to the card. He may also try to send one
of its own applications as if it came from the card issuer. Thus, this objective is intended to
ensure the integrity and authenticity of loaded CAP files.

O.INSTALL

The TOE shall ensure that the installation of an applet performs as expected (See
#.INSTALL for details).

7.1.6 Additional security objectives for the TOE

Four security objectives for the operational environment defined in the PP JCS have been
transformed in security objectives for the TOE:

 OE.SCP.IC

 OE.SCP.SUPPORT

 OE.SCP.RECOVERY

 OE.CARD_MANAGEMENT

O.SCP.SUPPORT

The TOE shall support the following functionalities:

o It does not allow the TSFs to be bypassed or altered and does not allow access to
other low-level functions than those made available by the packages of the API.
That includes the protection of its private data and code (against disclosure or
modification) from the Java Card System.

o It provides secure low-level cryptographic processing to the Java Card System
and Global Platform.

o It supports the needs for any update to a single persistent object or class field to
be atomic, and possibly a low-level transaction mechanism.

o It allows the Java Card System to store data“in "persistent technology me”ory" or
in volatile memory, depending on its needs (for instance, transient objects must
not be stored in non-volatile memory). The memory model is structured and
allows for low-level control accesses (segmentation fault detection).

 ID-ONE COSMO V8.2
Public Security Target

 80 | 210

O.SCP.IC

The SCP shall possess IC security features. It shall provide all IC security features against
physical attacks. It is required that the IC is designed in accordance with a well-defined
set of policies and standards (likely specified in another protection profile), and will be
tamper resistant to actually prevent an attacker from extracting or altering security data
(like cryptographic keys) by using commonly employed techniques (physical probing and
sophisticated analysis of the chip). This especially matters to the management (storage
and operation) of cryptographic keys.

O.SCP.RECOVERY

If there is a loss of power, or if the smart card is withdrawn from the CAD while an
operation is in progress, the SCP must allow the TOE to eventually complete the
interrupted operation successfully, or recover to a consistent and secure state. The smart
card platform must be secure with respect to the SFRs. Then after a power loss or sudden
card removal prior to completion of some communication protocol, the SCP will allow the
TOE on the next power up to either complete the interrupted operation or revert to a
secure state.

O.RESIDENT_APPLICATION

This objective concerns the resident application. It provides a native code application, with
a basic main dispatcher to receive card commands and dispatch them to the application
and module functions that implement the application commands. It also deals with the
Card Manufacturer authentication and logical channels management. The dispatcher is
always activated. Some card commands (for administration) are only available during
prepersonalisation phase. It ensures the personaliser authentication before allowing
operations in writing of the resident application.

O.CARD_MANAGEMENT

The card manager shall control the access to card management functions such as the
installation, update or deletion of applets. It shall also implement the card is’uer's policy on
the card.

The card manager is an application with specific rights, which is responsible for the
administration of the smart card. This component will in practice be tightly connected with
the TOE, which in turn shall very likely rely on the card manager for the effective enforcing
of some of its security functions. Typically the card manager shall be in charge of the life
cycle of the whole card, as well as that of the installed applications (applets). The card
manager should prevent that card content management (loading, installation, deletion) is
carried out, for instance, at invalid states of the card or by non-authorized actors. It shall
also enforce security policies established by the card issuer.

O.SECURE_COMPARE

The TOE shall provide to applet a means to securely compare two byte arrays.

O.PATCH_LOADING

The TOE shall provide a secure patch code loading mechanism.

7.2 Security objectives for the Operational Environment

This section introduces the security objectives to be achieved by the environment.

 ID-ONE COSMO V8.2
Public Security Target

 81 | 210

Four security objectives for the operational environment from the PP JCS have been
transformed in security objectives for the TOE:

 OE.SCP.SUPPORT

 OE.SCP.IC

 OE.SCP.RECOVERY

 OE.CARD_MANAGEMENT

OE.APPLET

No applet loaded post-issuance shall contain native methods.

OE.VERIFICATION

All the bytecodes shall be verified at least once, before the loading, before the installation
or before the execution, depending on the card capabilities, in order to ensure that each
bytecode is valid at execution time. See #.VERIFICATION for details. Additionally, the
applet shall follow all the recommendations, if any, mandated in the platform guidance for
maintaining the isolation property of the platform. Application Note:

Constraints to maintain the isolation property of the platform are provided by the platform
developer in application development guidance. The constraints apply to all application
code loaded in the platform.

OE.CODE-EVIDENCE

For application code loaded pre-issuance, evaluated technical measures implemented by
the TOE or audited organizational measures must ensure that loaded application has not
been changed since the code verifications required in OE.VERIFICATION. For application
code loaded post-issuance and verified off-card according to the requirements of
OE.VERIFICATION, the verification authority shall provide digital evidence to the TOE
that the application code has not been modified after the code verification and that he is
the actor who performed code verification. For application code loaded post-issuance and
partially or entirely verified on-card, technical measures must ensure that the verification
required in OE.VERIFICATION are performed. On-card bytecode verifier is out of the
scope of this Security Target.

Application Note:

For application code loaded post-issuance and verified off-card, the integrity and
authenticity evidence can be achieved by electronic signature of the application code,
after code verification, by the actor who performed verification.

 ID-ONE COSMO V8.2
Public Security Target

 82 | 210

7.3 Security Objectives Rationale

7.3.1 Threats

7.3.1.1 CONFIDENTIALITY

T.CONFID-APPLI-DATA This threat is countered by the security objective for the operational
environment regarding bytecode verification (OE.VERIFICATION). It is also covered by
the isolation commitments stated in the (O.FIREWALL) objective. It relies in its turn on the
correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically
enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.

As the firewall is a software tool automating critical controls, the objective O.ALARM asks
for it to provide clear warning and error messages, so that the appropriate counter-
measure can be taken.

The objectives O.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.

The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the
threats that these latter objectives contribute to counter.

As applets may need to share some data or communicate with the CAD, cryptographic
functions are required to actually protect the exchanged information (O.CIPHER). Remark
that even if the TOE shall provide access to the appropriate TSFs, it is still the
responsibility of the applets to use them. Keys,’PIN's are particular cases of an
applica’ion's sensitive data (the Java Card System may possess keys as well) that ask for
appropriate management (O.KEY-MNGT, O.PIN-MNGT, O.BIO-MNGT,
O.TRANSACTION). If the PIN/BIO class of the Java Card API is used, the objective
(O.FIREWALL) shall contribute in covering this threat by controlling the sharing of the
global PIN/BIO between the applets.

Other application data that is sent to the applet as clear text arrives to the APDU buffer,
which is a resource shared by all applications. The disclosure of such data is prevented by
the security objective O.GLOBAL_ARRAYS_CONFID.

Finally, any attempt to read a piece of information that was previously used by an
application but has been logically deleted is countered by the O.REALLOCATION
objective. That objective states that any information that was formerly stored in a memory
block shall be cleared before the block is reused.

T.CONFID-JCS-CODE This threat is countered by the list of properties described in the
(#.VERIFICATION) security aspect. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the
intended scope of accessibility. As none of those instructions enables reading a piece of
code, no Java Card applet can therefore be executed to disclose a piece of code. Native
applications are also harmless because of the objective O.NATIVE, so no application can
be run to disclose a piece of code.

The (#.VERIFICATION) security aspect is addressed in this PP by the objective for the
environment OE.VERIFICATION.

The objectives O.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.

 ID-ONE COSMO V8.2
Public Security Target

 83 | 210

T.CONFID-JCS-DATA This threat is covered by bytecode verification (OE.VERIFICATION)
and the isolation commitments stated in the (O.FIREWALL) security objective. This latter
objective also relies in its turn on the correct identification of applets stated in (O.SID).
Moreover, as the firewall is dynamically enforced, it shall never stop operating, as stated
in the (O.OPERATE) objective.

As the firewall is a software tool automating critical controls, the objective O.ALARM asks
for it to provide clear warning and error messages, so that the appropriate counter-
measure can be taken.

The objectives O.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.

The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the
threats that these latter objectives contribute to counter.

7.3.1.2 INTEGRITY

T.INTEG-APPLI-CODE This threat is countered by the list of properties described in the
(#.VERIFICATION) security aspect. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the
intended scope of accessibility. As none of these instructions enables modifying a piece of
code, no Java Card applet can therefore be executed to modify a piece of code. Native
applications are also harmless because of the objective O.NATIVE, so no application can
run to modify a piece of code.

The (#.VERIFICATION) security aspect is addressed in this configuration by the objective
for the environment OE.VERIFICATION.

The objectives O.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.

The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that
integrity and authenticity evidences exist for the application code loaded into the platform.

T.INTEG-APPLI-CODE.LOAD This threat is countered by the security objective O.LOAD
which ensures that the loading of packages is done securely and thus preserves the
integrity of packages code. The objective OE.CODE-EVIDENCE contributes to cover this
threat by ensuring that the application code loaded into the platform has not been
changed after code verification, which ensures code integrity and authenticity. By
controlling the access to card management functions such as the installation, update or
deletion of applets the objective O.CARD_MANAGEMENT contributes to cover this threat.

T.INTEG-APPLI-DATA This threat is countered by bytecode verification
(OE.VERIFICATION) and the isolation commitments stated in the (O.FIREWALL)
objective. This latter objective also relies in its turn on the correct identification of applets
stated in (O.SID). Moreover, as the firewall is dynamically enforced, it shall never stop
operating, as stated in the (O.OPERATE) objective. As the firewall is a software tool
automating critical controls, the objective O.ALARM asks for it to provide clear warning
and error messages, so that the appropriate counter-measure can be taken. The
objectives O.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively. The objective OE.CODE-EVIDENCE contributes to cover this

 ID-ONE COSMO V8.2
Public Security Target

 84 | 210

threat by ensuring that the application code loaded into the platform has not been
changed after code verification, which ensures code integrity and authenticity. The
objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the
threats that these latter objectives contribute to counter. Concerning the confidentiality
and integrity of application sensitive data, as applets may need to share some data or
communicate with the CAD, cryptographic functions are required to actually protect the
exchanged information (O.CIPHER). Remark that even if the TOE shall provide access to
the appropriate TSFs, it is still the responsibility of the applets to use them. Keys
and’PIN's are particular cases of an applica’ion's sensitive data (the Java Card System
may possess keys as well) that ask for appropriate management (O.KEY-MNGT, O.PIN-
MNGT, O.BIO-MNGT, O.TRANSACTION). If the PIN/BIO class of the Java Card API is
used, the objective (O.FIREWALL) is also concerned. Other application data that is sent
to the applet as clear text arrives to the APDU buffer, which is a resource shared by all
applications. The integrity of the information stored in that buffer is ensured by the
objective O.GLOBAL_ARRAYS_INTEG. Finally, any attempt to read a piece of
information that was previously used by an application but has been logically deleted is
countered by the O.REALLOCATION objective. That objective states that any information
that was formerly stored in a memory block shall be cleared before the block is reused.

T.INTEG-APPLI-DATA.LOAD This threat is countered by the security objective O.LOAD
which ensures that the loading of packages is done securely and thus preserves the
integrity of applications data. The objective OE.CODE-EVIDENCE contributes to cover
this threat by ensuring that the application code loaded into the platform has not been
changed after code verification, which ensures code integrity and authenticity. By
controlling the access to card management functions such as the installation, update or
deletion of applets the objective O.CARD_MANAGEMENT contributes to cover this threat.

T.INTEG-JCS-CODE This threat is countered by the list of properties described in the
(#.VERIFICATION) security aspect. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the
intended scope of accessibility. As none of these instructions enables modifying a piece of
code, no Java Card applet can therefore be executed to modify a piece of code. Native
applications are also harmless because of the objective O.NATIVE, so no application can
be run to modify a piece of code. The (#.VERIFICATION) security aspect is addressed in
this configuration by the objective for the environment OE.VERIFICATION. The objectives
O.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this threat by
controlling the access to card management functions and by checking the bytecode,
respectively. The objective OE.CODE-EVIDENCE contributes to cover this threat by
ensuring that the application code loaded into the platform has not been changed after
code verification, which ensures code integrity and authenticity.

T.INTEG-JCS-DATA This threat is countered by bytecode verification (OE.VERIFICATION)
and the isolation commitments stated in the (O.FIREWALL) objective. This latter objective
also relies in its turn on the correct identification of applets stated in (O.SID). Moreover, as
the firewall is dynamically enforced, it shall never stop operating, as stated in the
(O.OPERATE) objective. As the firewall is a software tool automating critical controls, the
objective O.ALARM asks for it to provide clear warning and error messages, so that the
appropriate counter-measure can be taken. The objectives O.CARD_MANAGEMENT and
OE.VERIFICATION contribute to cover this threat by controlling the access to card
management functions and by checking the bytecode, respectively. The objective
OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application

 ID-ONE COSMO V8.2
Public Security Target

 85 | 210

code loaded into the platform has not been changed after code verification, which ensures
code integrity and authenticity. The objectives O.SCP.RECOVERY and
O.SCP.SUPPORT are intended to support the O.OPERATE and O.ALARM objectives of
the TOE, so they are indirectly related to the threats that these latter objectives contribute
to counter.

7.3.1.3 IDENTITY USURPATION

T.SID.1 As impersonation is usually the result of successfully disclosing and modifying some
assets, this threat is mainly countered by the objectives concerning the isolation of
application data (like PINs), ensured by the (O.FIREWALL). Uniqueness of subject-
identity (O.SID) also participates to face this threat. It should be noticed that the AIDs,
which are used for applet identification, are TSF data.

In this configuration, usurpation of identity resulting from a malicious installation of an
applet on the card is covered by the objective O.INSTALL.

The installation parameters of an applet (like its name) are loaded into a global array that
is also shared by all the applications. The disclosure of those parameters (which could be
used to impersonate the applet) is countered by the objectives
O.GLOBAL_ARRAYS_CONFID and O.GLOBAL_ARRAYS_INTEG.

The objective O.CARD_MANAGEMENT contributes, by preventing usurpation of identity
resulting from a malicious installation of an applet on the card, to counter this threat.

T.SID.2 This is covered by integrity of TSF data, subject-identification (O.SID), the firewall
(O.FIREWALL) and its good working order (O.OPERATE).

The objective O.INSTALL contributes to counter this threat by ensuring that installing an
applet has no effect on the state of other applets and thus’can't change the’TOE's
attribution of privileged roles.

The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the
O.OPERATE objective of the TOE, so they are indirectly related to the threats that this
latter objective contributes to counter.

7.3.1.4 UNAUTHORIZED EXECUTION

T.EXE-CODE.1 Unauthorized execution of a method is prevented by the objective
OE.VERIFICATION. This threat particularly concerns the point (8) of the security aspect
#VERIFICATION (access modifiers and scope of accessibility for classes, fields and
methods). The O.FIREWALL objective is also concerned, because it prevents the
execution of non-shareable methods of a class instance by any subject apart from the
class instance owner.

T.EXE-CODE.2 Unauthorized execution of a method fragment or arbitrary data is prevented
by the objective OE.VERIFICATION. This threat particularly concerns those points of the
security aspect related to control flow confinement and the validity of the method
references used in the bytecodes.

T.NATIVE This threat is countered by O.NATIVE which ensures that a Java Card applet can
only access native methods indirectly that is, through an API. OE.APPLET also covers
this threat by ensuring that no native applets shall be loaded in post-issuance. In addition
to this, the bytecode verifier also prevents the program counter of an applet to jump into a

 ID-ONE COSMO V8.2
Public Security Target

 86 | 210

piece of native code by confining the control flow to the currently executed method
(OE.VERIFICATION).

7.3.1.5 DENIAL OF SERVICE

T.RESOURCES This threat is directly countered by objectives on resource-management
(O.RESOURCES) for runtime purposes and good working order (O.OPERATE) in a
general manner.

Consumption of resources during installation and other card management operations are
covered, in case of failure, by O.INSTALL.

It should be noticed that, for what relates to CPU usage, the Java Card platform is single-
threaded and it is possible for an ill-formed application (either native or not) to monopolize
the CPU. However, a smart card can be physically interrupted (card removal or hardware
reset) and most CADs implement a timeout policy that prevent them from being blocked
should a card fails to answer. That point is out of scope of this Security Target, though.

Finally, the objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support
the O.OPERATE and O.RESOURCES objectives of the TOE, so they are indirectly
related to the threats that these latter objectives contribute to counter.

7.3.1.6 CARD MANAGEMENT

T.DELETION This threat is covered by the O.DELETION security objective which ensures
that both applet and package deletion perform as expected.

The objective O.CARD_MANAGEMENT controls the access to card management
functions and thus contributes to cover this threat.

T.INSTALL This threat is covered by the security objective O.INSTALL which ensures that
the installation of an applet performs as expected and the security objectives O.LOAD
which ensures that the loading of a package into the card is safe.

The objective O.CARD_MANAGEMENT controls the access to card management
functions and thus contributes to cover this threat.

7.3.1.7 SERVICES

T.OBJ-DELETION This threat is covered by the O.OBJ-DELETION security objective which
ensures that object deletion shall not break references to objects.

7.3.1.8 MISCELLANEOUS

T.PHYSICAL Covered by O.SCP.IC. Physical protections rely on the underlying platform and
are therefore an environmental issue.

7.3.1.9 Additional threats

T.CONFIGURATION This threat is covered by O.RESIDENT_APPLICATION.

This objective ensures that any operation in this phase need authentication, it ensures
also that D.CONFIG is loaded protected from theft and modification suchs as an attacker
can not observe or modify configuration information exchanged between the TOE and its
environment.

 ID-ONE COSMO V8.2
Public Security Target

 87 | 210

T.CONF_DATA_APPLET This threat is covered by the O.SECURE_COMPARE security
objective.

If an attacker tries to catch confidential informat“on "D.A”RAY", the objective
O.SECURE_COMPARE ensures that no residual information is available to the attacker.

T.PATCH_LOADING This threat is covered by O.PATCH_LOADING security objective.

If an attacker tries to avoid the loading of a patch or alter a patch (during loading or once
loaded), O.PATCH_LOADING ensures trustable identification and authentication (static
signature) data of the loaded patch are returned by the TOE. This information enables to
check the presence of the genuine patch. Moreover, O.PATCH_LOADING, ensures
authentication of the entity loading the patch, as well as of the developer of the patch are
successful before the patch is loaded in the TOE. This objective ensures patch loading
can only be performed during a limited moment in the TOE life cycle (before phase 6) and
once the TOE has reached phase 6, this feature is not available anymore.

7.3.2 Organisational Security Policies

OSP.VERIFICATION This policy is upheld by the security objective of the environment
OE.VERIFICATION which guarantees that all the bytecodes shall be verified at least
once, before the loading, before the installation or before the execution in order to ensure
that each bytecode is valid at execution time. This policy is also upheld by the security
objective of the environment OE.CODE-EVIDENCE which ensures that evidences exist
that the application code has been verified and not changed after verification.

7.3.3 Assumptions

A.APPLET This assumption is upheld by the security objective for the operational
environment OE.APPLET which ensures that no applet loaded post-issuance shall contain
native methods.

A.VERIFICATION This assumption is upheld by the security objective on the operational
environment OE.VERIFICATION which guarantees that all the bytecodes shall be verified
at least once, before the loading, before the installation or before the execution in order to
ensure that each bytecode is valid at execution time. This assumption is also upheld by
the security objective of the environment OE.CODE-EVIDENCE which ensures that
evidences exist that the application code has been verified and not changed after
verification.

7.3.4 SPD and Security Objectives

Threats Security Objectives Rationale

T.CONFID-APPLI-DATA OE.VERIFICATION, O.SID, O.OPERATE,
O.FIREWALL, O.GLOBAL_ARRAYS_CONFID,
O.ALARM, O.TRANSACTION, O.CIPHER, O.PIN-
MNGT, O.BIO-MNGT, O.KEY-MNGT,
O.REALLOCATION, O.SCP.RECOVERY,
O.SCP.SUPPORT, O.CARD_MANAGEMENT

Section 6.3.1

 ID-ONE COSMO V8.2
Public Security Target

 88 | 210

Threats Security Objectives Rationale

T.CONFID-JCS-CODE OE.VERIFICATION, O.NATIVE,
O.CARD_MANAGEMENT

Section 6.3.1

T.CONFID-JCS-DATA OE.VERIFICATION, O.SID, O.OPERATE,
O.FIREWALL, O.ALARM, O.SCP.RECOVERY,
O.SCP.SUPPORT, O.CARD_MANAGEMENT

Section 6.3.1

T.INTEG-APPLI-CODE OE.VERIFICATION, O.NATIVE, OE.CODE-
EVIDENCE, O.CARD_MANAGEMENT

Section 6.3.1

T.INTEG-APPLI-
CODE.LOAD

O.LOAD, OE.CODE-EVIDENCE,
O.CARD_MANAGEMENT

Section 6.3.1

T.INTEG-APPLI-DATA OE.VERIFICATION, O.SID, O.OPERATE,
O.FIREWALL, O.GLOBAL_ARRAYS_INTEG,
O.ALARM, O.TRANSACTION, O.CIPHER, O.PIN-
MNGT, O.BIO-MNGT, O.KEY-MNGT,
O.REALLOCATION, O.SCP.RECOVERY,
O.SCP.SUPPORT, OE.CODE-EVIDENCE,
O.CARD_MANAGEMENT

Section 6.3.1

T.INTEG-APPLI-
DATA.LOAD

O.LOAD, OE.CODE-EVIDENCE,
O.CARD_MANAGEMENT

Section 6.3.1

T.INTEG-JCS-CODE OE.VERIFICATION, O.NATIVE, OE.CODE-
EVIDENCE, O.CARD_MANAGEMENT

Section 6.3.1

T.INTEG-JCS-DATA OE.VERIFICATION, O.SID, O.OPERATE,
O.FIREWALL, O.ALARM, O.SCP.RECOVERY,
O.SCP.SUPPORT, OE.CODE-EVIDENCE,
O.CARD_MANAGEMENT

Section 6.3.1

T.SID.1 O.FIREWALL, O.GLOBAL_ARRAYS_CONFID,
O.GLOBAL_ARRAYS_INTEG, O.INSTALL, O.SID,
O.CARD_MANAGEMENT

Section 6.3.1

T.SID.2 O.SID, O.OPERATE, O.FIREWALL, O.INSTALL,
O.SCP.RECOVERY, O.SCP.SUPPORT

Section 6.3.1

T.EXE-CODE.1 OE.VERIFICATION, O.FIREWALL Section 6.3.1

T.EXE-CODE.2 OE.VERIFICATION Section 6.3.1

T.NATIVE OE.VERIFICATION, OE.APPLET, O.NATIVE Section 6.3.1

T.RESOURCES O.INSTALL, O.OPERATE, O.RESOURCES,
O.SCP.RECOVERY, O.SCP.SUPPORT

Section 6.3.1

T.DELETION O.DELETION, O.CARD_MANAGEMENT Section 6.3.1

T.INSTALL O.INSTALL, O.LOAD, O.CARD_MANAGEMENT Section 6.3.1

T.OBJ-DELETION O.OBJ-DELETION Section 6.3.1

T.PHYSICAL O.SCP.IC Section 6.3.1

T.CONFIGURATION O.RESIDENT_APPLICATION Section 6.3.1

T.CONF_DATA_APPLET O.SECURE_COMPARE Section 6.3.1

 ID-ONE COSMO V8.2
Public Security Target

 89 | 210

Threats Security Objectives Rationale

T.PATCH_LOADING O.PATCH_LOADING Section 6.3.1

Table 17: Threats and Security Objectives – Coverage

Security Objectives Threats Rationale

O.SID T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA,
T.SID.1, T.SID.2

O.FIREWALL T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA,
T.SID.1, T.SID.2, T.EXE-CODE.1

O.GLOBAL_ARRAYS_CONFID T.CONFID-APPLI-DATA, T.SID.1

O.GLOBAL_ARRAYS_INTEG T.INTEG-APPLI-DATA, T.SID.1

O.NATIVE T.CONFID-JCS-CODE, T.INTEG-APPLI-CODE,
T.INTEG-JCS-CODE, T.NATIVE

O.OPERATE T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA,
T.SID.2, T.RESOURCES

O.REALLOCATION T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.RESOURCES T.RESOURCES

O.ALARM T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA

O.CIPHER T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.KEY-MNGT T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.PIN-MNGT T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.BIO-MNGT T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.TRANSACTION T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.OBJ-DELETION T.OBJ-DELETION

O.DELETION T.DELETION

O.LOAD T.INTEG-APPLI-CODE.LOAD, T.INTEG-APPLI-
DATA.LOAD, T.INSTALL

O.INSTALL T.SID.1, T.SID.2, T.RESOURCES, T.INSTALL

O.SCP.SUPPORT T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA,
T.SID.2, T.RESOURCES

 ID-ONE COSMO V8.2
Public Security Target

 90 | 210

Security Objectives Threats Rationale

O.SCP.IC T.PHYSICAL

O.PATCH_LOADING T.PATCH_LOADING

O.SCP.RECOVERY T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA,
T.SID.2, T.RESOURCES

O.RESIDENT_APPLICATION T.CONFIGURATION

O.CARD_MANAGEMENT T.CONFID-APPLI-DATA, T.CONFID-JCS-CODE,
T.CONFID-JCS-DATA, T.INTEG-APPLI-CODE,
T.INTEG-APPLI-CODE.LOAD, T.INTEG-APPLI-
DATA, T.INTEG-APPLI-DATA.LOAD, T.INTEG-
JCS-CODE, T.INTEG-JCS-DATA, T.SID.1,
T.DELETION, T.INSTALL

O.SECURE_COMPARE T.CONF_DATA_APPLET

OE.APPLET T.NATIVE

OE.VERIFICATION T.CONFID-APPLI-DATA, T.CONFID-JCS-CODE,
T.CONFID-JCS-DATA, T.INTEG-APPLI-CODE,
T.INTEG-APPLI-DATA, T.INTEG-JCS-CODE,
T.INTEG-JCS-DATA, T.EXE-CODE.1, T.EXE-
CODE.2, T.NATIVE

OE.CODE-EVIDENCE T.INTEG-APPLI-CODE, T.INTEG-APPLI-
CODE.LOAD, T.INTEG-APPLI-DATA, T.INTEG-
APPLI-DATA.LOAD, T.INTEG-JCS-CODE,
T.INTEG-JCS-DATA

Table 18: Security Objectives and Threats – Coverage

Organisational Security Policies Security Objectives Rationale

OSP.VERIFICATION OE.VERIFICATION, OE.CODE-EVIDENCE Section 6.3.2

Table 19: OSPs and Security Objectives – Coverage

Security Objectives Organisational Security Policies Rationale

O.SID

O.FIREWALL

O.GLOBAL_ARRAYS_CONFID

O.GLOBAL_ARRAYS_INTEG

O.NATIVE

 ID-ONE COSMO V8.2
Public Security Target

 91 | 210

Security Objectives Organisational Security Policies Rationale

O.OPERATE

O.REALLOCATION

O.RESOURCES

O.ALARM

O.CIPHER

O.KEY-MNGT

O.PIN-MNGT

O.BIO-MNGT

O.TRANSACTION

O.OBJ-DELETION

O.DELETION

O.LOAD

O.INSTALL

O.SCP.SUPPORT

O.SCP.IC

O.SCP.RECOVERY

O.RESIDENT_APPLICATION

O.CARD_MANAGEMENT

O.SECURE_COMPARE

OE.APPLET

OE.VERIFICATION OSP.VERIFICATION

OE.CODE-EVIDENCE OSP.VERIFICATION

Table 20: Security Objectives and OSPs – Coverage

Assumptions Security Objectives for the Operational Environment Rationale

A.APPLET OE.APPLET Section 6.3.3

A.VERIFICATION OE.VERIFICATION, OE.CODE-EVIDENCE Section 6.3.3

Table 21: Assumptions and Security Objectives for the Operational Environment – Coverage

Security Objectives for the Operational Environment Assumptions Rationale

 ID-ONE COSMO V8.2
Public Security Target

 92 | 210

OE.APPLET A.APPLET

OE.VERIFICATION A.VERIFICATION

OE.CODE-EVIDENCE A.VERIFICATION

Table 22: Security Objectives for the Operational Environment and Assumptions – Coverage

 ID-ONE COSMO V8.2
Public Security Target

 93 | 210

8 Extended Requirements

8.1 Extended Families

8.1.1 Extended Family FCS_–NG - FCS_RNG: Random Number Generation

8.1.1.1 Description

This family defines quality requirements for the generation of random numbers which are
intended to be used for cryptographic purposes.

Extended Component FCS_RNG.1

Description

A physical random number generator (RNG) produces the random number by a noise source
based on physical random processes. A non-physical true RNG uses a noise source based
on non-physical random processes like human interaction (key strokes, mouse movement).
A deterministic RNG uses a random seed to produce a pseudorandom output. A hybrid RNG
combines the principles of physical and deterministic RNGs.

Family behaviour:

This family defines quality requirements for the generation of random numbers which are
intended to be use for cryptographic purposes.

Component levelling:

Generation of random numbers requires that random numbers meet a defined quality metric.

Management: There are no management activities foreseen

Audit: There are no actions defined to be auditable

Hierarchical to: No other components

Definition

FCS_RNG.1 Random Number Generation

 ID-ONE COSMO V8.2
Public Security Target

 94 | 210

FCS_RNG.1.1 The TSF shall provide a [selection: physical, non-physical true, deterministic
hybrid] random number generator that implements: [assignment: list of security
capabilities].

FCS_RNG.1.2 The TSF shall provide random numbers that meet [assignment: a defined
quality metric].

 Dependencies: No dependencies.

 ID-ONE COSMO V8.2
Public Security Target

 95 | 210

9 Security Requirements

9.1 Security Functional Requirements

This section states the security functional requirements for the Java Card Sys–em - Open
configuration. For readability and for compatibility with the original Java Card System
Protection Profile Collect–on - Standard 2.2 Configuration [R44], requirements are arranged
into groups. All the groups defined in the table below apply to this Security Target.

Group Description

Core with Logical
Channels
(CoreG_LC)

The CoreG_LC contains the requirements concerning the runtime
environment of the Java Card System implementing logical channels. This
includes the firewall policy and the requirements related to the Java Card
API. Logical channels are a Java Card specification version 2.2 feature.
This group is the union of requirements from the Core (CoreG) and the
Logical channels (LCG) groups defined in [R44] (cf. Java Card System
Protection Profile Collection [R44]).

Installation
(InstG)

The InstG contains the security requirements concerning the installation of
post-issuance applications. It does not address card management issues
in the broad sense, but only those security aspects of the installation
procedure that are related to applet execution.

Applet deletion
(ADELG)

The ADELG contains the security requirements for erasing installed
applets from the card, a feature introduced in Java Card specification
version 2.2.

Object deletion
(ODELG)

The ODELG contains the security requirements for the object deletion
capability. This provides a safe memory recovering mechanism. This is a
Java Card specification version 2.2 feature.

Secure carrier
(CarG)

The CarG group contains minimal requirements for secure downloading of
applications on the card. This group contains the security requirements for
preventing, in those configurations that do not support on-card static or
dynamic bytecode verification, the installation of a package that has not
been bytecode verified, or that has been modified after bytecode
verification.

Subjects are active components of the TOE that (essentially) act on the behalf of users. The
users of the TOE include people or institutions (like the applet developer, the card issuer, the
verification authority), hardware (like the CAD where the card is inserted or the PCD) and
software components (like the application packages installed on the card). Some of the users
may just be aliases for other users. For instance, the verification authority in charge of the
bytecode verification of the applications may be just an alias for the card issuer.

Objects (prefixed with“a” "O") are described in the following table:

Object Description

 ID-ONE COSMO V8.2
Public Security Target

 96 | 210

O.APPLET Any installed applet, its code and data

O.CODE_PKG The code of a package, including all linking information. On the Java
Card platform, a package is the installation unit

O.JAVAOBJECT Java class instance or array. It should be noticed that KEYS, PIN,
arrays and applet instances are specific objects in the Java
programming language

O.REMOTE_MTHD A method of a remote interface

O.REMOTE_OBJ A remote object is an instance of a class that implements one (or more)
remote interfaces. A remote interface is one that extends, directly or
indirectly, the interface java.rmi.Remote ([R6])

O.ROR A remote object reference. It provides information concerning: (i) the
identification of a remote object and (ii) the Implementation class of the
object or the interfaces implemented by the class of the object. This is
the ob’ect's information to which the CAD can access

Information (prefixed with“a” "I") is described in the following table:

Information Description

I.APDU Any APDU sent to or from the card through the communication channel.

I.DATA JCVM Reference Data: objectref addresses of APDU buffer, JCRE-owned
instances of APDU class and byte array for install method.

I.RORD Remote object reference descriptors which provide information concerning: (i)
the identification of the remote object and (ii) the implementation class of the
object or the interfaces implemented by the class of the object. The descriptor is
the only ob’ect's information to which the CAD can access.

 ID-ONE COSMO V8.2
Public Security Target

 97 | 210

Security attributes linked to these subjects, objects and information are described in the
following table with their values:

Security
attribute

Description/Value

Active Applets The set of the active app’ets' AIDs. An active applet is an applet that is
selected on at least one of the logical channels.

Applet
Selection
Sta“us

"Sele”ted"“or "Desele”ted".

Ap’let's version
number

The version number of an applet (package) indicated in the export file.

Class Identifies the implementation class of the remote object.

Context Package AID“or "Java Car” RE".

COD Context
attribute

Delimits the space occupied in volatile memory by the data of the
CLEAR_ON_DESELECT transient arrays of a package

COR Context
attribute

Delimits the space occupied in volatile memory by the data of the
CLEAR_ON_RESET transient arrays of a package

Current Frame
Context

The lower and upper Boundary of the local variables area on the stack frame
for a method and the lower and upper Boundary of the operand stack area
on the stack frame for a method

Currently
Active Context

Package AID“or "Java Car” RE".

Dependent
package AID

Allows the retrieval of the Package AID and Ap’let's version number ([R8],
§4.5.2).

ExportedInfo Boolean (indicates whether the remote object is exportable or not).

Identifier The Identifier of a remote object or method is a number that uniquely
identifies the remote object or method, respectively.

LC Selection
Status

Multiselectable, Non-multiselectable“or "”one".

LifeTime CLEAR_ON_DESELECT or PERSISTENT (*) or CLEAR_ON_RESET

Object
Boundary

Delimits the space occupied by an object in the heap

Owner The Owner of an object is either the applet instance that created the object
or the package (library) where it has been defined (these latter objects can
only be arrays that initialize static fields of the package). The owner of a
remote object is the applet instance that created the object.

Package AID The AID of each package indicated in the export file.

Package
Boundary

Delimits the space occupied by the code and the static fields of a package

Program
Counter

Position of the next Bytecode to execute

 ID-ONE COSMO V8.2
Public Security Target

 98 | 210

Security
attribute

Description/Value

Registered
Applets

The set of AID of the applet instances registered on the card.

Remote An object is Remote if it is an instance of a class that directly or indirectly
implements the interface java.rmi.Remote.

Resident
Packages

The set of AIDs of the packages already loaded on the card.

Returned
References

The set of remote object references that have been sent to the CAD during
the applet selection session. This attribute is implementation dependent.

Selected
Applet Context

Package AID“or "”one".

Sharing Standards, SIO, Java Card RE entry point or global array.

Stack Pointer Position of the next free slot in the stack

Static Fields Static fields of a package

Static
References

Static fields of a package may contain references to objects. The Static
References attribute records those references.

(*) Transient objects of type CLEAR_ON_DESELECT behave like persistent objects in that they can
be accessed only when the Currently Active Context is the ob’ect's context.

Operations (prefixed w“th”"OP") are described in the following table. Each operation has
parameters given between brackets, among which there is “he "accessed ob”ect", the first
one, when applicable. Parameters may be seen as security attributes that are under the
control of the subject performing the operation.

Operation Description

OP.ARRAY_ACCESS
(O.JAVAOBJECT, field)

Read/Write an array component.

OP.CREATE (Sharing,
LifeTime) (*)

Creation of an object (new or makeTransient call).

OP.DELETE_APPLET
(O.APPI,...)

Delete an installed applet and its objects, either logically or
physically.

OP.DELETE_PCKG (
O.COIPKG,...)

Delete a package, either logically or physically.

OP.DELETE_PCKG_APPLET
(OIDE_PKG,...)

Delete a package and its installed applets, either logically or
physically.

OP.FLOW (O.CODE_PKG) Any operation that modify the execution flow

OP.IMPORT_KEY Import of the keys

OP.INSTANCE_FIELD
(O.JAVAOBJECT, field)

Read/Write a field of an instance of a class in the Java
programming language.

 ID-ONE COSMO V8.2
Public Security Target

 99 | 210

Operation Description

OP.INVK_INTERFACE
(O.JAVAOBJECT, Ihod,
arg1,...)

Invoke an interface method.

OP.INVK_VIRTUAL
(O.JAVAOBJECImethod,
arg1,...)

Invoke a virtual method (either on a class instance or an
array Iect).

OP.JAVA (...) Any access in the sense of [R7], §6.2.8. It stands for one of
the operations OP.ARRAY_ACCESS,
OP.INSTANCE_FIELD, OP.INVK_VIRTUAL,
OP.INVK_INTERFACE, OP.THROW, OP.TYPE_ACCESS.

OIOCAL_STACK_ACCESS
(...)

Any operation that read or write the local stack

IOPERAND_STACK_ACCESS
(...)

Any operation that push or pop items on the operand stack

OP.PUT (S1,S2,I) Transfer a piece of information I from S1 to S2.

OP.RET_RORD
(S.JCRE,S.CAD,I.RORD)

Send a remote object reference descriptor to the CAD.

OP.STATIC_FIELD
(O.CODE_PKG, field)

Read/Write a static field of a class in the JAVA
programming language

OP.THROW (O.JAVAOBJECT) Throwing of an object (athrow, see [R7], §6.2.8.7).

OP.TYPE_ACCESS
(O.JAVAOBJECT, class)

Invoke checkcast or instanceof on an object in order to
access to classes (standard or shareable interfaces
objects).

Cardholder Authentication Authentication of the cardholder

U.Card_Issuer authentication Authentication of U.Card_Issuer

(*) For this operation, there is no accessed object. This rule enforces that shareable transient objects
are not allowed, except some objects, such as COR. For more information refer to the Java Doc [R6].
For instance, during the creation of an object,’the JavaCardClass attribute's value is chosen by the
creator.

9.1.1 CoreG_LC Security Functional Requirements

This group is focused on the main security policy of the Java Card System, known as the
firewall.

9.1.1.1 Firewall Policy

FDP_ACC.2/FIREWALL Complete access control

 ID-ONE COSMO V8.2
Public Security Target

 100 | 210

FDP_ACC.2.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP on
S.PACKAGE, S.JCRE, S.JCVM, O.JAVAOBJECT and all operations among subjects
and objects covered by the SFP.

Refinement:

The operations involved in the policy are:

o OP.CREATE,

o OP.INVK_INTERFACE,

o OP.INVK_VIRTUAL,

o OP.JAVA,

o OP.THROW,

o OP.TYPE_ACCESS.

FDP_ACC.2.2/FIREWALL The TSF shall ensure that all operations between any subject
controlled by the TSF and any object controlled by the TSF are covered by an access
control SFP.

Application Note:

It should be ’oticed that accessing array's components of a static array, and more generally
fields and methods of static objects, is an access to the corre“ponding O.JAVAOBJE”T.

FDP_ACF.1/FIREWALL Security attribute based access control

FDP_ACF.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to
objects based on the following:

Subject/Object Security attributes

S.PACKAGE LC Selection Status

S.JCVM Active Applets, Currently Active Context

S.JCRE Selected Applet Context

O.JAVAOBJECT Sharing, Context, LifeTime

.

FDP_ACF.1.2/FIREWALL The TSF shall enforce the following rules to determine if an
operation among controlled subjects and controlled objects is allowed:

o R.JAVA.1 ([R7], §6.2.8): S.PACKAGE may freely perform
OP.ARRAY_ACCESS, OP.INSTANCE_FIELD, OP.INVK_VIRTUAL,
OP.INVK_INTERFACE, OP.THROW or OP.TYPE_ACCESS upon any
O.JAVAOBJECT whose “haring attribute”has “alue "JCRE e”try point" or
"global array".

o R.JAVA.2 ([R7], §6.2.8): S.PACKAGE may freely perform
OP.ARRAY_ACCESS, OP.INSTANCE_FIELD, OP.INVK_VIRTUAL,
OP.INVK_INTERFACE or OP.THROW upon any O.JAVAOBJECT whose
“haring a”tribute has value "Standard" and whose L“fetime att”ibute has

 ID-ONE COSMO V8.2
Public Security Target

 101 | 210

value "PERS’STENT" only if O.JAVAOBJECT's Context attribute has the
same value as the active context.

o R.JAVA.3 ([R7], §6.2.8.10): S.PACKAGE may perform OP.TYPE_ACCESS
upon an O.JAVAOBJECT whose “har”ng attribute has value "SIO" only if
O.JAVAOBJECT is being cast into (checkcast) or is being verified as being
an instance of (instanceof) an interface that extends the Shareable interface.

o R.JAVA.4 ([R7], §6.2.8.6): S.PACKAGE may perform OP.INVK_INTERFACE
upon an O.JAVAOBJECT whose Shar“ng ”ttribute has the value "SIO", and
whose Cont“xt attribut” has the value "Package AID", only if the invoked
interface method extends the Shareable interface and one of the following
conditions applies:

 a) The value of the attribute Selection Status “f the packa”e wh“se AID is
"Pack”ge AID" is "Multiselectable",

 b) The value of the attribute Selection Status “f the packa”e wh“se AID is
"Package ”ID" is "Non-m“ltiselectab”e", and either "Package AID" is the
value of the currently s“lected appl”t or otherwise "Package AID" does
not occur in the attribute Active Applets.

o R.JAVA.5: S.PACKAGE may perform OP.CREATE only if the value “f the
Sh”ring parameter is "Standard".

FDP_ACF.1.3/FIREWALL The TSF shall explicitly authorise access of subjects to objects
based on the following additional rules:

o 1) The subject S.JCRE“can freely perform OP.JAVA(") and OP.CREATE, with
the exception given in FDP_ACF.1.4/FIREWALL, provided it is the Currently
Active Context.

o 2) The only means that the subject S.JCVM shall provide for an application
to execute native code is the invocation of a Java Card API method (through
OP.INVK_INTERFACE or OP.INVK_VIRTUAL).

FDP_ACF.1.4/FIREWALL The TSF shall explicitly deny access of subjects to objects based
on the following additional rules:

o 1) Any subject with OP.JAVA upon an O.JAVAOBJECT whose L“feTime
attribute ”as value "CLEAR_’N_DESELECT" if O.JAVAOBJECT's Context
attribute is not the same as the Selected Applet Context.

o 2) Any subject attempting to create an object by t“e means of OP.CRE”TE
and a "CLEAR_ON_DESELECT" LifeTime parameter if the active context is
not the same as the Selected Applet Context.

Application Note:

FDP_ACF.1.4/FIREWALL:

 The deletion of applets may render some O.JAVAOBJECT inaccessible, and the Java
Card RE may be in charge of this aspect. This can be done, for instance, by ensuring
that references to objects belonging to a deleted application are considered as a null
reference. Such a mechanism is implementation-dependent.

In the case of an array type, fields are components of the array ([R42], §2.14, §2.7.7), as well
as the length; the only methods of an array object are those inherited from the Object class.

The Sharing attribute defines four categories of objects:

 ID-ONE COSMO V8.2
Public Security Target

 102 | 210

 Standard ones, whose both fields and methods are under the firewall policy,

 Shareable interface Objects (SIO), which provide a secure mechanism for inter-applet
communication,

 JCRE entry points (Temporary or Permanent), who have freely accessible methods
but protected fields,

 Global arrays, having both unprotected fields (including components; refer to
JavaCardClass discussion above) and methods.

When a new object is created, it is associated with the Currently Active Context. But the
object is owned by the applet instance within the Currently Active Context when the object is
instantiated ([R7], §6.1.3). An object is owned by an applet instance, by the JCRE or by the
package library where it has been defined (these latter objects can only be arrays that
initialize static fields of packages).

([R7], Glossary) Selected Applet Context. The Java Card RE keeps track of the currently
selected Java Card applet. Upon receiving a SEL’CT command with this applet's AID, the
Java Card RE makes this applet the Selected Applet Context. The Java Card RE sends all
APDU commands to the Selected Applet Co“text.

While the express”on "Selected Applet Context" refers to a specific installed applet, the
relevant aspect to the policy is the context (package AID) of the selected “pplet. In this policy,
”he "Selected Applet Context" is the AID of the selected package.

([R7], §6.1.2.1) At any point in time, there is only one active context within the Java Card VM
(this is called the Currently Active Context).

It should be noticed that the invocation of static methods (or access to a static field) is not
considered by this policy, as there are no firewall rules. They have no effect on the act“ve
context as ”ell and the "acting package" is not the one to which the static method belongs to
in this case.

It should be noticed that the Java Card platform, version 2.2.x and version 3 Classic Edition,
introduces the possibility for an applet instance to be selected on multiple logical channels at
the same time, or accepting other applets belonging to the same package being selected
simultaneously. These applets are referred to as multiselectable applets. Applets that belong
to a same package are either all multiselectable or not ([R8], §2.2.5). Therefore, the selection
mode can be regarded as an attribute of packages. No selection mode is defined for a library
package.

An applet instance will be considered an active applet instance if it is currently selected in at
least one logical channel. An applet instance is the currently selected applet instance only if it
is processing the current command. There can only be one currently selected applet instance
at a g“ven time. ([R7”, §4).

FDP_IFC.1/JCVM Subset information flow control

 ID-ONE COSMO V8.2
Public Security Target

 103 | 210

FDP_IFC.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP on
S.JCVM, S.LOCAL, S.MEMBER, I.DATA and OP.PUT(S1, S2, I).

Application Note:

It should be noticed that references of temporary Java Card RE entry points, which cannot
be stored in class variables, instance variables or array components, are transferred from the
internal memory of the Java Card RE (TSF data) to some stack through specific APIs (Java
Card RE owned exceptions) or Java Card RE invoked methods (such as the process(APDU
apdu)); these are causes of OP.PUT(S1,S2,“) operations a” well.

FDP_IFF.1/JCVM Simple security attributes

FDP_IFF.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP based
on the following types of subject and information security attributes:

Subjects Security attributes

S.JCVM Currently Active Context

FDP_IFF.1.2/JCVM The TSF shall permit an information flow between a controlled subject
and controlled information via a controlled operation if the following rules hold:

o An operation OP.PUT(S1, S.MEMBER, I.DATA) is allowed if and only if the
“urrently Act”ve Context is "Java Card RE";

o other OP.PUT operations are allowed regardless of ’he Currently Active
Context's value.

FDP_IFF.1.3/JCVM The TSF shall enforce the none.

FDP_IFF.1.4/JCVM The TSF shall explicitly authorise an information flow based on the
following rules: none.

FDP_IFF.1.5/JCVM The TSF shall explicitly deny an information flow based on the following
rules: none.

Application Note:

The storage of temporary Java Card RE-owned objects references is runtime-enforced ([R7],
§6.2.8.1-3).

It should be noticed that this policy essentially applies to the execution of bytecode. Native
methods, the Java Card RE itself and possibly some API methods can be granted specific
rights or limitations through the FDP_IFF.1.3/JCVM to FDP_IFF.1.5/JCVM elements. The
way the Java Card virtual machine manages the transfer of values on the stack and local
variables (returned values, uncaught exceptions) from and to internal registers is
implementation-dependent. For instance, a returned reference, depending on the
implementation of the stack frame, may transit through an internal register prior to being

 ID-ONE COSMO V8.2
Public Security Target

 104 | 210

pushed on the stack of the invoker. The returned bytecode would cause more than one
OP.PUT operat“on under this sch”me.

FDP_RIP.1/OBJECTS Subset residual information protection

FDP_RIP.1.1/OBJECTS The TSF shall ensure that any previous information content of a
resource is made unavailable upon the allocation of the resource to the following
objects: class instances and arrays.

Application Note:

The semantics of the Java programming language requires for any object field and array
position to be initialized with default values when the resource is al“ocated [R42], ”2.5.1.

FMT_MSA.1/JCRE Management of security attributes

FMT_MSA.1.1/JCRE The TSF shall enforce the FIREWALL access control SFP to restrict
the ability to modify the security attributes Selected Applet Context to the Java Card
RE.

Application Note:

The modification of the Selected Applet Context should be performed in accordance with the
rules given in [R“], §4 and [R8]” §3.4.

FMT_MSA.1/JCVM Management of security attributes

FMT_MSA.1.1/JCVM The TSF shall enforce the FIREWALL access control SFP and the
JCVM information flow control SFP to restrict the ability to modify the security
attributes Currently Active Context and Active Applets to the Java Card VM
(S.JCVM).

Application Note:

The modification of the Currently Active Context should be performed in accordance with the
rules given in [R“], §4 and [R8], §3.4.

FMT_MSA.2/FIREWALL_JCVM Secure security attributes

 ID-ONE COSMO V8.2
Public Security Target

 105 | 210

FMT_MSA.2.1/FIREWALL_JCVM The TSF shall ensure that only secure values are
accepted for all the security attributes of subjects and objects defined in the
FIREWALL access control SFP and the JCVM information flow control SFP.

Application Note:

The following rules are given as examples only. For instance, the last two rules are motivated
by the fact that the Java Card API defines only transient arrays factory methods. Future
versions may allow the creation of transient objects belonging to arbitrary classes; such
evolution will na“urally change”the range of "secure values" for this component.

 The Context attribute of an O.JAVAOBJECT must correspond to that o“ an installe”
applet or be "Java Card RE".

 An O.JAVAOBJECT whose Sharing attribute is a Java Card RE entry point or a
g“obal array n”cessarily has "Java Card RE" as the value for its Context security
attribute.

 An O.JAVAOBJECT whose Sharing attribute value is a g“obal array necessarily ”as
"array of primitive type" as a Java’ardClass security attribute's value.

 Any O.JAVAOBJECT whose Sha“ing attr”bute value is not "Standard" has a
P’RSISTENT-LifeTime attribute's value.

 Any O.JAVAOBJECT whose LifeTime attribute value is not PERSISTENT has an
array typ’ as JavaCardCl“ss attribute's val”e.

FMT_MSA.105nitializationtic attribute initialisation

FMT_MSA.3.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to
provide restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/FIREWALL [Editorially Refined] The TSF shall not allow any role to specify
alternative initial values to override the default values when an object or information is
created.

Application Note:

’MT_MSA.3.1/FIREWALL

 Objects' security attributes of the access control policy are created and initialized at
the creation of the object or the subject. Afterwards, these attributes are no longer
mutable (FMT_MSA.1/JCRE). At the creation of an object (OP.CREATE), the newly
created object, assuming that the FIREWALL access control SFP permits the
operation, gets its Lifetime and Sharing attributes from the parameters of the
operation; on the contrary, its Context attribute has a default’value, which is its
creator's Context attribute and AID respectively ([R7], §6.1.3). There is one default
value for the Selected Applet Context that is t’e default applet identifier's Context, and
one default value for the Curre“tly Active C”ntext that is "Java Card RE".

 The knowledge of which reference corresponds to a temporary entry point object or a
global array and which does not is solely available to the Java Card RE (and the Java
Card virtual machine).

FMT_MSA.3.2/FIREWALL

 ID-ONE COSMO V8.2
Public Security Target

 106 | 210

 The intent is that none of the identified roles has privileges with regard to the default
values of the security attributes. It should be noticed that creation of objects is an
operation controlled by the FIREWALL access control SFP. The operation shall fail
anyway if the created object would have had security attributes whose value violates
FMT_“SA.2.1/FIREWAL”_JCVM.

FMT_106nitializationtic attribute initialisation

FMT_MSA.3.1/JCVM The TSF shall enforce the JCVM information flow control SFP to
provide restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/JCVM [Editorially Refined] The TSF shall not allow any role to specify
alternative initial values to override the default values when an object or i“formation”is
created.

FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions:

o modify the Currently Active Context, the Selected Applet Context a“d the
Act”ve Applets.

FMT_SMR.1 Security roles

FMT_SMR.1.1 The TSF shall maintain the roles:

o Java Card RE (JCRE),

o Java Card VM (JCVM).

FMT_SMR.1.2 The TSF shall be able to associate users with roles.

9.1.1.2 Application Programming Interface

The following SFRs are related to the Java Card API.

The whole set of cryptographic algorithms is generally not implemented because of limited
memory resources and/or limitations due to exportation. Therefore, the following
requirements only apply to the implemented subset.

It should be noticed that the execution of the additional native code is not within the TSF.
Nevertheless, access to API native methods from the Java Card System is controlled by TSF
because there is no difference between native and interpreted methods in their interface or
invocation mechanism.

 ID-ONE COSMO V8.2
Public Security Target

 107 | 210

FCS_CKM.1 Cryptographic key generation

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm see table below and specified cryptographic key
sizes see table below that meet the following: see table below:

Cryptographic key generation
algorithm

Cryptographic key size List of standards

TDES 112 bits or 168 bits FIPS PUB 46-3 (ANSI
X3.92),

FIPS PUB 81

ECKeyP from 160 to 521 bits IEEE Std 1363a-2004
[R27]

RSA from 1024 to 4096 bits with a step
of 256-bits

ANSI X9.31

AES from 128 to 256 bits with a step of
64–bits

FIPS PUB 197

GP Keys - TDES (ECB) 112 bits GP 2.2.1

GP Keys – AES (ECB) 128, 192, 256 bits GP 2.2.1

GP Keys – AES (ECB) 128 bits Standard SCP03

.

Application Note:

 The keys can be generated and diversified in accordance with [R6] specification in
classes KeyBuilder and KeyPair (at least Session key generation).

 This component shall be instantiated according to the version of the Java Card API
applying to the security target and the implemented algorithms [R6].

 This component shall be instantiated according to the version of the Globlal Platform
G“ 2.2 [R12” and [R13].

FCS_CKM.2 Cryptographic key distribution

FCS_CKM.2.1 The TSF shall distribute cryptographic keys in accordance with a specified
cryptographic key distribution method setKey that meets the following: Java Card API
[R6] specification and setEncKey/setMacKey in the class “SOSecureMessaging
(Package "co”.oberthurcs.javacard.utilSM").

Application Note:

 SetKey meets [R6] specification.

 This component shall be instantiated according to the version of the Java Card API
applying to the security target and the implemen“ed algori”hms ([R6]).

 ID-ONE COSMO V8.2
Public Security Target

 108 | 210

FCS_CKM.3 Cryptographic key access

o FCS_CKM.3.1 The TSF shall perform the following types of cryptographic key
access in accordance with a specified cryptographic key access method see
refinement below that me“ts the following:”Packa“es "javacard.se”urity" an“
"javacard.crypto"

o Package "co”.oberthur“s.javacard.utilSM"

o ”a“kage "org.Glob”l Platform"

o "Java Card“JCRE" specification [JCR”]

o "Global Platform Ca“d 2.2" specif”cation [R12]

o "Java Card API" specification [R6].

Refinement:

Type of cryptographic key access Cryptographic key access methods (or commands)

DES

The following commands:

PUT_KEY, EXTERNAL AUTHENTICATE, INITIALIZE UPDATE.

The following SecureChannel key access methods Unwrap, wrap, decryptData,
encryptData, resetSecurity.

The following ISOSecureMessaging key access methods: reset, setEncKey,
setKeyFormat, setMacKey, unwrap_LDS, wrap_LDS, wrapLong, wrapLongFinal,
wrapLongInit, wrapSW_LDS, s“tMACForma”.

The following "APICrypto" key access methods: Key.clearKey, DES.getKey, DES.setKey,
Signature.init, Signature.update, Signature.sign, Signature.verify, Cipher.init,
Cipher.update, Cipher.doFinal

AES

The following commands:

PUT_KEY, EXTERNAL AUTHENTICATE, INITIA“IZE UPDATE.

The follo”ing "ProviderSecurityDomain" key access methods: decryptVerifyKey,
openSecureChannel, unwrap, verifyExternalAuthenticate.

The following SecureChannel key access methods Unwrap, wrap, decryptData,
encryptData, resetSecurity.

The following ISOSecureMessaging key access methods reset, setEncKey,
setKeyFormat, setMacKey, unwrap_LDS, wrap_LDS, wrapLong, wrapLongFinal,
wrapLongInit, wrapSW_LDS, s“tMACForma”.

The following "APICrypto" key access methods: Key.clearKey, AES.getKey, AES.setKey,
Signature.init, Signature.update, Signature.sign, Signature.verify, Cipher.init,
Cipher.update, Cipher.doFinal

RSA

The following commands: PU“_KEY, LOAD.

The follo”ing "ProviderSecurityDomain" key access methods: Decry“tVerifyKe”.

The following "APICrypto" key access methods: Key.clearKey, RSAPrivateCRTKey.setP,
RSAPrivateCRTKey.setQ, RSAPrivateCRTKey.setPQ, RSAPrivateCRTKey.setDP1,
RSAPrivateCRTKey.setDQ1, RSAPrivateCRTKey.getP, RSAPrivateCRTKey.getQ,
RSAPrivateCRTKey.getPQ, RSAPrivateCRTKey.getDP1, RSAPrivateCRTKey.getDQ1,
RSAPrivateKey.setModulus, RSAPrivateKey.setExponent, RSAPrivateKey.getModulus,
RSAPrivateKey.getExponent, RSAPublicKey.setModulus, RSAPublicKey.setExponent,

 ID-ONE COSMO V8.2
Public Security Target

 109 | 210

RSAPublicKey.getModulus, RSAPublicKey.getExponent, Signature.init, Signature.update,
Signature.sign, Signature.verify, Cipher.init, Cipher.update, Cipher.d“Final

ECk”yP

The following "APICrypto" key access methods: Key.clearKey, ECPrivateKey.setFieldFP,
ECPrivateKey.setA, ECPrivateKey.setB, ECPrivateKey.setG, ECPrivateKey.setR,
ECPrivateKey.setK, ECPrivateKey.getField, ECPrivateKey.getA, ECPrivateKey.getB,
ECPrivateKey.getG, ECPrivateKey.getR, ECPrivateKey.getK, ECPrivateKey.setS,
ECPrivateKey.getS, ECPublicKey.setFieldFP, ECPublicKey.setA, ECPublicKey.setB,
ECPublicKey.setG, ECPublicKey.setR,ECPublicKey.setK, ECPublicKey.getField,
ECPublicKey.getA, ECPublicKey.getB, ECPublicKey.getG, ECPublicKey.getR,
ECPublicKey.getK, ECPublicKey.setW, ECPublicKey.getW, Signature.init,
Signature.update, Signature.sign, Signature.verify KeyAgreement.init,
KeyAgreement.generateSecret

Application Note:

 The keys can be accessed as specified in [R6] Key class.

 This component shall be instantiated according to the version of the Java Card API
applicable to the security target and the implemen“ed algori”hms ([R6]).

FCS_CKM.4 Cryptographic key destruction

FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified
cryptographic key destruction method The keys are reset in accordance with [R6] in
class Key with the method clearKey(). Any access to a cleared key attempting to
use it for ciphering or signing shall throw an exceptio“ that meets t”e following: "Java
Card API" specification [R6]. The keys used in class “SOSecureMessaging
(Package "co”.oberthurcs.javacard.utilSM") are classes Ke“ that meets t”e
following: "Java Card API" spec‘ficat’on [R‘]. The metho’s 'reset' and
'setKeyFormat' call the method key.clearKey() for clearing the value of each key.

Application Note:

 The keys are reset as specified in [R6] Key class, with the method clearKey(). Any
access to a cleared key for ciphering or signing sha“l throw a” exception.

FCS_COP.1 Cryptographic operation

FCS_COP.1.1 The TSF shall perform see table in accordance with a specified cryptographic
algorithm see table and cryptographic key sizes see table that meet the following: see
below:

Cryptographic
operation

Cryptographic algorithm Key size List of sta’dards

 ID-ONE COSMO V8.2
Public Security Target

 110 | 210

Cryptographic
operation

Cryptographic algorithm Key size List of sta’dards

signature, signature's
verification, en–
ryption and
decryption

DES - TDES 56, 112 or
168 bits

FIPS PUB 46-3, ANSI X3.92,
FIPS PUB 81, ISO/IEC
9797(1999), Data integrity
mechanism’[R17]

signature, signature's
verification,
encryption and
decryption

AES from 128
to 256 bits
with a step
of 64 bits

FIPS PUB 197

SP800-38B ’CMAC)

signature, signature's
verification,
encryption and
decryption

RSA CRT, RSA SFM from 1024
to 4096
bits with a
step of
256-bits

ANSI X9.31, ISO/IEC 9796-
1, annex A, section A.4 and
A.5, and annex C, PKCS#1

signature HMAC 64 bits up
to 512 bits

Hash functions SHA-1, SHA-224, SHA-
256, SHA-384 and SHA-
512,SHA3-224, SHA3-256,
SHA3-384, SHA3-512

NA Secure Hash Standard, FIPS
PUB’180-3

signature, signature's
verification,
encryption and
decryption

ECDSA 160 to 521
bits

ANSI X9.62-1998

Key agreement ECDH 160 to 521
bits

BSI TR 03111 v1.11
IEEE P1363

Checksum CRC 16 and 32
bits

ISO3309_CRC16
ISO3309_CRC32

Refinement:

TDES (IC)/IDEMIA has developed the algorithm using HW DES module/TDES encryption
and decryption/Triple Data Encryption (TDES)/56/112/168-bits/E-D-E triple- encryption
implementation of the Data Encryption Standard, FIPS PUB 46-3, 25 Oct. 1999

SHA /IDEMIA has developed the algorithm/Hash function/SHA-1/No cryptographic
key/Secure Hash Standard, Federal Information Processing Standar110nitialication 180-3,
2008, october

SHA /IDEMIA has developed the algorithm/Hash function/SHA-224/No cryptographic
key/Secure Hash Standard, Federal Information Processing Standar110nitialication 180-3,
2008, october

SHA /IDEMIA has developed the algorithm/Hash function/SHA-256/No cryptographic
key/Secure Hash Standard, Federal Information Processing Standar110nitialication 180-3,
2008, october

SHA /IDEMIA has developed the algorithm/Hash function/SHA-384/No cryptographic
key/Secure Hash Standard, Federal Information Processing Standar110nitialication 180-3,
2008, october

 ID-ONE COSMO V8.2
Public Security Target

 111 | 210

SHA /IDEMIA has developed the algorithm/Hash function/SHA-512/No cryptographic
key/Secure Hash Standard, Federal Information Processing Standar111nitialication 180-3,
2008, october

SHA /IDEMIA has developed the algorithm/Hash function/SHA3-224/No cryptographic

key/Secure Hash Standard, Permutation-Based Hash and Extendable-Output Functions –

August 2015

SHA /IDEMIA has developed the algorithm/Hash function/SHA3-256/No cryptographic

key/Secure Hash S–andard, NIST FIPS PUB 202” - SHA-3 Standard: Permutation-Based

Hash and Extendable-Output Functions – August 2015

SHA /IDEMIA has developed the algorithm/Hash function/SHA3-384/No cryptographic

key/Secure Hash S–andard, NIST FIPS PUB 202” - SHA-3 Standard: Permutation-Based

Hash and Extendable-Output Functions – August 2015

SHA /IDEMIA has developed the algorithm/Hash function/SHA3-512/No cryptographic

key/Secure Hash S–andard, NIST FIPS PUB 202” - SHA-3 Standard: Permutation-Based

Hash and Extendable-Output Functions – August 2015

KG /IDEMIA has developed the algorithm using HW PK accelerator/Key
Generator//Between 1024 bits to 4096 bits/

RSA without CRT /IDEMIA has developed the algorithm using HW PK accelerator/Data
Encryption and Decryption/RSA Without CRT Data /Between 1024 bits to 4096
bits/PKCS#1 V2.0; 1st October, 1998

RSA with CRT /IDEMIA has developed the algorithm using HW PK accelerator/Data
Encryption and Decryption/RSA With CRT Data /Between 1024 bits and 4096 bits/PKCS#1
V2.0; 1st October, 1998 RNG/IDEMIA has developed the algorithm using HW RNG as
seed/Random generator//No cryptographic key/FIPS SP800-90, 2007, March

AES/IDEMIA has developed the algorithm/Data encryption / decryption//128/192/256
bits/FIPS PUB 197, 2001, November

Application Note:

 The TOE shall provide a subset of cryptographic operations defined in [R6] (see
javacardx.crypto.Cipher and javacardx.security packages).

 This component shall be instantiated according to the version of the Java Card API
applicable to the security target and the implemen“ed algorithms (”R6]).

FDP_RIP.1/ABORT Subset residual information protection

FDP_RIP.1.1/ABORT The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following
objects: any reference to an object instance created during an aborted transaction.

Application Note:

The events that provoke the de-allocation of a transient object are de“cribed in [R7]” §5.1.

 ID-ONE COSMO V8.2
Public Security Target

 112 | 210

FDP_RIP.1/APDU Subset residual information protection

FDP_RIP.1.1/APDU The TSF shall ensure that any previous information content of a
resource is made unavailable upon the allocation of the resource to the following
objects: the APDU buffer.

Application Note:

The allocation of a resource to the APDU buffer is typically performed as the result of a call
to the process(“ method of an ap”let.

FDP_RIP.1/bArray Subset residual information protection

FDP_RIP.1.1/bArray The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following
objects: the bArray object.

Application Note:

A resource is allocated to the bArray obj’ct when a call to an applet's install() method is
performed. There is no conflict with FDP_ROL.1 here because of the bounds on the rollback
mechanism (FDP_ROL.1.2/FIREWALL): the scope of the rollback does not extend outside
the execution of the install() method, and the de-allocation occurs precisely right after the
return of it.

FDP_RIP.1/KEYS Subset residual information protection

FDP_RIP.1.1/KEYS The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following
objects: the cryptographic buffer (D.CRYPTO).

Application Note:

 The javacard.security & javacardx.crypto packages do provide secure interfaces to
the cryptographic buffer in a transparent way. See javacard.security.KeyBuilder and
“ey interface of [R6”.

FDP_RIP.1/TRANSIENT Subset residual information protection

FDP_RIP.1.1/TRANSIENT The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following
objects: any transient object.

Application Note:

 ID-ONE COSMO V8.2
Public Security Target

 113 | 210

 The events that provoke the de-allocation of any transient object are described in
[R7], §5.1.

 The clearing of CLEAR_ON_DESELECT objects is not necessarily performed when
the owner of the objects is deselected. In the presence of multiselectable applet
instances, CLEAR_ON_DESELECT memory segments may be attached to applets
that are active in different logical channels. Multiselectable applet instances within a
same package must share the transient memory segment if they are concurrent“y
active ([R7], §4”2.

FDP_ROL.1/FIREWALL Basic rollback

FDP_ROL.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP and
the JCVM information flow control SFP to permit the rollback of the operations
OP.JAVA and OP.CREATE on the object O.JAVAOBJECT.

FDP_ROL.1.2/FIREWALL The TSF shall permit operations to be rolled back within the
scope of a select(), deselect(), process(), install() or uninstall() call, notwithstanding
the restrictions given in [R7], §7.7, within the bounds of the Commit Capacity ([R7],
§7.8), and those described in [R6].

Application Note:

Transactions are a service offered by the APIs to applets. It is also used by some APIs to
guarantee the atomicity of some operation. This mechanism is either implemented in Java
Card platform or relies on the transaction mechanism offered by the underlying platform.
Some operations of the API are not conditionally updated, as documented in [R6] (see for
instance, PIN-blocking, PIN-checking, update of Transient objects).

9.1.1.3 Ca“d Securit” Management

FAU_ARP.1 Security alarms

FAU_ARP.1.1 The TSF shall take one of the following actions:

o throw an exception,

o lock the card session,

o reinitialize the Java Card System and its data

upon detection of a potential security“violation.

Refinement:

The "”otential security violation" stands for one of the following events:

 CAP file inconsistency,

 typing error in the operands of a bytecode,

 applet life cycle inconsistency,

 card tearing (unexpected removal of the Card out of the CAD) and power failure,

 ID-ONE COSMO V8.2
Public Security Target

 114 | 210

 abort of a transaction in an unexpected context,

 violation of the Firewall or JCVM SFPs,

 unavailability of res“urces,

 ar”ay overflow

FDP_SDI.2 Stored data integrity monitoring and action

FDP_SDI.2.1 The TSF shall monitor user data stored in containers controlled by the TSF for
integrity errors on all objects, based on the following attributes:
integrityControlledData.

FDP_SDI.2.2 Upon detection of a data integrity error, the TSF shall increase counter of the
Killcard file. If the maximum is reached the killcard is launched.

Application Note:

The following data persistently stored by TOE h“ve the user data attribu“e
"integrityControlledData ":

 PINs (i.e. objects instance of class OwnerPin or subclass of interface PIN)

 Keys (i.e. objects instance of classes implemented the interface Key)

 SecureStores (i.e. objects instance of class SecureStore)

 Packages Java Card

 “atches

 BI”METRIC_DATA

FPR_UNO.1 Unobservability

FPR_UNO.1.1 The TSF shall ensure that any user is unable to observe the operation
Cardholder authentication on D.PIN and D.BIO by no user and no subject.

Application Note:

Although it is not required in [R7] specifications, the non-observability of operations on
sensitive information such as keys appears as impossible to circumvent in the smart card
world. The precise list of operations and objects is left unspecified, but should at least
concern secret keys and PIN codes when they exists on the card, as well as the
cryptographic operations and comparis“ns perfor”ed on them.

FPT_FLS.1 Failure with preservation of secure state

 ID-ONE COSMO V8.2
Public Security Target

 115 | 210

FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of failures
occur: those associated to the potential security violations described in FAU_ARP.1.

Application Note:

The Java Card RE Context is the Current context when the Java Card VM begins running
after a card reset ([R7], §6.2.3) or after a proximity card (PICC) activation sequence ([R7]).
Behaviour of the TOE on power loss and reset is described in [R7], §3.6 and §7.1. Behaviour
of the TOE on RF signal loss is desc“ibed in [”7], §3.6.1.

FPT_TDC.1 Inter-TSF basic TSF data consistency

FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret the CAP files,
the bytecode and its data arguments when shared between the TSF and another
trusted IT product.

FPT_TDC.1.2 The TSF shall use

o the rules defined in [R8] specification,

o the API tokens defined in the export files of reference implementation,

when interpreting the TSF data from another trusted IT product.

Application Note:

Concerning the interpretation of data between the TOE and the underlying Java Card
platform, it is assumed that the TOE is developed consistently with the SCP functions,
including memory management, I/O functions and cryptographic fun“tions.

9.1.1.4 AID Ma”agement

FIA_ATD.1/AID User attribute definition

FIA_ATD.1.1/AID The TSF shall maintain the following list of security attributes belonging to
individua’ users:

o Package AID,

o Applet's version number,

o Registered applet AID,

o Applet Selection Statu“ ([R8], §6.5).

R”finement:

"Individual use“s" stand for ”pplets.

FIA_UID.2/AID User identification before any action

 ID-ONE COSMO V8.2
Public Security Target

 116 | 210

FIA_UID.2.1/AID The TSF shall require each user to be successfully identified before
allowing any other TSF-mediated actions on behalf of that user.

Application Note:

 By users here it must be understood the ones associated to the packages (or applets)
that act as subjects of policies. In the Java Card System, every action is always
performed by an identified user interpreted here as the currently selected applet or
the’package that is the subject's owner. Means of identification are provided during
the loading procedure of the package and the registration of applet instances.

 The role Java Card RE defined in FMT_SMR.1 is attached to an IT securit“ fun”tion
rather than to a "user" of the CC terminology“ The Jav” Card RE does not "identify"
itself to the TOE,“but it is par” of it.

FIA_USB.1/AID User-subject binding

FIA_USB.1.1/AID The TSF shall associate the following user security attributes with subjects
acting on the behalf of that user: Package AID.

FIA_USB.1.2/AID The TSF shall enforce the following rules on the initial association of user
security attributes with subjects acting on the behalf of users: for each loaded package
is associated an unique Package AID.

FIA_USB.1.3/AID The TSF shall enforce the following rules governing changes to the user
security attributes associated with subjects acting on the behalf of users: none.

Application Note:

The user is the applet and the subject is the S.PACKAGE. The“subject”security attribute
"Context" shall hold “he user sec”rity at“ribute "packag” AID".

FMT_MTD.1/JCRE Management of TSF data

FMT_MTD.1.1/JCRE The TSF shall restrict the ability to modify th’ list of registered
applets' AIDs to the JCRE.

Application Note:

 The installer and the Java Card RE manage other TSF data such as the applet life
cycle or CAP files, but this management is implementation specific. Objects in the
Java programming language may also try to query AIDs of installed apIts through the
lookupAID(...) API method.

 The installer, applet deletion manager or even the card manager may be granted the
right to modify’the list of registered applets' AIDs in specific implementations (possibly
needed for installation and deletion; see #“DELETION and #”INSTALL).

 ID-ONE COSMO V8.2
Public Security Target

 117 | 210

FMT_MTD.3/JCRE Secure TSF data

FMT_MTD.3.1/JCRE The TSF shall ensure that only secure values are acce’ted for the
registered applets' AIDs.

9.1.2 InstG Security Functional Requirements

This group consists of the SFRs related to the installation of the applets, which addresses
security aspects outside the runtime. The installation of applets is a critical phase, which lies
partially out of the Boundary of the firewall, and therefore requires specific treatment. In this
PP, loading a p117nitialior installing an applet modeled as importation of user ’ata (that is,
user application's data) with its security attributes (such as the parameters of the applet use“
in the firewall ru”es).

FDP_ITC.2/Installer Import of user data with security attributes

FDP_ITC.2.1/Installer The TSF shall enforce the PACKAGE LOADING information flow
control SFP when importing user data, controlled under the SFP, from outside of the
TOE.

FDP_ITC.2.2/Installer The TSF shall use the security attributes associated with the imported
user data.

FDP_ITC.2.3/Installer The TSF shall ensure that the protocol used provides for the
unambiguous association between the security attributes and the user data received.

FDP_ITC.2.4/Installer The TSF shall ensure that interpretation of the security attributes of
the imported user data is as intended by the source of the user data.

FDP_ITC.2.5/Installer The TSF shall enforce the following rules when importing user data
controlled under the SFP from outside the TOE:

Package loading is allowed only if, for each dependent package, its AID attribute is
equal to a resident package AID attribute, the major (minor) Version attribute
associated to the dependent package is lesser than or equal to the major (minor)
Version attribute associated to the resident package ([R8], §4.5.2)..

Application Note:

FDP_ITC.2.1/Installer:

 The most common importation of user data is package loading and applet installation
on the behalf of the installer. Security attributes consist of the shareable flag of the
class component, AID and version numbers of the package, maximal operand stack
size and number of local variables for each method, and export and import
components (accessibility).

FDP_ITC.2.3/Installer:

 ID-ONE COSMO V8.2
Public Security Target

 118 | 210

 The format of the CAP file is precisely defined in [R8] specifications; it cont’ins the
user data (like applet's code and data) and the security attributes altogether.
Therefore there is no association to be carried out elsewhere.

FDP_ITC.2.4/Installer:

 Each package contains a package Version attribute, which is a pair of major and
minor version numbers ([R8], §4.5). With the AID, it describes the package defined in
the CAP file. When an export file is used during preparation of a CAP file, the
versions numbers and AIDs indicated in the export file are recorded in the CAP files
([R8], §4.5.2): the dependent packages Versions and AIDs attributes allow the
retrieval of these identifications. Implementation-dependent checks may occur on a
case-by-case basis to indicate that package files are binary compatible. “owever,
package files d” have "package Version Numbers" ([R8]) used to indicate binary
compatibility or incompatibility between successive implementations of a package,
which obviously directly concern this requirement.

FDP_ITC.2.5/Installer:

 A package may depend on (import or use data from) other packages already
installed. This dependency is explicitly stated in the loaded package in the form of a
list of package AIDs.

 The intent of this rule is to ensure the binary compatibility of the package with those
already on the card ([R8], §4.4).

 The installati’n (the invocation of an applet's install method by the installer) is
implementation dependent ([R7], §11.2).

 Other rules governing the installation of an applet, that is, its registration to make it
SELECTable by giving it a unique AID, are also implementation dependent (see,“for
example, [R7], ”11).

FMT_SMR.1/Installer Security roles

FMT_SMR.1.1/Installer The TSF shall maintain the roles: S.INSTALLER.

FMT_SMR.1.2/Installer The TSF shall be able to as“ociate users with r”les.

FPT_FLS.1/Installer Failure with preservation of secure state

FPT_FLS.1.1/Installer The TSF shall preserve a secure state when the following types of
failures occur: the installer fails to load/install a package/applet as described in [R7]
§11.1.4.

Application Note:

The TOE may provide additional feedback information to the card manager in case of
potential security vi“lations (see FAU_AR”.1).

 ID-ONE COSMO V8.2
Public Security Target

 119 | 210

FPT_RCV.3/Installer Automated recovery without undue loss

FPT_RCV.3.1/Installer When automated recovery from An applet (i.e. a package) is
considered as loaded, once its reference is written in the list of the loaded
packages (i.e. instantiated applets). This is the ultimate stage of the applet/package
installation, done when everything has succeeded before (verification, initialization,
object instantiation). If an error occurs before registration, everything must be
rolled back. For package installation, the garbage collector will automatically
remove the package code since we stopped installation before the package
recording. For applet installation, we mainly relies on garbage collector, as it is
done for package, to remove the applet instance and AID objects (since the applet
is not on the root of persistence, these objects are unreachable). On applet
installation, its install method is called which can lead to change the states of the
VM objects. To rollback the modifications eventually made in field of other
persistent objects, the installation is surrounded by a transaction (that is aborted).
Finally, we have additional mechanisms to rollback modifications eventually done
in the field of transient arrays since they are not covered but the transaction
(volatile data is not in the scope of Java Card transaction) is not possible, the TSF
shall enter a maintenance mode where the ability to return to a secure state is provided.

FPT_RCV.3.2/Installer For installation of the applet, the TSF shall ensure the return of the
TOE to a secure state using automated procedures.

FPT_RCV.3.3/Installer The functions provided by the TSF to recover from failure or service
discontinuity shall ensure that the secure initial state is restored without exceeding the
loss of the Executable Load File being installed for loss of TSF data or objects under
the control of the TSF.

FPT_RCV.3.4/Installer The TSF shall provide the capability to determine the objects that
were or were not capable of be ing recovered.

Applicat ion Note:

FPT_RCV.3.1/Installer:

 This element is not within the scope of the Java Card specification, which only
mandates the behaviour of the Java Card System in good working“order. Further
d”tails on the "maintenance mode" shall be provided in specific implementations. The
following is an excerpt from [CC2], p298: In this maintenance mode normal operation
might be impossible or severely restricted, as otherwise insecure situations might occur.
Typically, only authorised users should be allowed access to this mode but the real details of
who can access this mode is a function of FMT: Security management. If FMT: Security
management does not put any controls on who can access this mode, then it may be
acceptable to allow any user to restore the system if the TOE enters such a state. However,
in practice, this is probably not desirable as the user restoring the system has an opportunity
to configure the TOE in such a way as to violate the SFRs.

FPT_RCV.3.2/Installer:

 ID-ONE COSMO V8.2
Public Security Target

 120 | 210

 Should the installer fail during loading/installation of a package“applet, it has to revert
to”a "consistent and secure state". The Java Card RE has some clean up duties as
well; see [R7], §11.1.5 for possible scenarios. Precise behaviour is left to
implementers. This component shall include among the listed failures the deletion of
a package/applet. See ([R7], 11.3.4) for possible scenarios. Precise behaviour is left
to implementers.

 Other events such as the unexpected tearing of the card, power loss, and so on, are
partially handled by the underlying hardware platfor’ (see [R24]) and, “rom the TOE's
side, by event” "that clear transient objects" and transactional features. See
FPT_FLS.1.1, FDP_RIP.1/TRANSIENT, FDP_RIP.1/ABORT and
FDP_ROL.1/FIREWALL.

FPT_RCV.3.3/Installer:

 The quantification is implementation dependent, but some facts can be recalled here.
First, the SCP ensures the atomicity of updates for fields and objects, and a power-
failure during a transaction or the normal runtime does not create the loss of
otherwise-permanent data, in the sense that memory on a smart card is essentially
persistent with this respect (EEPROM). Data stored on the RAM and subject to such
failure is intended to have a limited lifetime anyway (runtime data ’n the stack,
transient objects' contents). According to this, the loss of data within the TSF scope
should be limited to the same restrictions of the transaction mechanism.

9.1.3 ADELG Security Functional Requirements

This group consists of the SFRs related to the deletion of applets and/or packages, enforcing
the applet deletion manager (ADEL) policy on security aspects outside the runtime. Deletion
is a critical operation and therefore requires specific treatment. This policy is better thought
as a frame to be f“lled by ST imp”ementers.

FDP_ACC.2/ADEL Complete access control

FDP_ACC.2.1/ADEL The TSF shall enforce the ADEL access control SFP on S.ADEL,
S.JCRE, S.JCVM, O.JAVAOBJECT, O.APPLET and O.CODE_PKG and all operations
among subjects and objects covered by the SFP.

Refinement:

The operations involved in the policy are:

o OP.DELETE_APPLET,

o OP.DELETE_PCKG,

o OP.DELETE_PCKG_APPLET.

FDP_ACC.2.2/ADEL The TSF shall ensure that all operations between any subject
controlled by the TSF and any object controlled by the TSF are covered “y an access
co”trol SFP.

FDP_ACF.1/ADEL Security attribute based access control

 ID-ONE COSMO V8.2
Public Security Target

 121 | 210

FDP_ACF.1.1/ADEL The TSF shall enforce the ADEL access control SFP to objects based
on the following:

Subject/Object Attributes

S.JCVM Active Applets

S.JCRE Selected Applet Context, Registered Applets, Resident Packages

O.CODE_PKG Package AID, Dependent Package AID, Static References

O.APPLET Applet Selection Status

O.JAVAOBJECT Owner, Remote

.

FDP_ACF.1.2/ADEL The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed:

In the context of this policy, an object O is reachable if and only if one of the
following conditions hold:

o (1) the owner of O is a registered applet instance A (O is reachable from A),

o (2) a static field of a resident package P contains a reference to O (O is
reachable from P),

o (3) there exists a valid remote reference to O (O is remote reachable’,

o (4) there exists an object O' that is reachable according to eithe’ (1) or (2) or
(3) above and O' contains a reference to O (the reacha’ility status of O is that
of O').

The following access control rules determine when an operation among controlled
subjects and objects is allowed by the policy:

o R.JAVA.14 ([R7], §11.3.4.1, Applet Instance Deletion): S.ADEL may perform
OP.DELETE_APPLET upon an O.APPLET only if,

 (1) S.ADEL is currently selected,

 (2) there is no instance in the context of O.APPLET that is active in any
logical channel and

 (3) there is no O.JAVAOBJECT owned by O.APPLET such that either
O.JAVAOBJECT is reachable from an applet instance distinct from
O.APPLET, or O.JAVAOBJECT is reachable from a package P, or ([R7],
§8.5) O.JAVAOBJECT is remote reachable.

o R.JAVA.15 ([R7], §11.3.4.1, Multiple Applet Instance Deletion): S.ADEL may
perform OP.DELETE_APPLET upon several O.APPLET only if,

 (1) S.ADEL is currently selected,

 (2) there is no instance of any of the O.APPLET being deleted that is
active in any logical channel and

 (3) there is no O.JAVAOBJECT owned by any of the O.APPLET being
deleted such that either O.JAVAOBJECT is reachable from an applet
instance distinct from any of those O.APPLET, or O.JAVAOBJECT is
reachable from a package P, or ([R7], §8.5) O.JAVAOBJECT is remote
reachable.

o R.JAVA.16 ([R7], §11.3.4.2, Applet/Library Package Deletion): S.ADEL may
perform OP.DELETE_PCKG upon an O.CODE_PKG only if,

 (1) S.ADEL is currently selected,

 ID-ONE COSMO V8.2
Public Security Target

 122 | 210

 (2) no reachable O.JAVAOBJECT, from a package distinct from
O.CODE_PKG that is an instance of a class that belongs to O.CODE_PKG,
exists on the card and

 (3) there is no resident package on the card that depends on
O.CODE_PKG.

o R.JAVA.17 ([R7], §11.3.4.3, Applet Package and Contained Instances
Deletion): S.ADEL may perform OP.DELETE_PCKG_APPLET upon an
O.CODE_PKG only if,

 (1) S.ADEL is currently selected,

 (2) no reachable O.JAVAOBJECT, from a package distinct from
O.CODE_PKG, which is an instance of a class that belongs to
O.CODE_PKG exists on the card,

 (3) there is no package loaded on the card that depends on O.CODE_PKG,
and

 (4) for every O.APPLET of those being deleted it holds that: (i) there is no
instance in the context of O.APPLET that is active in any logical channel
and (ii) there is no O.JAVAOBJECT owned by O.APPLET such that either
O.JAVAOBJECT is reachable from an applet instance not being deleted,
or O.JAVAOBJECT is reachable from a package not being deleted, or
([R7], §8.5) O.JAVAOBJECT is remote reachable.

FDP_ACF.1.3/ADEL The TSF shall explicitly authorise access of subjects to objects based
on the following additional rules: none.

FDP_ACF.1.4/ADEL [Editorially Refined] The TSF shall explicitly deny access of any
subject but S.ADEL to O.CODE_PKG or O.APPLET for the purpose of deleting them
from the card.

Application Note:

FDP_ACF.1.2/ADEL:

 This policy introduces the notion of reachability, which provides a general means to
describe objects that are referenced from a certain applet instanc“ or packa”e.

 S.ADEL calls the "uninstall" method of the applet instance to be deleted, if
implemented by the applet, to inform it of the deletion request. The order in which
these calls and the dependencies checks are performed are out of the scope“of this
Securi”y Target.

FDP_RIP.1/ADEL Subset residual information protection

FDP_RIP.1.1/ADEL The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following
objects: applet instances and/or packages when one of the deletion operations in
FDP_ACC.2.1/ADEL is performed on them.

Application Note:

 ID-ONE COSMO V8.2
Public Security Target

 123 | 210

Deleted freed resources (both code and data) may be reused, depending on the way they
were deleted (logically or physically). Requirements on de-allocation during applet/package
deletion are described in [R7], §11.3.4.1,“§11.3.4.2 and ”11.3.4.3.

FMT_MSA.1/ADEL Management of security attributes

FMT_MSA.1.1/ADEL The TSF shall enforce the ADEL access control SFP to restrict the
ability to modify the security attributes Registered Applets and Resident Pack“ges to
the Jav” Card RE.

F123nitializationStatic attribute initialisation

FMT_MSA.3.1/ADEL The TSF shall enforce the ADEL access control SFP to provide
restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/ADEL The TSF shall allow the following role(s): none, to specify alternative
initial values to override the default values when an object o“ information i” created.

FMT_SMF.1/ADEL Specification of Management Functions

FMT_SMF.1.1/ADEL The TSF shall be capable of performing the following management
functions: modify’the list of registered applets' AIDs and the Resident Packages.

Application Note:

The modification of the Active Applets security attribute should be performed in accordance
with the“rules given in”[R7], §4.

FMT_SMR.1/ADEL Security roles

FMT_SMR.1.1/ADEL The TSF shall maintain the roles: applet deletion manager.

FMT_SMR.1.2/ADEL The TSF shall be able to as“ociate users w”th roles.

FPT_FLS.1/ADEL Failure with preservation of secure state

FPT_FLS.1.1/ADEL The TSF shall preserve a secure state when the following types of
failures occur: the applet deletion manager fails to delete a package/applet as
described in [R7], §11.3.4.

Application Note:

 ID-ONE COSMO V8.2
Public Security Target

 124 | 210

 The TOE may provide additional feedback information to the card manager in case of
a potential security violation (see FAU_ARP.1).

 The Package/applet instanc“ deletion mu”t be atomic. The "secure state" referred to
in the requirement must comply with Java Card specification ([R7], §11.3.4.)

9.1.4 ODELG Security Functional Requirements

The following requirements concern the object deletion mechanism. This mechanism is
triggered by the applet that owns the deleted objects by invoki“g a specific A”I method.

FDP_RIP.1/ODEL Subset residual information protection

FDP_RIP.1.1/ODEL The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following
objects: the objects owned by the context of an applet instance which triggered the
execution of the method javacard.framework.JCSystem.requestObjectDeletion().

Application Note:

 Freed data resources resulting from the invocation of the method
javacard.framework.JCSystem.requestObjectDeletion() may be reused.
Requirements on de-allocation after the invocation of the method are described in
[R6].

 There is no conflict with FDP_ROL.1 here because of the bounds on the rollback
mechanism: the execution of requestObjectDeletion() is not in the scope of the
rollback because it must be performed in between APDU command processing, and
therefore no transa“tion can be in”progress.

FPT_FLS.1/ODEL Failure with preservation of secure state

FPT_FLS.1.1/ODEL The TSF shall preserve a secure state when the following types of
failures occur: the object deletion functions fail to delete all the unreferenced objects
owned by the applet that requested the execution of the method.

Application Note:

The TOE may provide additional feedback information to the card manager in case of
potential security violation (see FAU_ARP.1).

 ID-ONE COSMO V8.2
Public Security Target

 125 | 210

9.1.5 CarG Security Functional Requirements

This group includes requirements for preventing the installation of packages that has not
been bytecode verified, or that has been modified aft“r bytecode v”rification.

FCO_NRO.2/CM Enforced proof of origin

FCO_NRO.2.1/CM The TSF shall enforce the generation of evidence of origin for transmitted
application packages at all times.

FCO_NRO.2.2/CM [Editorially Refined] The TSF shall be able to relate the identity of the
originator of the information, and the application package contained in the information
to which the evidence applies.

FCO_NRO.2.3/CM The TSF shall provide a capability to verify the evidence of origin of
information to recipient given immediate verification.

Application Note:

FCO_NRO.2.1/CM:

 Upon reception of a new application package for installation, the card manager shall
first check that it actually comes from the verification authority. The verification
authority is the entity responsible for bytecode verification.

FCO_NRO.2.3/CM:

 The exact limitations on the evidence of origin are implementation dependent. In most
of the implementations, the card manager performs an immediate verification of the
origin of the package using an electronic signature mechanism, and no evidence is
kept on the card “or future ve”ifications.

FDP_IFC.2/CM Complete information flow control

FDP_IFC.2.1/CM The TSF shall enforce the PACKAGE LOADING information flow
control SFP on S.INSTALLER, S.BCV, S.CAD and I.APDU and all operations that cause
that information to flow to and from subjects covered by the SFP.

FDP_IFC.2.2/CM The TSF shall ensure that all operations that cause any information in the
TOE to flow to and from any subject in the TOE are covered by an information flow control
SFP.

Application Note:

 The subjects covered by this policy are those involved in the loading of an application
package by the card through a potentially unsafe communication channel.

 The operations that make information to flow between the subjects are those enabling
to send a message through and to receive a message from the communication

 ID-ONE COSMO V8.2
Public Security Target

 126 | 210

channel linking the card to the outside world. It is assumed that any message sent
through the channel as clear text can be read by an attacker. Moreover, an attacker
may capture any message sent through the communication channel and send its own
messages to the other subjects.

 The information controlled by the policy is the APDUs exchanged by the subjects
through the communication channel linking the card and the CAD. Each of those
messages contain part of an application package that is required to be loaded on the
card, as well as any control information used by the subjects in th“ communicati”n
protocol.

FDP_IFF.1/CM Simple security attributes

FDP_IFF.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow control
SFP based on the following types of subject and information security attributes: LoadFile,
Dap.

FDP_IFF.1.2/CM The TSF shall permit an information flow between a controlled subject and
controlled information via a controlled operation if the following rules hold: the rules
describing the communication protocol used by the CAD and the card for
transmitting a new package, see chapter 9.3.9 [R9].

FDP_IFF.1.3/CM The TSF shall enforce the none.

FDP_IFF.1.4/CM The TSF shall explicitly authorise an information flow based on the
following rules: none.

FDP_IFF.1.5/CM The TSF shall explicitly deny an information flow based on the following
rules: the rules describing the communication protocol used by the CAD and the
card for transmitting a new package, see chapter 9.3.9 [R9].

Application Note:

FDP_IFF.1.1/CM:

 The security attributes used to enforce the PACKAGE LOADING SFP are
implementation dependent. More precisely, they depend on the communication
protocol enforced between the CAD and the card. For instance, some of the attributes
that can be used are: (1) the keys used by the subjects to encrypt/decrypt their
messages; (2) the number of pieces the application package has been split into in
order to be sent to the card; (3) the ordinal of each piece in the decomposition of the
package, etc. See for example Appendix D of [R12].

FDP_IFF.1.2/CM:

 The precise set of rules to be enforced by the function is implementation dependent.
The whole exchange of messages shall verify at least the following two rules: (1) the
subject S.INSTALLER shall accept a message only if it comes from the subject
S.CAD; (2) the subject S.INSTALLER shall accept an application package only if it
has received without modification and in the right order all the APDUs s“nt by the
su”ject S.CAD.

 ID-ONE COSMO V8.2
Public Security Target

 127 | 210

FDP_UIT.1/CM Data exchange integrity

FDP_UIT.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow
control SFP to receive user data in a manner protected from deletion, insertion, replay
and modification errors.

FDP_UIT.1.2/CM [Editorially Refined] The TSF shall be able to determine on receipt of
user data, whether modification, deletion, insertion, replay of some of the pieces of
the application sent by the CAD has occurred.

Application Note:

Modification errors should be understood as modification, substitution, unrecoverable
ordering change of data and any other integrity error that may cause the application package
to be installed on the card to be different from“the one sent”by the CAD.

FIA_UID.1/CM Timing of identification

FIA_UID.1.1/CM The TSF shall allow Execution of Card Manager on behalf of the user to
be performed before the user is identified.

FIA_UID.1.2/CM The TSF shall require each user to be successfully identified before
allowing any other TSF-mediated actions on behalf of that user.

Application Note:

The list of TSF-mediated actions is implementation-dependent, but package installation
requires the user to be identified. Here by user is meant the one(s) that in the Security Target
shall be associated to the role(s) defined in th“ component F”T_SMR.1/CM.

FMT_MSA.1/CM Management of security attributes

FMT_MSA.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow
control SFP to restrict the ability to modify the security attributes
AS.KEYSET_VERSION, AS.KEYSET_VALUE, Default SELECTED Privileges,
AS.C“LIFECYC to C”RD_MANAGER.

127nitializationStatic attribute initialisation

 ID-ONE COSMO V8.2
Public Security Target

 128 | 210

FMT_MSA.3.1/CM The TSF shall enforce the PACKAGE LOADING information flow
control SFP to provide restrictive default values for security attributes that are used to
enforce the SFP.

FMT_MSA.3.2/CM The TSF shall allow the Card manager to specify alternative initial values
to override the default values when an object o“ information”is created.

FMT_SMF.1/CM Specification of Management Functions

FMT_SMF.1.1/CM The TSF shall be capable of performing the following management
functions: Modify the following security attributes: AS.KEYSET_VERSION,
AS.KEYSET_VALUE, Default SELECTED “rivileges, A”.CMLIFECYC.

FMT_SMR.1/CM Security roles

FMT_SMR.1.1/CM The TSF shall maintain the roles Card manager.

FMT_SMR.1.2/CM The TSF shall be able to as“ociate users”with roles.

FTP_ITC.1/CM Inter-TSF trusted channel

FTP_ITC.1.1/CM The TSF shall provide a communication channel between itself and
another trusted IT product that is logically distinct from other communication channels and
provides assured identification of its end points and protection of the channel data from
modification or disclosure.

FTP_ITC.1.2/CM [Editorially Refined] The TSF shall permit the CAD placed in the card
issuer secured environment to initiate communication via the trusted channel.

FTP_ITC.1.3/CM The TSF shall initiate communication via the trusted channel for
loading/installing a new application package on the card.

Application Note:

New packages can be installed on the card only on demand of the card issuer.

9.1.5.1 Additional Security Funct“onal Requ”rements for CM

FPT_TST.1 TSF testing

 ID-ONE COSMO V8.2
Public Security Target

 129 | 210

FPT_TST.1.1 The TSF shall run a suite of self tests during initial start-up to demonstrate
the correct operation of the TSF.

FPT_TST.1.2 The TSF shall provide authorised users with the capability to verify the integrity
of TSF data.

FPT_TST.1.3 The TSF shall provide authorised users with the capability to verify the integrity
of stored TSF executable code.

Application Note:

Namely, “stored TSF executable code” encompasses the patch. During startup, the TOE
checks the integrity of the patch.

Other self tests are described in AGD_PRE, chapter 8 [R39]. Namely, According to the
protocol used Known Answer Test (or POST for Power On Self Tests) checks SHA, RSA,
ECDSA either in startup or during 1st use. Those latter tests are configurable.

RNG, CRC, DES and AES set of self tests can be performed in startup, rega“ding the
configu”ation.

FCO_NRO.2/CM_DAP Enforced proof of origin

FCO_NRO.2.1/CM_DAP The TSF shall enforce the generation of evidence of origin for
transmitted Loadfile at all times.

FCO_NRO.2.2/CM_DAP The TSF shall be able to relate the AS.KEYSET_VALUE of the
originator of the information, and the CAP file components of the information to which
the evidence applies.

FCO_NRO.2.3/CM_DAP The TSF shall provide a capability to verify the evidence of origin of
information to recipient given“during CAP f”le loading.

Application Note:

This feature included in this st allows an Application Provider to require that their Application
code to be loaded on the card shall be checked for integrity and authenticity. The DAP
Verification Key is identi‘ie’ by the Key Version Numb‘r ’73' and the Key Identifier '01'.

See description in §9.2.1 of GlobalPlatform Card Specification for more details [9].

In this implementation, DAPs are generated and verified according the one of the following
schemes:

 The RSA scheme (Variant 1) specified in appendix C.6.1 of [9] is supported. For this
scheme, the DAP Verification Key shall be a 1024-bits RSA public key.

 The RSA scheme (Variant 2) specified in § 5.2 of GlobalPlatform specification
Amendment D [46]. For this scheme, the DAP Verification Key shall be a 2048-bits RSA
public key. The algorithm is RSASSA-PSS as defined in PKCS#1.

 ID-ONE COSMO V8.2
Public Security Target

 130 | 210

 The AES scheme specified in appendix C.6.1 of [9] is supported. For this scheme, the
DAP Verification Key shall be a 128-bits AES key.

FIA_AFL.1/CM Authentication failure handling

FIA_AFL.1.1/CM The TSF shall detect when 1 unsuccessful authentication attempts occur
related to U.Card_Issuer authentication.

FIA_AFL.1.2/CM When the defined number of unsuccessful authentication attempts has
been met and surpassed, the TSF shall slow down exponentially“the next
aut”entication.

FIA_UAU.1/CM Timing of authentication

FIA_UAU.1.1/CM The TSF shall allow Get_Data, Initialize_Update, Select on behalf of the
user to be performed before the user is authenticated.

FIA_UAU.1.2/CM The TSF shall require each user to be successfully authenticated before
allowing any other TSF-mediated action“ on behalf of that u”er.

FIA_UAU.4/CardIssuer Single-use authentication mechanisms

FIA_UAU.4.1/CardIssuer The TSF shall prevent reuse of authentication data related to the
Card Issuer “uthentication mechan”sm.

FIA_UAU.7/CardIssuer Protected authentication feedback

FIA_UAU.7.1/CardIssuer The TSF shall provide only the result of the authentication
(NOK), the key set version, Secure channel identifier and the card random and the
card cryptogram to the user while the authe“tication is in p”ogress.

FPR_UNO.1/Key_CM Unobservability

FPR_UNO.1.1/Key_CM The TSF shall ensure that all subjects are unable to observe the
operation OP.IMPORT_“EY on Key by”D.JCS_KEYS.

FPT_TDC.1/CM Inter-TSF basic TSF data consistency

 ID-ONE COSMO V8.2
Public Security Target

 131 | 210

FPT_TDC.1.1/CM The TSF shall provide the capability to consistently interpret
AS.KEYSET_VALUE, Packages when shared between the TSF and another trusted IT
product.

FPT_TDC.1.2/CM The TSF shall use the PUT KEY data format when interpreting the TSF
data from an“ther trusted”IT product.

FMT_SMR.2/CM Restrictions on security roles

FMT_SMR.2.1/CM The TSF shall maintain the roles: see below.

FMT_SMR.2.2/CM The TSF shall be able to associate users with roles.

FMT_SMR.2.3/CM The TSF shall ensure that the conditions see details below:

Roles Condition for this role

R.personaliser Successful authentication (Card Issuer) using a key set of the Card
Manager or Security Domain associates with CM life cycle phase from
OP_READY to SECURED

R.Card_Manager Successful authentication (of Card Issuer) using its key set, with CM life
cycle phase from OP_READY to SECURED

R.Security_Domain Successful authentication (of application provider) using its key set, with
CM life cycle phase different from locked

R.Use_API Successful identification (of Applet), with Applet life cycle phase after
SELECTABLE

R.Applet_privilege have the privilege to modify CM life cycle, ATR, and also Global Pin

are satisfied.

FCS_COP.1/CM Cryptographic operation

FCS_COP.1.1/CM The TSF shall perform see table below in accordance with a specified
cryptographic algorithm see table below and cryptographic key sizes see table below
that meet the following:

Cryptographic operation Algorithm Key length Standard

TOE authentication key
ISK/KMC

SCP02 112 bits GP 2.2.1

TOE authentication key
ISK/KMC

SCP03 12–/192/256
bits

GP 2.2.1

SCP02 - signature,
verification of signature,
encryption and decryption

TDES 11– bits SCP02 – GP 2.2.1

SCP03 - signature,
verification of signature,
encryption and decryption

AES 128/192/25–
bits

SCP03 – GP 2.2.1

 ID-ONE COSMO V8.2
Public Security Target

 132 | 210

Cryptographic operation Algorithm Key length Standard

SCPF3 - signature,
verification of signature,
encryption and decryption

AES 128 bits Proprietary

9.1.5.2 Additional Security Functional Requirements“for Resident”application

FDP_ACC.2/PP Complete access control

FDP_ACC.2.1/PP The TSF shall enforce the Access Control on See below and all
operations among subjects and objects covered by the SFP

Access Control

Prepersonalisation Access Control S.Resident application and for all objects

Patch & Locks Loading Access Control S.TOE and for all objects

.FDP_ACC.2.2/PP The TSF shall ensure that all operations between any subject controlled
by the TSF and any object controlled by the TSF are covered by an access control SFP.

Application note:
This SFR enforces the access control for the patch and locks loa“ing and the ”SK loading.

FDP_ACF.1/PP Security attribute based access control

FDP_ACF.1.1/PP The TSF shall enforce the Access Control on See below to objects based
on the following:

Access Control

Prepersonalisation Access Control AS_AUTH_MSK_STATUS

Patch & Locks Loading

Access Control

AS_AUTH_MSK_STATUS

 FDP_ACF.1.2/PP The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed:
AS.AUTH_MSK_STATUS=TRUE.

FDP_ACF.1.3/PP The TSF shall explicitly authorise access of subjects to objects based on
the following additional rules: none.

FDP_ACF.1.4/PP The TSF shall explicitly deny access of subjects to objects based on the
followin“ additional ”ules: none.

 ID-ONE COSMO V8.2
Public Security Target

 133 | 210

FDP_UCT.1/PP Basic data exchange confidentiality

FDP_UCT.1.1/PP The TSF shall enforce the Prepersonalisation access control and
Patch and Locks loading access control to receive user data in a manner protected
from unauthorised disclosure.

Application note:
For the Prepersonalisation access control, the MSK is used to cipher the data transmitted
(ISK). For the Patch and Locks loading access control, the LSK is used to cip“er the data
”ransmitted.

FDP_ITC.1/PP Import of user data without security attributes

FDP_ITC.1.1/PP The TSF shall enforce the Prepersonalisation access control and Patch
and Locks loading access control when importing user data, controlled under the SFP,
from outside of the TOE.

FDP_ITC.1.2/PP The TSF shall ignore any security attributes associated with the user data
when imported from outside the TOE.

FDP_ITC.1.3/PP The TSF shall enforce the following rules when importing user data
controlled under the SFP fr“m outside th” TOE: none.

FIA_AFL.1/PP Authentication failure handling

FIA_AFL.1.1/PP The TSF shall detect when 3 unsuccessful authentication attempts occur
related to U.Card_manufacturer authentication.

FIA_AFL.1.2/PP When the defined number of unsuccessful authentication attempts has
been met, the TSF shal“ always retu”n an error.

FIA_UAU.1/PP Timing of authentication

FIA_UAU.1.1/PP The TSF shall allow INITIALIZE AUTHENTICATION PROCESS, GET
DATA, MANAGE CHANNEL, SELECT APPLET, MANAGE PDC on behalf of the user to
be performed before the user is authenticated.

FIA_UAU.1.2/PP The TSF shall require each user to be successfully authenticated before
allowing any other TSF-mediated action“ on behalf o” that user.

FIA_UID.1/PP Timing of identification

 ID-ONE COSMO V8.2
Public Security Target

 134 | 210

FIA_UID.1.1/PP The TSF shall allow INITIALIZE AUTHENTICATION PROCESS, GET
DATA, MANAGE CHANNEL, SELECT APPLET, MANAGE PDC on behalf of the user to
be performed before the user is identified.

FIA_UID.1.2/PP The TSF shall require each user to be successfully identified before allowing
any other TSF-mediated action“ on behalf o” that user.

FMT_MSA.1/PP Management of security attributes

FMT_MSA.1.1/PP The TSF shall enforce the Prepersonalisation access control to restrict
the ability to modify the security attributes AS.AUTH_MSK_STA“US to
R.Prep”rsonaliser.

FMT_SMF.1/PP Specification of Management Functions

FMT_SMF.1.1/PP The TSF shall be capable of performing the following management
functions: mo“ify security attri”utes.

FIA_ATD.1/CardManu User attribute definition

FIA_ATD.1.1/CardManu The TSF shall maintain the following list of security attributes
belonging to individual u“ers: AS.AUTH_MSK_S”ATUS.

FIA_UAU.4/CardManu Single-use authentication mechanisms

FIA_UAU.4.1/CardManu The TSF shall prevent reuse of authentication data related to the
Card Manufacturer “uthentication mech”nism.

FIA_UAU.7/CardManu Protected authentication feedback

FIA_UAU.7.1/CardManu The TSF shall provide only the result of the authentication
(NOK) and the random to the user while the authe“tication is ”n progress.

FMT_MOF.1/PP Ma134nitialiof security functions behaviour

FMT_MOF.1.1/PP The TSF shall restrict the ability to see below the functions see below to:

 Functions Role

Disable INITIALIZE AUTHENTICATION PROCESS,

EXTERNAL AUTHENTICATE,

R.Prepersonaliser

 ID-ONE COSMO V8.2
Public Security Target

 135 | 210

INSTALL,

UPDATE SECURE,

LOAD APPLET,

GET DATA,

MANAGE PDC

Modify the
behaviour of

Self tests described in FPT_TST.1 R.Prepersonaliser

Modify the
behaviour of

All functions R.Developer

Application note:

The first operation ensures the irreversible locking of the patch and locks loading features
once in OP_READY, after pre production state. Once in OP_READY state, those APDU
cannot be used.
The second operation described the product configuration regarding self tests, as described
in AGD_PRE, chapter 8 [R39].

The last operation permits the loading of patch and locks during phase 5.

FMT_SMR.2/PP Restrictions on security roles

FMT_SMR.2.1/PP The TSF shall maintain the roles: R.Prepersonaliser and R.Developer.

FMT_SMR.2.2/PP The TSF shall be able to associate users with roles.

FMT_SMR.2.3/PP The TSF shall ensure that the conditions see refinement below are
satisfied.

Refinement:

Roles Condition for this role

R.Prepersonaliser Successful authentication (of Card Manufacturer) using MSK and card still
in prepersonalisation state, in phase 4-5.

R.Developer Succesful authentication (of TOE developer“ using LSK i” phase 4-5

135nitializationStatic attribute initialisation

FMT_MSA.3.1/PP The TSF shall enforce the Prepersonalisation access control to provide
same rights by default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/PP The TSF shall allow the following role(s):none to specify alternative
initial values to override the default values when an object o“ information”is created.

FCS_COP.1/PP Cryptographic operation

 ID-ONE COSMO V8.2
Public Security Target

 136 | 210

FCS_COP.1.1/PP The TSF shall perform see table below in accordance with a specified
cryptographic algorithm see table below and cryptographic key sizes see table below
that meet the following:

Cryptographic operation Algorithm Key length Standard

 Decryption (MSK) and
signature verification

DES 112 bits FIPS-PUB 46-3 (ANSI X3.92), FIPS
PUB 81 or ISO/IEC 9797, Data
integrity mechanism

Card Manufacturer
authentication (MSK)

DES 112 bits FIPS PUB 197

Card Manufacturer
authentication (MSK)

AES 128, 192
and 256
bits

FIPS-PUB 46-3 (ANSI X3.92), FIPS
PUB 81 or ISO/IEC 9797, Data
integrity mechanism

Decryption (of patch and locks
ciphered with LSK) and
signature verification

TDES 112 bits FIPS-PUB 46-3 (ANSI X3.92), FIPS
PUB 81 or ISO/IEC 9797, Data
integrity mechanism

TOE authentication key
ISK/KMC

TDE“ 112 bits FI”S PUB 197

FCS_CKM.4/PP Cryptographic key destruction

FCS_CKM.4.1/PP The TSF shall destroy cryptographic keys in accordance with a specified
cryptographic key destruction method Key is set to NULL that meets the following: no.

Application Note:

In phase 5, reaching OP_READY state, this SFR ensures the secure erasing of the LSK and
MSK keys.

FDP_UIT.1/PP Data exchange integrity

FDP_UIT.1.1/PP The TSF shall enforce the Patch and locks and Prepersonalisation
loading access control SFP to receive user data in a manner protected from
modification errors.

FDP_UIT.1.2/PP [Editorially Refined] The TSF shall be able to determine on receipt of user
data, whether modification of some of the pieces of the application sent by the TOE
developer and Card Manufacturer has occurred.

Application Note:

Modification errors should be understood as modification, substitution, unrecoverable
ordering change of data and any other integrity error that may cause the patch or the locks to
be installed on the card to be different from the one sent by the TOE Developer. The Patch
and locks loading is performed by the TOE Developer via the command UPDATE SECURE,

 ID-ONE COSMO V8.2
Public Security Target

 137 | 210

its integrity is ensured by a MAC, described in FCS_COP.1/PP. The ISK loading is
performed by the Card Manufacturer via the command PUT KEY, its integrity is ensured by a
MAC, described in FCS_COP.1/PP.

FCS_CKM.1/PP Cryptographic key generation

FCS_CKM.1.1/PP The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm see table below and specified cryptographic key
sizes see table below that meet the following: see table below:

Cryptographic key generation algorithm Cryptographic key
size

List of
standards

TOE’s MSK derived from the MSK loaded in phase 1,
using SHA-256

16, 24 and 32 bytes None

Application Note:

Key derivation algorithm is detailed in AGD_PRE, §5 [R39].

In phases 3-4, MSK is diversified during the first command, and then replaced by the new
value generated by FCS_CKM.1/PP.

FTP_ITC.1/PP Inter-TSF trusted channel

 ID-ONE COSMO V8.2
Public Security Target

 138 | 210

FTP_ITC.1.1/PP The TSF shall provide a communication channel between itself and another
trusted IT product that is logically distinct from other communication channels and provides
assured identification of its end points and protection of the channel data from modification or
disclosure.

FTP_ITC.1.2/PP [Editorially Refined] The TSF shall permit the TOE Developer and Card
Manufacturer to initiate communication via the trusted channel.

FTP_ITC.1.3/PP The TSF shall initiate communication via the trusted channel for loading
the patch code, locks and ISK on the card.

FAU_STG.2 Guarantees of audit data availability

FAU_STG.2.1 The TSF shall protect the stored audit records in the audit trail from
unauthorized deletion.

FAU_STG.2.2 The TSF shall be able to prevent unauthorized modifications to the stored
audit records in the audit trail.

FAU_STG.2.3 The TSF shall ensure that Patch code identification stored audit records will
be maintained when the following conditions occur: audit storage exhaustion, failure
and attack.

Application Note:

Patch code is loaded with its information and its CRC.

Information on the Patch code is directly retrieved from itself (identication and static
signature) and is provided by GET DATA command. This information is protected from
modification because the interfaces that enable its modification are deactivated once in
OP_READY state. More information is available in [R38].

9.1.5.3 Additional Security Functional Requiremen“s for SmartCa”d Platform

FPT_PHP.3/SCP Resistance to physical attack

FPT_PHP.3.1/SCP The TSF shall resist physical manipulation and physical probing to
the all TOE components implementing the TSF by responding automatically such that
the SFRs are always enforced.

Application Note:

The physical manipulation and physical probing include: changing operational conditions
every times: the frequency of the external clock, powe“ supply, and ”emperature

FPT_FLS.1/SCP Failure with preservation of secure state

 ID-ONE COSMO V8.2
Public Security Target

 139 | 210

FPT_FLS.1.1/SCP The TSF shall preserve a secure state when the following types of fail“res
occur: cf”FAU_ARP.1.

FPT_RCV.3/SCP Automated recovery without undue loss

FPT_RCV.3.1/SCP When automated recovery from none is not possible, the TSF shall enter
a maintenance mode where the ability to return to a secure state is provided.

FPT_RCV.3.2/SCP For all cases, the TSF shall ensure the return of the TOE to a secure
state using automated procedures.

FPT_RCV.3.3/SCP The functions provided by the TSF to recover from failure or service
discontinuity shall ensure that the secure initial state is restored without exceeding the
loss of the Executable Load File being installed for loss of TSF data or objects under
the control of the TSF.

FPT_RCV.3.4/SCP The TSF shall provide the capability to determine the objects that were
or were not ca“able of being”recovered.

FPT_RCV.4/SCP Function recovery

FPT_RCV.4.1/SCP The TSF shall ensure that reading from an’ writing to static and
objects' fields interrupted by power loss have the property that the function either
completes successfully, or for the indicated failure scenarios, recovers to a con“istent and
se”ure state.

FRU_FLT.1/SCP Degraded fault tolerance

FRU_FLT.1.1/SCP The TSF shall ensure the operation of Fault tolerance when the
following failures occur: Lack of EEPROM.

Application Note:

The TOE implements a mechanism to detect a problem of EEPROM. During the
life of the TOE, the Transaction area reduces its size to skip damaged EEPROM bytes.
During the writing or erasing operations, up to 3 maximum attempts to get successful
programming are done.
Otherwise the EXCEPTIO“_EEPROM_ERROR is ”aised.

FPR_UNO.1/USE_KEY Unobservability

FPR_UNO.1.1/USE_KEY The TSF shall ensure that all subjects are unable to observe the
operation “se on key by ”.JCS_KEYS.

 ID-ONE COSMO V8.2
Public Security Target

 140 | 210

FCS_RNG.1/SCP Random Number Generation

FCS_RNG.1.1/SCP The TSF shall provide a deterministic hybrid random number
generator that implements: none.

FCS_RNG.1.2/SCP The TSF shall provide random numbers that meet NIST SP 800-90
[R30].

9.1.5.4 Additional Security Functional Req“irements for ”he applets

FIA_AFL.1/PIN Authentication failure handling

FIA_AFL.1.1/PIN The TSF shall detect when an administrator configurable positive
integer within from 1 to 127 for OwnerPIN unsuccessful authentication attempts occur
related to any user authentication using a PIN.

FIA_AFL.1.2/PIN When the defined number of unsuccessful authentication attempts has
been met, the“TSF shall block ”he PIN.

FMT_MTD.2/GP_PIN Management of limits on TSF data

FMT_MTD.2.1/GP_PIN The TSF shall restrict the specification of the limits for
D.NB_REMAINTRYGLB, GlobalPIN to R.Card_Manager.

FMT_MTD.2.2/GP_PIN The TSF shall take the following actions, if the TSF data are at, or
exceed, the indicated limits: block D.PIN.

R.Card_Manager Entity after Successful authentication (of Card Issuer) using its key set,
with CM life cycle phase “rom OP_READY to ”ECURED

FPR_UNO.1/Applet Unobservability

FPR_UNO.1.1/Applet The TSF shall ensure that anybody is unable to observe the
operation Comparison on two “ytes arrays b” S.APPLET.

FMT_MTD.1/PIN Management of TSF data

FMT_MTD.1.1/PIN The TSF shall restrict the ability to change_default, query and modify
the O“nerPIN to applet”itself.

 ID-ONE COSMO V8.2
Public Security Target

 141 | 210

FIA_AFL.1/GP_PIN Authentication failure handling

FIA_AFL.1.1/GP_PIN The TSF shall detect when an administrator configurable positive
integer within 3 to 15 unsuccessful authentication attempts occur related to any user
authentication using a Global PIN.

FIA_AFL.1.2/GP_PIN When the defined number of unsuccessful authentication attempts has
been met, the TSF shall block the Global PIN.

9.1.5.5 Additional Security Functi“nal Requirements ”or BIO

FIA_AFL.1/PIN_BIO Authentication failure handling

FIA_AFL.1.1/PIN_BIO The TSF shall detect when an administrator configurable positive
integer within user defined maximum from 1 to 254 for D.BIO unsuccessful
authentication attempts occur related to any user authentication using MOC.

FIA_AFL.1.2/PIN_BIO When the defined number of unsuccessful authentication attempts
has been met, the“TSF shall block t”e MOC.

FMT_MTD.1/PIN_BIO Management of TSF data

FMT_MTD.1.1/PIN_BIO The TSF shall restrict the ability to change_default, query and
modify the D.BIO to applet itself.

9.1.5.6 Additional Security Functional Requirements for Runtime V“rification

Stack C”ntrol

FDP_ACC.2/RV_Stack Complete access control

FDP_ACC.2.1/RV_Stack The TSF shall enforce the Stack Access Control SFP on
S.STACK and all operations among subjects and objects covered by the SFP.

Refinement:

The operations involved in the policy are:

o OP.OPERAND_STACK_ACCESS

o OP.LOCAL_STACK_ACCESS

FDP_ACC.2.2/RV_Stack The TSF shall ensure that all operations between any subject
controlled by the TSF and any object controlled by the TSF are covered “y an access
contro” SFP.

FDP_ACF.1/RV_Stack Security attribute based access control

 ID-ONE COSMO V8.2
Public Security Target

 142 | 210

FDP_ACF.1.1/RV_Stack The TSF shall enforce the Stack Access Control to objects based
on the following:

Subject/Object Security attributes

S.APPLET Active Applets, Applet Selection Status

S.STACK Stack Pointer

S.JCVM Current Frame Context

FDP_ACF.1.2/RV_Stack The TSF shall enforce the following rules to determine if an
operation among controlled subjects and controlled objects is allowed:

o An Active Applet selected may freely perform OP.LOCAL_STACK_ACCESS
upon stack pointer only if the index of the local variable accessed matches
the Current Frame Context attribute

o An Active Applet selected may freely perform
OP.OPERAND_STACK_ACCESS upon Stack Pointer only if the attribute
Stack Pointer matches the attribute Current Frame Context of S.JCVM.

FDP_ACF.1.3/RV_Stack The TSF shall explicitly authorise access of subjects to objects
based on the following additional rules: none.

FDP_ACF.1.4/RV_Stack The TSF shall explicitly deny access of subjects to objects based
on the following additional rules: none.

Application Note:

Any bytecode accessing a local variable has an index in parameter (byte or short). The first
rule aims at verifying that this index is always positive and inferior to the numbers of local
variables defined for this stack frame. Then the local variable slot is accessed using the
index that is relative to the base of local variables for this stack frame.

Any bytecode accessing the operand stack for push or pop operations is under the control of
rule 2. The second rule aims at verifying that the stack pointer is always in the range defined
by the base-of-stack and top-of-stack values defined for this stack frame.

The frame context attribute is made of the following elements:

 number-of-local variables and base-of-local-variable

 base-of-stack and top-of-stack

The policies defined in this SFR are enforced dynamically, each time an operation is
performed. Nevertheless, those verifications may be redundant with the ones made statically
by the off-card verifier, during the a“plet verification ”tage.

FMT_MSA.1/RV_Stack Management of security attributes

 ID-ONE COSMO V8.2
Public Security Target

 143 | 210

FMT_MSA.1.1/RV_Stack The TSF shall enforce the Stack Access Control SFP to restrict
the ability to modify the security attributes Current Frame Context and Stack Pointer to
t“e Java Card VM (S.”CVM).

FMT_MSA.2/RV_Stack Secure security attributes

FMT_MSA.2.1/RV_Stack The TSF shall ensure that only secure values are accepted for
Current Frame C“ntext and Stack Po”nter.

FMT_M143nitializationStatic attribute initialisation

FMT_MSA.3.1/RV_Stack The TSF shall enforce the Stack Access Control SFP to provide
restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/RV_Stack The TSF shall allow the any role to specify alternative initial
values to override the default values when an object o“ information is cr”ated.

FMT_SMF.1/RV_Stack Specification of Management Functions

FMT_SMF.1.1/RV_Stack The TSF shall be capable of performing the following management
functions: Modify the Current Frame Context and modify the Stack Pointer.

Application Note:

The frame context attribute is modified on method invocation. In that case, the previous
context attribute is saved on the stack. It will be restored on return of the in“oked method.

Heap”Access

FDP_ACC.2/RV_Heap Complete access control

FDP_ACC.2.1/RV_Heap The TSF shall enforce the Heap Access Control SFP on
O.CODE_PKG, O.JAVAOBJECT, S.JCVM, S.APPLET and all operations among
subjects and objects covered by the SFP.

Refinement:

The operations involved in the policy are:

o OP.ARRAY_ACCESS

o OP.INSTANCE_FIELD

o OP.STATIC_FIELD

o OP.FLOW

 ID-ONE COSMO V8.2
Public Security Target

 144 | 210

FDP_ACC.2.2/RV_Heap The TSF shall ensure that all operations between any subject
controlled by the TSF and any object controlled by the TSF are covered “y an access
contr”l SFP.

FDP_ACF.1/RV_Heap Security attribute based access control

FDP_ACF.1.1/RV_Heap The TSF shall enforce the Heap Access Control SFP to objects
based on the following:

Subject/Object Security attributes

O.CODE_PKG Package Boundary

O.JAVAOBJECT Object Boundary

S.JCVM Program Counter

S.APPLET Active Applets, Applet Selection Status

.

FDP_ACF.1.2/RV_Heap The TSF shall enforce the following rules to determine if an
operation among controlled subjects and controlled objects is allowed:

o S.APPLET may freely perform OP.ARRAY_ACCESS and
OP.INSTANCE_FIELD upon any O.JAVAOBJECT if the array cell index or the
instance field index match the object boundary attribute of O.JAVAOBJECT

o S.APPLET may freely perform OP.STATIC_FIELD upon any O.CODE_PKG if
the static field index matches the Package Boundary attribute of
O.CODE_PKG.

o S.APPLET may freely perform OP.FLOW upon O.CODE_PKG if the Program
Counter attribute of S.JCVM matches the Package Boundary attribute of
O.CODE_PKG.

FDP_ACF.1.3/RV_Heap The TSF shall explicitly authorise access of subjects to objects
based on the following additional rules: none.

FDP_ACF.1.4/RV_Heap The TSF shall explicitly deny access of subjects to objects based
on the following additional rules: none.

Application Note:

The upper and lower boundaries of any object allocated on the heap are registered (Object
Boundary Attribute). Each time an object is accessed, the first rule verifies that the accessed
NVM location is comprised between those two boundaries.

The second rule aims at verifying that when a static field is accessed, the index of this field is
positive and inferior to the number of static fields of this package (part of Package Boundary
attribute).

The third rule aims at verifying that when a change of execution flow occurs, the computed
value for the newly computed value for the Program Counter is comprised within the

 ID-ONE COSMO V8.2
Public Security Target

 145 | 210

boundaries defined for this package (part of Package Boundary Attribute). This rule does not
concern invocation bytecode.

The policies defined in this SFR are enforced dynamically, each time an operation is
performed. Nevertheless, those verifications may be redundant with the ones made statically
by the off-card verifier, during the a“plet verification”stage.

FMT_MSA.1/RV_Heap Management of security attributes

FMT_MSA.1.1/RV_Heap The TSF shall enforce the Heap Access Control SFP to restrict
the ability to modify the security attributes Package Boundary, Object Boundary and
P“ogram Counter to ”.JCVM.

FMT_MSA.2/RV_Heap Secure security attributes

FMT_MSA.2.1/RV_Heap The TSF shall ensure that only secure values are accepted for
Package Boundary, Object Boun“ary and Program C”unter.

FMT_145nitializationStatic attribute initialisation

FMT_MSA.3.1/RV_Heap The TSF shall enforce the Heap Access Control SFP to provide
restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/RV_Heap The TSF shall allow the no role to specify alternative initial values
to override the default values when an object o“ information is c”eated.

FMT_SMF.1/RV_Heap Specification of Management Functions

FMT_SMF.1.1/RV_Heap The TSF shall be capable of performing the following management
functions: to modify the Program Counter att“ibute.

Transient Contr”l

FDP_ACC.2/RV_Transient Complete access control

FDP_ACC.2.1/RV_Transient The TSF shall enforce the Transient Access Control SFP on
S.APPLET, S.JCVM and O.JAVAOBJECT and all operations among subjects and
objects covered by the SFP.

Refinement:

The operation involved in the policy is:

o OP.ARRAY_ACCESS

 ID-ONE COSMO V8.2
Public Security Target

 146 | 210

FDP_ACC.2.2/RV_Transient The TSF shall ensure that all operations between any subject
controlled by the TSF and any object controlled by the TSF are covered “y an access
control SF”.

FDP_ACF.1/RV_Transient Security attribute based access control

FDP_ACF.1.1/RV_Transient The TSF shall enforce the Transient Access Control SFP to
objects based on the following:

Subject/Object Security Attributes

S.APPLET Active Applets, Applet Selection Status

S.JCVM COR Context, COD Context

O.JAVAOBJECT LifeTime

.

FDP_ACF.1.2/RV_Transient The TSF shall enforce the following rules to determine if an
operation among controlled subjects and controlled objects is allowed:

o S.APPLET may freely perform OP.ARRAY_ACCESS on O.JAVAOBJECT
whos“ LifeTime attr”bute has value "CLEAR_ON_RESET" only if the
targeted volatile memory space matches the COR Context attribute of
S.JCVM

o S.APPLET may freely perform OP.ARRAY_ACCESS on O.JAVAOBJECT
whos“ LifeTime attribu”e has value "CLEAR_ON_DESELECT" only if the
targeted volatile memory space matches the COD Context attribute of
S.JCVM.

FDP_ACF.1.3/RV_Transient The TSF shall explicitly authorise access of subjects to objects
based on the following additional rules: none.

FDP_ACF.1.4/RV_Transient The TSF shall explicitly deny access of subjects to objects
based on the following additional rules: none.

Application Note:

Each time an applet accesses a Clear On Reset (resp. Clear On Deselect) transient, these
rules verify that the accessed RAM area is in the range of the Clear On Reset transients
space (resp. Clear On Deselect) allocated for all the transients created by the applets of this
package.

The COR context attribute represents the lower and upper limits for the Clear On Reset
transient space of the active applet package. The COD context attribute represents the lower
and upper limits for the Clear On Deselect transient space of the currently selected applet
package.

The policies defined in this SFR are enforced dynamically, each time an operation is
performed. Nevertheless, those verifications may be redundant with the ones made statically
by the off-card verifier, during the a“plet verification stag”.

 ID-ONE COSMO V8.2
Public Security Target

 147 | 210

FMT_MSA.1/RV_Transient Management of security attributes

FMT_MSA.1.1/RV_Transient The TSF shall enforce the Transient Access Control SFP to
restrict the ability to modify the security attributes the security attributes COR Context
and COD Context “o Java Card VM (S.JCVM”.

FMT_MSA.2/RV_Transient Secure security attributes

FMT_MSA.2.1/RV_Transient The TSF shall ensure that only secure values are accepted for
COR Context and COD Context Security attributes of the Tran“ient Access Control
SF”.

FMT_MSA.3147nitializationStatic attribute initialisation

FMT_MSA.3.1/RV_Transient The TSF shall enforce the Transient Access Control SFP to
provide restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/RV_Transient The TSF shall allow the no role to specify alternative initial
values to override the default values when an object o“ information is create”.

FMT_SMF.1/RV_Transient Specification of Management Functions

FMT_SMF.1.1/RV_Transient The TSF shall be capable of performing the following
management functions: modify the COR Context and COD Context Security
Attributes.

9.2 Security Assurance Requirements

The Evaluation Assurance Level is EAL5 augmented with AVA_VAN.5 and ALC_DVS.2.

 ID-ONE COSMO V8.2
Public Security Target

 148 | 210

9.3 Security Requirements Rationale

9.3.1 Objectives

9.3.1.1 Security Objectives for the TO’

IDENTIFICATION

O.SID Subjects' identity is AID-based (applets, packages), and is met by the following SFRs:
FDP_ITC.2/Installer, FIA_ATD.1/AID, FMT_MSA.1/JCRE, FMT_MSA.1/JCVM,
FMT_MSA.1/ADEL, FMT_MSA.1/CM, FMT_MSA.3/ADEL, FMT_MSA.3/FIREWALL,
FMT_MSA.3/JCVM, FMT_MSA.3/CM, FMT_SMF.1/CM, FMT_SMF.1/ADEL,
FMT_MTD.1/JCRE and FMT_MTD.3/JCRE.

Lastly, installation procedures ensure protection against forgery (the AID of an applet is
under the control of the TSFs) or re-use of identities (FIA_UID.2/AID, FIA_USB.1/AID).

 ID-ONE COSMO V8.2
Public Security Target

 149 | 210

EXECUTION

O.FIREWALL This objective is met by the FIREWALL access control policy
FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL, the JCVM information flow control
policy (FDP_IFF.1/JCVM, FDP_IFC.1/JCVM), the functional requirement
FDP_ITC.2/Installer. The functional requirements of the class FMT (FMT_MTD.1/JCRE,
FMT_MTD.3/JCRE, FMT_SMR.1/Installer, FMT_SMR.1, FMT_SMF.1,
FMT_SMR.1/ADEL, FMT_SMF.1/ADEL, FMT_SMF.1/CM, FMT_MSA.1/CM,
FMT_MSA.3/CM, FMT_SMR.1/CM, FMT_MSA.2/FIREWALL_JCVM,
FMT_MSA.3/FIREWALL, FMT_MSA.3/JCVM, FMT_MSA.1/ADEL, FMT_MSA.3/ADEL, S,
FMT_MSA.1/JCRE, FMT_MSA.1/JCVM,) also indirectly contribute to meet this objective.

This objective is also covered by the following additional SFRs:

- Stack control (*/RV_Stack): FDP_ACC.2/RV_Stack, FDP_ACF.1/RV_Stack,
FMT_MSA.1/RV_Stack, FMT_MSA.2/RV_Stack, FMT_MSA.3/RV_Stack,
FMT_SMF.1/RV_Stack
- Heap control (*/RV_Heap): FDP_ACC.2/RV_Heap, FDP_ACF.1/RV_Heap,
FMT_MSA.1/RV_Heap, FMT_MSA.2/RV_Heap, FMT_MSA.3/RV_Heap,
FMT_SMF.1/RV_Heap
- Transient control (*/RV_Transient): FDP_ACC.2/RV_Transient,
FDP_ACF.1/RV_Transient, FMT_MSA.1/RV_Transient, FMT_MSA.2/RV_Transient,
FMT_MSA.3/RV_Transient, FMT_SMF.1/RV_Transient

For each of those control, the SFR define the access control (FDP_ACC and FDP_ACF), the
operation (FMT_MSA) and the role (FMT_SMF).

The Stack control enforces O.FIREWALL by defining additional rules, such as the control of
the stack is more precise. Information is provided in the application note.

The Heap control enforces O.FIREWALL by defining additional rules, such as the heap
usage is improved. Information is provided in the application note.

The Transient enforces O.FIREWALL by defining additional rules, such as the heap usage is
improved. Information is provided in the application note.

O.GLOBAL_ARRAYS_CONFID Only arrays can be designated as global, and the only
global arrays required in the Java Card API are the APDU buffer and the global byte array
input ’arameter (bArray) to an applet's install method. The clearing requirement of these
arrays is met by (FDP_RIP.1/APDU and FDP_RIP.1/bArray respectively). The JCVM
information flow control policy (FDP_IFF.1/JCVM, FDP_IFC.1/JCVM) prevents an
application from keeping a pointer to a shared buffer, which could be used to read its
contents when the buffer is being used by another application.

Protection of the array parameters of remotely invoked methods, which are global as well,
is covered by the general initialization of method parameters (FDP_RIP.1/ODEL,
FDP_RIP.1/OBJECTS, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS, FDP_RIP.1/ADEL and
FDP_RIP.1/TRANSIENT).

O.GLOBAL_ARRAYS_INTEG This objective is met by the JCVM information flow control
policy (FDP_IFF.1/JCVM, FDP_IFC.1/JCVM), which prevents an application from keeping
a pointer to the APDU buffer of the card or to the ’lobal byte array of the applet's install

 ID-ONE COSMO V8.2
Public Security Target

 150 | 210

method. Such a pointer could be used to access and modify it when the buffer is being
used by another application.

O.NATIVE This security objective is covered by FDP_ACF.1/FIREWALL: the only means to
execute native code is the invocation of a Java Card API method. This objective mainly
relies on the environmental objective OE.APPLET, which uphold the assumption
A.APPLET.

O.OPERATE The TOE is protected ’n various ways against applets' actions (FPT_TDC.1),
the FIREWALL access control policy FDP_ACC.2/FIREWALL and
FDP_ACF.1/FIREWALL, and is able to detect and block various failures or security
violations during usual working (FPT_FLS.1/ADEL, FPT_FLS.1, FPT_FLS.1/ODEL,
FPT_FLS.1/Installer, FAU_ARP.1). Its security-critical parts and procedures are also
protected: safe recovery from failure is ensured’(FPT_RCV.3/Installer), applets' installation
may be cleanly aborted (FDP_ROL.1/FIREWALL), communication with external users and
their internal subjects is well-controlled (FDP_ITC.2/Installer, FIA_ATD.1/AID,
FIA_USB.1/AID) to prevent alteration of TSF data (also protected by components of the
FPT class).

Almost every objective and/or functional requirement indirectly contributes to this one too.

Application note: Startup of the TOE (TSF-testing) can be covered by FPT_TST.1. This
SFR component is not mandatory in [R7], but appears in most of security requirements
documents for masked applications. Testing could also occur randomly. Self-tests may
become mandatory in order to comply to FIPS certification [FIPS 140-2].

 ID-ONE COSMO V8.2
Public Security Target

 151 | 210

O.REALLOCATION This security objective is satisfied by the following SFRs:
FDP_RIP.1/APDU, FDP_RIP.1/bArray, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FDP_RIP.1/TRANSIENT, FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS, FDP_RIP.1/ADEL,
which imposes that the contents of the re-allocated block shall always be cleared before
delivering the block.

O.RESOURCES The TSFs detects stack/memory overflows during execution of applications
(FAU_ARP.1, FPT_FLS.1/ADEL, FPT_FLS.1, FPT_FLS.1/ODEL, FPT_FLS.1/Installer).
Failed installations are not to create memory leaks (FDP_ROL.1/FIREWALL,
FPT_RCV.3/Installer) as well. Memory management is controlled by the TSF
(FMT_MTD.1/JCRE, FMT_MTD.3/JCRE, FMT_SMR.1/Installer, FMT_SMR.1,
FMT_SMF.1 FMT_SMR.1/ADEL, FMT_SMF.1/ADEL, FMT_SMF.1/CM and
FMT_SMR.1/CM).

SERVICES

O.ALARM This security objective is met by FPT_FLS.1/Installer, FPT_FLS.1,
FPT_FLS.1/ADEL, FPT_FLS.1/ODEL which guarantee that a secure state is preserved by
the TSF when failures occur, and FAU_ARP.1 which defines TSF reaction upon detection
of a potential security violation.

O.CIPHER This security objective is directly covered by FCS_CKM.1, FCS_CKM.2,
FCS_CKM.3, FCS_CKM.4, FCS_COP.1 and FCS_COP.1/PP. FPR_UNO.1 and
FPR_UNO.1/USE_KEY contributes in covering this security objective and controls the
observation of the cryptographic operations which may be used to disclose the keys.

O.KEY-MNGT This relies on the same security functional requirements as O.CIPHER, plus
FDP_RIP.1 and FDP_SDI.2 as well. Precisely it is met by the following components:
FCS_CKM.1, FCS_CKM.2, FCS_CKM.3, FCS_CKM.4, FCS_COP.1, FCS_COP.1/PP,
FPR_UNO.1, FPR_UNO.1/USE_KEY, FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS,
FDP_RIP.1/APDU, FDP_RIP.1/bArray, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FDP_RIP.1/ADEL and FDP_RIP.1/TRANSIENT.

O.PIN-MNGT This security objective is ensured by FDP_RIP.1/ODEL,
FDP_RIP.1/OBJECTS, FDP_RIP.1/APDU, FDP_RIP.1/bArray, FDP_RIP.1/ABORT,
FDP_RIP.1/KEYS, FDP_RIP.1/ADEL, FDP_RIP.1/TRANSIENT, FPR_UNO.1,
FDP_ROL.1/FIREWALL and FDP_SDI.2 security functional requirements. The TSFs
behind these are implemented by API classes. The firewall security functions
FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL shall protect the access to private
and internal data of the objects. FIA_AFL1.1/CM, FIA_AFL.1/PIN, FIA_AFL.1/GP_PIN and
FIA_AFL.1/CM ensure the objective regarding authentications failures. FMT_MTD.1/PIN
ensures the objective regarding the management of the TSF data.

O.BIO-MNGT This security objective is ensured by FDP_RIP.1/ODEL,
FDP_RIP.1/OBJECTS, FDP_RIP.1/APDU, FDP_RIP.1/bArray, FDP_RIP.1/ABORT,
FDP_RIP.1/KEYS, FDP_RIP.1/ADEL, FDP_RIP.1/TRANSIENT, FPR_UNO.1,
FDP_ROL.1/FIREWALL and FDP_SDI.2 security functional requirements. The TSFs
behind these are implemented by API classes. The firewall security functions
FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL shall protect the access to private
and internal data of the objects. FIA_AFL.1/CM and FIA_AFL.1/PIN_BIO ensure the

 ID-ONE COSMO V8.2
Public Security Target

 152 | 210

objective regarding authentications failures. FMT_MTD.1/PIN_BIO ensures the objective
regarding the management of the TSF data.

.

O.TRANSACTION Directly met by FDP_ROL.1/FIREWALL, FDP_RIP.1/ABORT,
FDP_RIP.1/ODEL, FDP_RIP.1/APDU, FDP_RIP.1/bArray, FDP_RIP.1/KEYS,
FDP_RIP.1/ADEL, FDP_RIP.1/TRANSIENT and FDP_RIP.1/OBJECTS (more precisely,
by the element FDP_RIP.1.1/ABORT).

OBJECT DELETION

O.OBJ-DELETION This security objective specifies that deletion of objects is secure. The
security objective is met by the security functional requirements FDP_RIP.1/ODEL and
FPT_FLS.1/ODEL.

APPLET MANAGEMENT

O.DELETION This security objective specifies that applet and package deletion must be
secure. The non-introduction of security holes is ensured by the ADEL access control
policy (FDP_ACC.2/ADEL, FDP_ACF.1/ADEL). The integrity and confidentiality of data
that does not belong to the deleted applet or package is a by-product of this policy as well.
Non-accessibility of deleted data is met by FDP_RIP.1/ADEL and the TSFs are protected
against possible failures of the deletion procedures (FPT_FLS.1/ADEL,
FPT_RCV.3/Installer). The security functional requirements of the class FMT
(FMT_MSA.1/ADEL, FMT_MSA.3/ADEL, FMT_SMR.1/ADEL) included in the group
ADELG also contribute to meet this objective.

O.LOAD This security objective specifies that the loading of a package into the card must be
secure. Evidence of the origin of the package is enforced (FCO_NRO.2/CM) and the
integrity of the corresponding data is under the control of the PACKAGE LOADING
information flow policy (FDP_IFC.2/CM, FDP_IFF.1/CM) and FDP_UIT.1/CM. Appropriate
identification (FIA_UID.1/CM) and transmission mechanisms are also enforced
(FTP_ITC.1/CM).

O.INSTALL This security objective specifies that installation of applets must be secure.
Security attributes of installed data are under the control of the FIREWALL access control
policy (FDP_ITC.2/Installer), and the TSFs are protected against possible failures of the
installer (FPT_FLS.1/Installer, FPT_RCV.3/Installer).

Additional security objectives for the TOE

O.SCP.SUPPORT The components FPT_RCV.3/SCP and FPT_RCV.4/SCP (SCP stands for
smart card platform) are used to support the objective O.SCP.SUPPORT to assist the
TOE to recover in the event of a power failure. If the power fails or the card is withdrawn
prematurely from the CAD the operation of the TOE may be interrupted leaving the TOE
in an inconsistent state.

O.SCP.IC This objective is met by the component FPT_PHP.3/SCP and FCS_RNG.1/SCP.

 ID-ONE COSMO V8.2
Public Security Target

 153 | 210

O.SCP.RECOVERY The component FPT_RCV.3/SCP is used to support the objective
O.SCP.RECOVERY to assist the TOE to recover in the event of a power failure. If the
power fails or the card is withdrawn prematurely from the CAD the operation of the TOE
may be interrupted leaving the TOE in an inconsistent state. This objective is met by the
components FPT_FLS.1, FPT_FLS.1/SCP, FPT_RCV.3/SCP, FPT_RCV.4/SCP
FAU_ARP.1 and FRU_FLT.1/SCP.

O.RESIDENT_APPLICATION This objective is covered by the following set of SFR:

o Access control: FDP_ACC.2/PP, FDP_ACF.1/PP, FDP_UCT.1/PP and
FDP_ITC.1/PP

o Rules for authentication: FIA_AFL.1/PP, FIA_UAU.1/PP, FIA_UAU.1/CM, and
FIA_UID.1/PP

o Security Management: FMT_MSA.1/PP, FMT_SMF.1/PP, FMT_MOF.1/PP,
FMT_SMR.2/PP, FMT_MSA.3/PP and FMT_SMR.2/CM

o Cryptographic Key Destruction: FCS_CKM.4/PP

O.CARD_MANAGEMENT This objective is fulfilled by the following set of SFR:

o Access control: FDP_IFF.1/CM and FDP_IFC.2/CM

o Rules for authentication: FIA_UID.1/CM, FIA_UAU.7/CardIssuer,
FIA_UAU.4/CardIssuer, FIA_ATD.1/CardManu, FIA_UAU.4/CardManu,
FIA_UAU.7/CardManu

o Security Management: FMT_MSA.1/CM, FMT_MSA.3/CM, FMT_SMR.2/PP,
FMT_SMF.1/PP, FMT_SMR.2/CM, FMT_SMF.1/CM and FMT_SMR.1/CM

o Non repudiation: FCO_NRO.2/CM and FCO_NRO.2/CM_DAP

o Trusted Path Channels: FTP_ITC.1/CM

o Protection of the TSF: FPT_TDC.1/CM

o Non observability: FPR_UNO.1/Key_CM

O.SECURE_COMPARE This objective is fulfilled by FPR_UNO.1/Applet. It ensures that
comparison is confidential.

O.PATCH_LOADING

Authentication of the entity loading the patch by the TOE

FDP_ACC.2/PP, FDP_ACF.1/PP, FIA_UAU.1/PP and FIA_UID.1/PP provide access
control for patch loading. The subject entitled to load the–patch – the card manufacturer -
is authenticated by the TOE thanks to FCS_COP.1/PP. Wrong authentication of the Card
manufacturer agent are detected thanks to FIA_AFL.1/PP

Authentication of the TOE

 ID-ONE COSMO V8.2
Public Security Target

 154 | 210

To avoid impersonation of the TOE by a fake chip, the TOE authenticates itself ; from
phase 6 (after patch loading) with FTP_ITC.1/CM and FCS_COP.1/CM thanks to the
TOE authentication key (ISK/KMC). From phase 6, the TOE authentication is required
prior to any trusted channel establishment with FTP_ITC.1/CM (data sent by the TOE
must be decrypted to carry on the authentication).

The TOE authentication key (ISK/KMC) is securely loaded in phase 4/5 protected in
confidentiality with FDP_UCT.1/PP and integrity with FDP_UIT.1/PP through the trusted
channel established by the Card Manufacturer with FDP_ITC.1/PP. The trusted channel
and the TOE authentication key (ISK/KMC) encryption is supported by FCS_COP.1/PP
that relies on the TOE’s MSK which is the first key present in the TOE.

Diversification of keys

The TOE’s MSK used to authenticate the Card manufacturer is derived from the MSK
thanks to FCS_CKM.1/PP before the first use. The MSK is loaded in the TOE in phase 1
(covered by [ALC]).

Integrity, confidentiality and authenticity of the patch during loading

During patch loading, FTP_ITC.1/PP provides a trusted channel between the TOE
developer and the TOE, used to load the patch in a confidential manner with
FDP_UCT.1/PP and protected in integrity and confidentiality with FDP_UIT.1/PP.
Confidentiality, integrity and authenticity of the patch loading is supported by
cryptographic mechanisms supported by FCS_COP.1/PP .

The patch is loaded together with its static signature. This static signature is protected in
the same manner as the patch itself; It is used in further step enable the TOE to check
that the patch is still integer.

Irreversible locking of the patch loading features

The patch can be loaded in phase 4 and 5 of the TOE’s life cycle. At the end of phase 5,
FMT_MOF.1/PP ensures this feature is not available anymore

Erasure of the key used

FCS_CKM.4/PP ensures the secure destruction of the keys involved in the patch loading
mechanism (LSK and MSK) at the end of phase 5.

Identification of the patch after loading

Once loaded and during the rest of the TOE life cycle, the identification and authentication
(static signature of the code) of the patch, being a part of the TOE is provided by
FAU_STG.2. When requested, the identification and authentication data are dynamically
retrieved from the patch code stored in the non volatile memory of the TOE.

Integrity check before usage of the patch

 ID-ONE COSMO V8.2
Public Security Target

 155 | 210

At start up, the integrity of the patch is checked by the TOE through self tests provided by
FPT_TST.1. The static signature of the patch stored in the non volatile memory of the
TOE is computed and compared with the one affixed to it. In case they differ, an integrity
error is detected, and a killcard is raised.

 ID-ONE COSMO V8.2
Public Security Target

 156 | 210

9.3.2 Rationale tables of Security Objectives and SFRs

Security Objectives Security Functional Requirements Rationale

O.SID FIA_ATD.1/AID, FIA_UID.2/AID, FMT_MSA.1/JCRE, , FMT_MSA.1/ADEL, FMT_MSA.3/ADEL,
FMT_MSA.3/FIREWALL, FMT_MSA.1/CM, FMT_MSA.3/CM, FDP_ITC.2/Installer,
FMT_SMF.1/CM, FMT_SMF.1/ADEL, , FMT_MTD.1/JCRE, FMT_MTD.3/JCRE, FIA_USB.1/AID,
FMT_MSA.1/JCVM, FMT_MSA.3/JCVM

Section 4.3.1

O.FIREWALL FDP_IFC.1/JCVM, FDP_IFF.1/JCVM, FMT_SMR.1/Installer, FMT_MSA.1/CM, FMT_MSA.3/CM,
FMT_SMR.1/CM, FMT_MSA.3/FIREWALL, FMT_SMR.1, FMT_MSA.1/ADEL,
FMT_MSA.3/ADEL, FMT_SMR.1/ADEL, FMT_MSA.1/JCRE, FDP_ITC.2/Installer,
FDP_ACC.2/FIREWALL, FDP_ACF.1/FIREWALL, FMT_SMF.1/ADEL, , FMT_SMF.1/CM,
FMT_SMF.1, FMT_MSA.2/FIREWALL_JCVM, FMT_MTD.1/JCRE, FMT_MTD.3/JCRE,
FMT_MSA.1/JCVM, FMT_MSA.3/JCVM, FDP_ACC.2/RV_Stack, FDP_ACF.1/RV_Stack,
FMT_MSA.1/RV_Stack, FMT_MSA.2/RV_Stack, FMT_MSA.3/RV_Stack,
FMT_SMF.1/RV_Stack, FDP_ACC.2/RV_Heap, FDP_ACF.1/RV_Heap, FMT_MSA.1/RV_Heap,
FMT_MSA.2/RV_Heap, FMT_MSA.3/RV_Heap, FMT_SMF.1/RV_Heap,
FDP_ACC.2/RV_Transient, FDP_ACF.1/RV_Transient, FMT_MSA.1/RV_Transient,
FMT_MSA.2/RV_Transient, FMT_MSA.3/RV_Transient, FMT_SMF.1/RV_Transient

Section 4.3.1

O.GLOBAL_ARRAYS_CONFID FDP_IFC.1/JCVM, FDP_IFF.1/JCVM, FDP_RIP.1/bArray, FDP_RIP.1/APDU, FDP_RIP.1/ODEL,
FDP_RIP.1/OBJECTS, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS, FDP_RIP.1/ADEL,
FDP_RIP.1/TRANSIENT

Section 4.3.1

O.GLOBAL_ARRAYS_INTEG FDP_IFC.1/JCVM, FDP_IFF.1/JCVM Section 4.3.1

O.NATIVE FDP_ACF.1/FIREWALL Section 4.3.1

O.OPERATE FAU_ARP.1, FDP_ROL.1/FIREWALL, FIA_ATD.1/AID, FPT_FLS.1/ADEL, FPT_FLS.1,
FPT_FLS.1/ODEL, FPT_FLS.1/Installer, FDP_ITC.2/Installer, FPT_RCV.3/Installer,
FDP_ACC.2/FIREWALL, FDP_ACF.1/FIREWALL, FPT_TDC.1, FIA_USB.1/AID, FPT_TST.1

Section 4.3.1

O.REALLOCATION FDP_RIP.1/ABORT, FDP_RIP.1/APDU, FDP_RIP.1/bArray, FDP_RIP.1/KEYS,
FDP_RIP.1/TRANSIENT, FDP_RIP.1/ADEL, FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS

Section 4.3.1

 ID-ONE COSMO V8.2
Public Security Target

 157 | 210

Security Objectives Security Functional Requirements Rationale

O.RESOURCES FAU_ARP.1, FDP_ROL.1/FIREWALL, FMT_SMR.1/Installer, FMT_SMR.1, FMT_SMR.1/ADEL,
, FPT_FLS.1/Installer, FPT_FLS.1/ODEL, FPT_FLS.1, FPT_FLS.1/ADEL, FPT_RCV.3/Installer,
FMT_SMR.1/CM, FMT_SMF.1/ADEL, , FMT_SMF.1/CM, FMT_SMF.1, FMT_MTD.1/JCRE,
FMT_MTD.3/JCRE

Section 4.3.1

O.ALARM FPT_FLS.1/Installer, FPT_FLS.1, FPT_FLS.1/ADEL, FPT_FLS.1/ODEL, FAU_ARP.1 Section 4.3.1

O.CIPHER FCS_CKM.1, FCS_CKM.2, FCS_CKM.3, FCS_CKM.4, FCS_COP.1, FPR_UNO.1,
FPR_UNO.1/USE_KEY, FCS_COP.1/PP

Section 4.3.1

O.KEY-MNGT FCS_CKM.1, FCS_CKM.2, FCS_CKM.3, FCS_CKM.4, FCS_COP.1, FPR_UNO.1,
FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS, FDP_RIP.1/APDU, FDP_RIP.1/bArray,
FDP_RIP.1/ABORT, FDP_RIP.1/KEYS, FDP_SDI.2, FDP_RIP.1/ADEL,
FDP_RIP.1/TRANSIENT, FPR_UNO.1/USE_KEY, FCS_COP.1/PP

Section 4.3.1

O.PIN-MNGT FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS, FDP_RIP.1/APDU, FDP_RIP.1/bArray,
FDP_RIP.1/ABORT, FDP_RIP.1/KEYS, FPR_UNO.1, FDP_RIP.1/ADEL,
FDP_RIP.1/TRANSIENT, FDP_ROL.1/FIREWALL, FDP_SDI.2, FDP_ACC.2/FIREWALL,
FDP_ACF.1/FIREWALL, FIA_AFL.1/CM, FIA_AFL.1/PIN, FMT_MTD.2/GP_PIN,
FMT_MTD.1/PIN, FIA_AFL.1/GP_PIN

Section 4.3.1

O.BIO-MNGT FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS, FDP_RIP.1/APDU, FDP_RIP.1/bArray,
FDP_RIP.1/ABORT, FDP_RIP.1/KEYS, FPR_UNO.1, FDP_RIP.1/ADEL,
FDP_RIP.1/TRANSIENT, FDP_ROL.1/FIREWALL, FDP_SDI.2, FDP_ACC.2/FIREWALL,
FDP_ACF.1/FIREWALL, FIA_AFL.1/CM, FIA_AFL.1/PIN_BIO, FMT_MTD.1/PIN_BIO

Section 4.3.1

O.TRANSACTION FDP_ROL.1/FIREWALL, FDP_RIP.1/ABORT, FDP_RIP.1/ODEL, FDP_RIP.1/APDU,
FDP_RIP.1/bArray, FDP_RIP.1/KEYS, FDP_RIP.1/ADEL, FDP_RIP.1/TRANSIENT,
FDP_RIP.1/OBJECTS

Section 4.3.1

O.OBJ-DELETION FDP_RIP.1/ODEL, FPT_FLS.1/ODEL Section 4.3.1

O.DELETION FDP_ACC.2/ADEL, FDP_ACF.1/ADEL, FDP_RIP.1/ADEL, FPT_FLS.1/ADEL,
FPT_RCV.3/Installer, FMT_MSA.1/ADEL, FMT_MSA.3/ADEL, FMT_SMR.1/ADEL

Section 4.3.1

 ID-ONE COSMO V8.2
Public Security Target

 158 | 210

Security Objectives Security Functional Requirements Rationale

O.LOAD FCO_NRO.2/CM, FDP_IFC.2/CM, FDP_IFF.1/CM, FDP_UIT.1/CM, FIA_UID.1/CM,
FTP_ITC.1/CM

Section 4.3.1

O.INSTALL FDP_ITC.2/Installer, FPT_RCV.3/Installer, FPT_FLS.1/Installer, Section 4.3.1

O.SCP.SUPPORT FPT_RCV.3/SCP, FPT_RCV.4/SCP Section 4.3.1

O.SCP.IC FPT_PHP.3/SCP, FCS_RNG.1/SCP Section 4.3.1

O.SCP.RECOVERY FPT_RCV.3/SCP, FRU_FLT.1/SCP, FAU_ARP.1, FPT_FLS.1, FPT_FLS.1/SCP

FPT_RCV.4/SCP

Section 4.3.1

O.RESIDENT_APPLICATION FDP_ACC.2/PP, FDP_ACF.1/PP, FDP_UCT.1/PP, FDP_ITC.1/PP, FIA_AFL.1/PP,
FIA_UAU.1/PP, FIA_UID.1/PP, FMT_MSA.1/PP, FMT_SMF.1/PP, FMT_MOF.1/PP,
FMT_SMR.2/PP, FMT_MSA.3/PP, FCS_CKM.4/PP, FMT_SMR.2/CM, FIA_UAU.1/CM

Section 4.3.1

O.CARD_MANAGEMENT FIA_UID.1/CM, FDP_IFF.1/CM, FMT_MSA.1/CM, FMT_MSA.3/CM, FMT_SMR.2/PP,
FMT_SMF.1/PP, FTP_ITC.1/CM, FCO_NRO.2/CM, FMT_SMR.2/CM, FDP_IFC.2/CM,
FCO_NRO.2/CM_DAP, FIA_UAU.7/CardIssuer, FPR_UNO.1/Key_CM, FIA_UAU.4/CardIssuer,
FPT_TDC.1/CM, FIA_ATD.1/CardManu, FIA_UAU.4/CardManu, FIA_UAU.7/CardManu,
FMT_SMF.1/CM, FMT_SMR.1/CM

Section 4.3.1

O.SECURE_COMPARE FPR_UNO.1/Applet Section 4.3.1

O.PATCH_LOADING FDP_ACC.2/PP, FDP_ACF.1/PP, FIA_UAU.1/PP, FIA_UID.1/PP, FCS_COP.1/PP,
FTP_ITC.1/CM, FCS_COP.1/CM, FDP_UIT.1/PP, FDP_ITC.1/PP, FCS_CKM.1/PP,
FTP_ITC.1/PP, FDP_UCT.1/PP, FMT_MOF.1/PP, FCS_CKM.4/PP, FAU_STG.2,
FIA_AFL.1/PP, FPT_TST.1

Section 4.3.1

Table 23– Security Objectives and SFRs - Coverage

Security Functional
Requirements

Security Objectives Rationale

 ID-ONE COSMO V8.2
Public Security Target

 159 | 210

Security Functional
Requirements

Security Objectives Rationale

FDP_ACC.2/FIREWALL O.FIREWALL, O.OPERATE, O.PIN-MNGT,O.BIO-MNGT

FDP_ACF.1/FIREWALL O.FIREWALL, O.NATIVE, O.OPERATE, O.PIN-MNGT, O.BIO-MNGT

FDP_IFC.1/JCVM O.FIREWALL, O.GLOBAL_ARRAYS_CONFID, O.GLOBAL_ARRAYS_INTEG

FDP_IFF.1/JCVM O.FIREWALL, O.GLOBAL_ARRAYS_CONFID, O.GLOBAL_ARRAYS_INTEG

FDP_RIP.1/OBJECTS O.GLOBAL_ARRAYS_CONFID, O.REALLOCATION, O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION

FMT_MSA.1/JCRE O.SID, O.FIREWALL

FMT_MSA.1/JCVM O.SID, O.FIREWALL

FMT_MSA.2/FIREWALL_JCVM O.FIREWALL

FMT_MSA.3/FIREWALL O.SID, O.FIREWALL

FMT_MSA.3/JCVM O.SID, O.FIREWALL

FMT_SMF.1 O.FIREWALL, O.RESOURCES

FMT_SMR.1 O.FIREWALL, O.RESOURCES

FCS_CKM.1 O.CIPHER, O.KEY-MNGT

FCS_CKM.2 O.CIPHER, O.KEY-MNGT

FCS_CKM.3 O.CIPHER, O.KEY-MNGT

FCS_CKM.4 O.CIPHER, O.KEY-MNGT

FCS_COP.1 O.CIPHER, O.KEY-MNGT

FDP_RIP.1/ABORT O.GLOBAL_ARRAYS_CONFID, O.REALLOCATION, O.KEY-MNGT, O.PIN-MNGT, O.BIO-MNGT,
O.TRANSACTION

 ID-ONE COSMO V8.2
Public Security Target

 160 | 210

Security Functional
Requirements

Security Objectives Rationale

FDP_RIP.1/APDU O.GLOBAL_ARRAYS_CONFID, O.REALLOCATION, O.KEY-MNGT, O.PIN-MNGT, O.BIO-MNGT,
O.TRANSACTION

FDP_RIP.1/bArray O.GLOBAL_ARRAYS_CONFID, O.REALLOCATION, O.KEY-MNGT, O.PIN-MNGT, O.BIO-MNGT,
O.TRANSACTION

FDP_RIP.1/KEYS O.GLOBAL_ARRAYS_CONFID, O.REALLOCATION, O.KEY-MNGT, O.PIN-MNGT, O.BIO-MNGT,
O.TRANSACTION

FDP_RIP.1/TRANSIENT O.GLOBAL_ARRAYS_CONFID, O.REALLOCATION, O.KEY-MNGT, O.PIN-MNGT, O.BIO-MNGT,
O.TRANSACTION

FDP_ROL.1/FIREWALL O.OPERATE, O.RESOURCES, O.PIN-MNGT, O.BIO-MNGT, O.TRANSACTION

FAU_ARP.1 O.OPERATE, O.RESOURCES, O.ALARM, O.SCP.RECOVERY

FDP_SDI.2 O.KEY-MNGT, O.PIN-MNGT, O.BIO-MNGT

FPR_UNO.1 O.CIPHER, O.KEY-MNGT, O.PIN-MNGT, O.BIO-MNGT

FPT_FLS.1 O.OPERATE, O.RESOURCES, O.ALARM, O.SCP.RECOVERY

FPT_TDC.1 O.OPERATE

FIA_ATD.1/AID O.SID, O.OPERATE

FIA_UID.2/AID O.SID

FIA_USB.1/AID O.SID, O.OPERATE

FMT_MTD.1/JCRE O.SID, O.FIREWALL, O.RESOURCES

FMT_MTD.3/JCRE O.SID, O.FIREWALL, O.RESOURCES

FDP_ITC.2/Installer O.SID, O.FIREWALL, O.OPERATE, O.INSTALL

FMT_SMR.1/Installer O.FIREWALL, O.RESOURCES

 ID-ONE COSMO V8.2
Public Security Target

 161 | 210

Security Functional
Requirements

Security Objectives Rationale

FPT_FLS.1/Installer O.OPERATE, O.RESOURCES, O.ALARM, O.INSTALL

FPT_RCV.3/Installer O.OPERATE, O.RESOURCES, O.DELETION, O.INSTALL

FDP_ACC.2/ADEL O.DELETION

FDP_ACF.1/ADEL O.DELETION

FDP_RIP.1/ADEL O.GLOBAL_ARRAYS_CONFID, O.REALLOCATION, O.KEY-MNGT, O.PIN-MNGT, O.BIO-MNGT,
O.TRANSACTION, O.DELETION

FMT_MSA.1/ADEL O.SID, O.FIREWALL, O.DELETION

FMT_MSA.3/ADEL O.SID, O.FIREWALL, O.DELETION

FMT_SMF.1/ADEL O.SID, O.FIREWALL, O.RESOURCES

FMT_SMR.1/ADEL O.FIREWALL, O.RESOURCES, O.DELETION

FPT_FLS.1/ADEL O.OPERATE, O.RESOURCES, O.ALARM, O.DELETION

FMT_MTD.1/PIN_BIO O.BIO-MNGT

FDP_RIP.1/ODEL O.GLOBAL_ARRAYS_CONFID, O.REALLOCATION, O.KEY-MNGT, O.PIN-MNGT, O.BIO-MNGT,
O.TRANSACTION, O.OBJ-DELETION

FPT_FLS.1/ODEL O.OPERATE, O.RESOURCES, O.ALARM, O.OBJ-DELETION

FCO_NRO.2/CM O.LOAD, O.INSTALL, O.CARD_MANAGEMENT

FDP_IFC.2/CM O.LOAD, O.CARD_MANAGEMENT

FDP_IFF.1/CM O.LOAD, O.CARD_MANAGEMENT

FDP_UIT.1/CM O.LOAD

FIA_UID.1/CM O.LOAD, O.CARD_MANAGEMENT

 ID-ONE COSMO V8.2
Public Security Target

 162 | 210

Security Functional
Requirements

Security Objectives Rationale

FMT_MSA.1/CM O.SID, O.FIREWALL, O.CARD_MANAGEMENT

FMT_MSA.3/CM O.SID, O.FIREWALL, O.CARD_MANAGEMENT

FMT_SMF.1/CM O.SID, O.FIREWALL, O.RESOURCES, O.CARD_MANAGEMENT

FMT_SMR.1/CM O.FIREWALL, O.RESOURCES, O.CARD_MANAGEMENT

FTP_ITC.1/CM O.LOAD, O.INSTALL, O.CARD_MANAGEMENT, O.PATCH_LOADING

FPT_TST.1 O.OPERATE, O.PATCH_LOADING

FCO_NRO.2/CM_DAP O.CARD_MANAGEMENT

FIA_AFL.1/CM O.PIN-MNGT, O.BIO-MNGT

FIA_UAU.1/CM O.RESIDENT_APPLICATION

FIA_UAU.4/CardIssuer O.CARD_MANAGEMENT

FIA_UAU.7/CardIssuer O.CARD_MANAGEMENT

FPR_UNO.1/Key_CM O.CARD_MANAGEMENT

FPT_TDC.1/CM O.CARD_MANAGEMENT

FMT_SMR.2/CM O.RESIDENT_APPLICATION, O.CARD_MANAGEMENT

FDP_ACC.2/PP O.RESIDENT_APPLICATION, O.PATCH_LOADING

FDP_ACF.1/PP O.RESIDENT_APPLICATION, O.PATCH_LOADING

FDP_UCT.1/PP O.RESIDENT_APPLICATION, O.PATCH_LOADING

FDP_ITC.1/PP O.RESIDENT_APPLICATION, O.PATCH_LOADING

FIA_AFL.1/PP O.RESIDENT_APPLICATION, O.PATCH_LOADING

FIA_UAU.1/PP O.RESIDENT_APPLICATION, O.PATCH_LOADING

 ID-ONE COSMO V8.2
Public Security Target

 163 | 210

Security Functional
Requirements

Security Objectives Rationale

FIA_UID.1/PP O.RESIDENT_APPLICATION, O.PATCH_LOADING

FMT_MSA.1/PP O.RESIDENT_APPLICATION

FMT_SMF.1/PP O.RESIDENT_APPLICATION, O.CARD_MANAGEMENT

FIA_ATD.1/CardManu O.CARD_MANAGEMENT

FIA_UAU.4/CardManu O.CARD_MANAGEMENT

FIA_UAU.7/CardManu O.CARD_MANAGEMENT

FMT_MOF.1/PP O.RESIDENT_APPLICATION, O.PATCH_LOADING

FMT_SMR.2/PP O.RESIDENT_APPLICATION, O.CARD_MANAGEMENT

FMT_MSA.3/PP O.RESIDENT_APPLICATION

FCS_COP.1/PP O.CIPHER, O.KEY-MNGT, O.PATCH_LOADING

FCS_CKM.4/PP O.RESIDENT_APPLICATION, O.PATCH_LOADING

FPT_PHP.3/SCP O.SCP.IC

FPT_FLS.1/SCP O.SCP.RECOVERY

FPT_RCV.3/SCP O.SCP.SUPPORT, O.SCP.RECOVERY

FPT_RCV.4/SCP O.SCP.SUPPORT

FRU_FLT.1/SCP O.SCP.RECOVERY

FPR_UNO.1/USE_KEY O.CIPHER, O.KEY-MNGT

FCS_RNG.1/SCP O.SCP.IC

FIA_AFL.1/PIN O.PIN-MNGT

FMT_MTD.2/GP_PIN O.PIN-MNGT

 ID-ONE COSMO V8.2
Public Security Target

 164 | 210

Security Functional
Requirements

Security Objectives Rationale

FPR_UNO.1/Applet O.SECURE_COMPARE

FMT_MTD.1/PIN O.PIN-MNGT

FIA_AFL.1/GP_PIN O.PIN-MNGT

FIA_AFL.1/PIN_BIO O.BIO-MNGT

FDP_ACC.2/RV_Stack O.FIREWALL

FDP_ACF.1/RV_Stack O.FIREWALL

FMT_MSA.1/RV_Stack O.FIREWALL

FMT_MSA.2/RV_Stack O.FIREWALL

FMT_MSA.3/RV_Stack O.FIREWALL

FMT_SMF.1/RV_Stack O.FIREWALL

FDP_ACC.2/RV_Heap O.FIREWALL

FDP_ACF.1/RV_Heap O.FIREWALL

FMT_MSA.1/RV_Heap O.FIREWALL

FMT_MSA.2/RV_Heap O.FIREWALL

FMT_MSA.3/RV_Heap O.FIREWALL

FMT_SMF.1/RV_Heap O.FIREWALL

FDP_ACC.2/RV_Transient O.FIREWALL

FDP_ACF.1/RV_Transient O.FIREWALL

FMT_MSA.1/RV_Transient O.FIREWALL

FMT_MSA.2/RV_Transient O.FIREWALL

 ID-ONE COSMO V8.2
Public Security Target

 165 | 210

Security Functional
Requirements

Security Objectives Rationale

FMT_MSA.3/RV_Transient O.FIREWALL

FMT_SMF.1/RV_Transient O.FIREWALL

FCS_COP.1/CM O.PATCH_LOADING

FDP_UIT.1/PP O.PATCH_LOADING

FCS_CKM.1/PP O.PATCH_LOADING

FTP_ITC.1/PP O.PATCH_LOADING

FAU_STG.2 O.PATCH_LOADING

 Table 24: SFRs and Security Objectives

9.3.3 Dependencies

9.3.3.1 SFRs Dependencies

Requirements CC Dependencies Satisfied Dependencies

FDP_ITC.2/Installer (FDP_ACC.1 or FDP_IFC.1) and
(FPT_TDC.1) and (FTP_ITC.1 or FTP_TRP.1)

FDP_IFC.2/CM, FTP_ITC.1/CM, FPT_TDC.1

FMT_SMR.1/Installer (FIA_UID.1)

FPT_FLS.1/Installer No Dependencies

FPT_RCV.3/Installer (AGD_OPE.1) AGD_OPE.1

FDP_ACC.2/ADEL (FDP_ACF.1) FDP_ACF.1/ADEL

FDP_ACF.1/ADEL (FDP_ACC.1) and (FMT_MSA.3) FDP_ACC.2/ADEL, FMT_MSA.3/ADEL

FDP_RIP.1/ADEL No Dependencies

 ID-ONE COSMO V8.2
Public Security Target

 166 | 210

Requirements CC Dependencies Satisfied Dependencies

FMT_MSA.1/ADEL (FDP_ACC.1 or FDP_IFC.1) and
(FMT_SMF.1) and (FMT_SMR.1)

FDP_ACC.2/ADEL, FMT_SMF.1/ADEL, FMT_SMR.1/ADEL

FMT_MSA.3/ADEL (FMT_MSA.1) and (FMT_SMR.1) FMT_MSA.1/ADEL, FMT_SMR.1/ADEL

FMT_SMF.1/ADEL No Dependencies

FMT_SMR.1/ADEL (FIA_UID.1)

FPT_FLS.1/ADEL No Dependencies

FMT_MTD.1/PIN_BIO (FMT_SMF.1) and (FMT_SMR.1) FMT_SMF.1/CM, FMT_SMR.2/CM

FDP_RIP.1/ODEL No Dependencies

FPT_FLS.1/ODEL No Dependencies

FCO_NRO.2/CM (FIA_UID.1) FIA_UID.1/CM

FDP_IFC.2/CM (FDP_IFF.1) FDP_IFF.1/CM

FDP_IFF.1/CM (FDP_IFC.1) and (FMT_MSA.3) FDP_IFC.2/CM, FMT_MSA.3/CM

FDP_UIT.1/CM (FDP_ACC.1 or FDP_IFC.1) and (FTP_ITC.1
or FTP_TRP.1)

FDP_IFC.2/CM, FTP_ITC.1/CM

FIA_UID.1/CM No Dependencies

FMT_MSA.1/CM (FDP_ACC.1 or FDP_IFC.1) and
(FMT_SMF.1) and (FMT_SMR.1)

FDP_IFC.2/CM, FMT_SMF.1/CM, FMT_SMR.1/CM

FMT_MSA.3/CM (FMT_MSA.1) and (FMT_SMR.1) FMT_MSA.1/CM, FMT_SMR.1/CM

FMT_SMF.1/CM No Dependencies

FMT_SMR.1/CM (FIA_UID.1) FIA_UID.1/CM

 ID-ONE COSMO V8.2
Public Security Target

 167 | 210

Requirements CC Dependencies Satisfied Dependencies

FTP_ITC.1/CM No Dependencies

FDP_ACC.2/FIREWALL (FDP_ACF.1) FDP_ACF.1/FIREWALL

FDP_ACF.1/FIREWALL (FDP_ACC.1) and (FMT_MSA.3) FDP_ACC.2/FIREWALL, FMT_MSA.3/FIREWALL

FDP_IFC.1/JCVM (FDP_IFF.1) FDP_IFF.1/JCVM

FDP_IFF.1/JCVM (FDP_IFC.1) and (FMT_MSA.3) FDP_IFC.1/JCVM, FMT_MSA.3/JCVM

FDP_RIP.1/OBJECTS No Dependencies

FMT_MSA.1/JCRE (FDP_ACC.1 or FDP_IFC.1) and
(FMT_SMF.1) and (FMT_SMR.1)

FDP_ACC.2/FIREWALL, FMT_SMR.1

FMT_MSA.1/JCVM (FDP_ACC.1 or FDP_IFC.1) and
(FMT_SMF.1) and (FMT_SMR.1)

FDP_ACC.2/FIREWALL, FDP_IFC.1/JCVM, FMT_SMF.1,
FMT_SMR.1

FMT_MSA.2/FIREWALL_JCVM (FDP_ACC.1 or FDP_IFC.1) and
(FMT_MSA.1) and (FMT_SMR.1)

FDP_ACC.2/FIREWALL, FDP_IFC.1/JCVM,
FMT_MSA.1/JCRE, FMT_MSA.1/JCVM, FMT_SMR.1

FMT_MSA.3/FIREWALL (FMT_MSA.1) and (FMT_SMR.1) FMT_MSA.1/JCRE, FMT_MSA.1/JCVM, FMT_SMR.1

FMT_MSA.3/JCVM (FMT_MSA.1) and (FMT_SMR.1) FMT_MSA.1/JCVM, FMT_SMR.1

FMT_SMF.1 No Dependencies

FMT_SMR.1 (FIA_UID.1) FIA_UID.2/AID

FCS_CKM.1 (FCS_CKM.2 or FCS_COP.1) and
(FCS_CKM.4)

FCS_CKM.2, FCS_CKM.4

FCS_CKM.2 (FCS_CKM.1 or FDP_ITC.1 or FDP_ITC.2)
and (FCS_CKM.4)

FCS_CKM.1, FCS_CKM.4

FCS_CKM.3 (FCS_CKM.1 or FDP_ITC.1 or FDP_ITC.2)
and (FCS_CKM.4)

FCS_CKM.1, FCS_CKM.4

 ID-ONE COSMO V8.2
Public Security Target

 168 | 210

Requirements CC Dependencies Satisfied Dependencies

FCS_CKM.4 (FCS_CKM.1 or FDP_ITC.1 or FDP_ITC.2) FCS_CKM.1

FCS_COP.1 (FCS_CKM.1 or FDP_ITC.1 or FDP_ITC.2)
and (FCS_CKM.4)

FCS_CKM.1, FCS_CKM.4

FDP_RIP.1/ABORT No Dependencies

FDP_RIP.1/APDU No Dependencies

FDP_RIP.1/bArray No Dependencies

FDP_RIP.1/KEYS No Dependencies

FDP_RIP.1/TRANSIENT No Dependencies

FDP_ROL.1/FIREWALL (FDP_ACC.1 or FDP_IFC.1) FDP_ACC.2/FIREWALL, FDP_IFC.1/JCVM

FAU_ARP.1 (FAU_SAA.1)

FDP_SDI.2 No Dependencies

FPR_UNO.1 No Dependencies

FPT_FLS.1 No Dependencies

FPT_TDC.1 No Dependencies

FIA_ATD.1/AID No Dependencies

FIA_UID.2/AID No Dependencies

FIA_USB.1/AID (FIA_ATD.1) FIA_ATD.1/AID

FMT_MTD.1/JCRE (FMT_SMF.1) and (FMT_SMR.1) FMT_SMF.1, FMT_SMR.1

FMT_MTD.3/JCRE (FMT_MTD.1) FMT_MTD.1/JCRE

FPT_TST.1 No Dependencies

FCO_NRO.2/CM_DAP (FIA_UID.1) FIA_UID.1/PP

 ID-ONE COSMO V8.2
Public Security Target

 169 | 210

Requirements CC Dependencies Satisfied Dependencies

FIA_AFL.1/CM (FIA_UAU.1) FIA_UAU.1/CM

FIA_UAU.1/CM (FIA_UID.1) FIA_UID.1/CM

FIA_UAU.4/CardIssuer No Dependencies

FIA_UAU.7/CardIssuer (FIA_UAU.1) FIA_UAU.1/CM

FPR_UNO.1/Key_CM No Dependencies

FPT_TDC.1/CM No Dependencies

FMT_SMR.2/CM (FIA_UID.1) FIA_UID.1/PP

FDP_ACC.2/PP (FDP_ACF.1) FDP_ACF.1/PP

FDP_ACF.1/PP (FDP_ACC.1) and (FMT_MSA.3) FDP_ACC.2/PP, FMT_MSA.3/PP

FDP_UCT.1/PP (FDP_ACC.1 or FDP_IFC.1) and (FTP_ITC.1
or FTP_TRP.1)

FTP_ITC.1/PP, FDP_ACC.2/PP

FDP_ITC.1/PP (FDP_ACC.1 or FDP_IFC.1) and
(FMT_MSA.3)

FDP_ACC.2/PP, FMT_MSA.3/PP

FIA_AFL.1/PP (FIA_UAU.1) FIA_UAU.1/PP

FIA_UAU.1/PP (FIA_UID.1) FIA_UID.1/PP

FIA_UID.1/PP No Dependencies

FMT_MSA.1/PP (FDP_ACC.1 or FDP_IFC.1) and
(FMT_SMF.1) and (FMT_SMR.1)

FDP_ACC.2/PP, FMT_SMF.1/PP, FMT_SMR.2/PP

FMT_SMF.1/PP No Dependencies

FIA_ATD.1/CardManu No Dependencies

FIA_UAU.4/CardManu No Dependencies

 ID-ONE COSMO V8.2
Public Security Target

 170 | 210

Requirements CC Dependencies Satisfied Dependencies

FIA_UAU.7/CardManu (FIA_UAU.1) FIA_UAU.1/PP

FMT_MOF.1/PP (FMT_SMF.1) and (FMT_SMR.1) FMT_SMF.1/PP, FMT_SMR.2/PP

FMT_SMR.2/PP (FIA_UID.1) FIA_UID.1/PP

FMT_MSA.3/PP (FMT_MSA.1) and (FMT_SMR.1) FMT_MSA.1/PP, FMT_SMR.2/PP

FCS_COP.1/PP (FCS_CKM.1 or FDP_ITC.1 or FDP_ITC.2)
and (FCS_CKM.4)

FDP_ITC.1/PP, FCS_CKM.4/PP

FCS_CKM.4/PP (FCS_CKM.1 or FDP_ITC.1 or FDP_ITC.2) FDP_ITC.1/PP

FPT_PHP.3/SCP No Dependencies

FPT_FLS.1/SCP No Dependencies

FPT_RCV.3/SCP (AGD_OPE.1) AGD_OPE.1

FPT_RCV.4/SCP No Dependencies

FRU_FLT.1/SCP (FPT_FLS.1) FPT_FLS.1/SCP

FPR_UNO.1/USE_KEY No Dependencies

FCS_RNG.1/SCP No Dependencies

FIA_AFL.1/PIN (FIA_UAU.1) FIA_UAU.1/CM

FMT_MTD.2/GP_PIN (FMT_MTD.1) and (FMT_SMR.1) FMT_SMR.2/PP, FMT_MTD.1/PIN

FPR_UNO.1/Applet No Dependencies

FMT_MTD.1/PIN (FMT_SMF.1) and (FMT_SMR.1) FMT_SMF.1/CM, FMT_SMR.2/CM

FIA_AFL.1/GP_PIN (FIA_UAU.1) FIA_UAU.1/CM

FIA_AFL.1/PIN_BIO (FIA_UAU.1) FIA_UAU.1/PP

FDP_ACC.2/RV_Stack (FDP_ACF.1) FDP_ACF.1/RV_Stack

 ID-ONE COSMO V8.2
Public Security Target

 171 | 210

Requirements CC Dependencies Satisfied Dependencies

FDP_ACF.1/RV_Stack (FDP_ACC.1) and (FMT_MSA.3) FDP_ACC.2/RV_Stack, FMT_MSA.3/RV_Stack

FMT_MSA.1/RV_Stack (FDP_ACC.1 or FDP_IFC.1) and
(FMT_SMF.1) and (FMT_SMR.1)

FMT_SMR.1, FDP_ACC.2/RV_Stack, FMT_SMF.1/RV_Stack

FMT_MSA.2/RV_Stack (FDP_ACC.1 or FDP_IFC.1) and
(FMT_MSA.1) and (FMT_SMR.1)

FMT_SMR.1, FDP_ACC.2/RV_Stack, FMT_MSA.1/RV_Stack

FMT_MSA.3/RV_Stack (FMT_MSA.1) and (FMT_SMR.1) FMT_SMR.1, FMT_MSA.1/RV_Stack

FMT_SMF.1/RV_Stack No Dependencies

FDP_ACC.2/RV_Heap (FDP_ACF.1) FDP_ACF.1/RV_Heap

FDP_ACF.1/RV_Heap (FDP_ACC.1) and (FMT_MSA.3) FDP_ACC.2/RV_Heap,
FMT_MSA.3/RV_Heap

FMT_MSA.1/RV_Heap (FDP_ACC.1 or FDP_IFC.1) and
(FMT_SMF.1) and (FMT_SMR.1)

FMT_SMR.1,
FDP_ACC.2/RV_Heap,
FMT_SMF.1/RV_Heap

FMT_MSA.2/RV_Heap (FDP_ACC.1 or FDP_IFC.1) and
(FMT_MSA.1) and (FMT_SMR.1)

FMT_SMR.1,
FDP_ACC.2/RV_Heap,
FMT_MSA.1/RV_Heap

FMT_MSA.3/RV_Heap (FMT_MSA.1) and (FMT_SMR.1) FMT_SMR.1,
FMT_MSA.1/RV_Heap

FMT_SMF.1/RV_Heap No Dependencies

FDP_ACC.2/RV_Transient (FDP_ACF.1) FDP_ACF.1/RV_Transient

FDP_ACF.1/RV_Transient (FDP_ACC.1) and (FMT_MSA.3) FDP_ACC.2/RV_Transient,
FMT_MSA.3/RV_Transient

FMT_MSA.1/RV_Transient (FDP_ACC.1 or FDP_IFC.1) and
(FMT_SMF.1) and (FMT_SMR.1)

FDP_ACC.2/RV_Transient,
FMT_SMR.1,
FMT_SMF.1/RV_Transient

 ID-ONE COSMO V8.2
Public Security Target

 172 | 210

Requirements CC Dependencies Satisfied Dependencies

FMT_MSA.2/RV_Transient (FDP_ACC.1 or FDP_IFC.1) and
(FMT_MSA.1) and (FMT_SMR.1)

FDP_ACC.2/RV_Transient,
FMT_SMR.1,
FMT_MSA.1/RV_Transient

FMT_MSA.3/RV_Transient (FMT_MSA.1) and (FMT_SMR.1) FMT_MSA.1/RV_Transient,
FMT_SMR.1

FMT_SMF.1/RV_Transient No Dependencies

FCS_COP.1/CM (FCS_CKM.1 or FDP_ITC.1 or FDP_ITC.2)
and (FCS_CKM.4)

FCS_CKM.1, FCS_CKM.4

FDP_UIT.1/PP (FDP_ACC.1 or FDP_IFC.1) and (FTP_ITC.1
or FTP_TRP.1)

FDP_ACC.2/PP, FTP_ITC.1/PP

FCS_CKM.1/PP (FCS_CKM.2 or FCS_COP.1) and
(FCS_CKM.4)

FCS_COP.1/PP, FCS_CKM.4/PP

FTP_ITC.1/PP No Dependencies

FAU_STG.2 (FAU_GEN.1)

Table 25: SFRs Dependencies

 ID-ONE COSMO V8.2
Public Security Target

 173 | 210

Rationale for the exclusion of Dependencies

The dependency FIA_UID.1 of FMT_SMR.1/Installer is discarded. This PP does not
req“ire the i”entification of the "installer" since it can be considered as part of the TSF.

The dependency FIA_UID.1 of FMT_SMR.1/ADEL is discarded. This PP does not req“ire
the identifi”ation of the "deletion manager" since it can be considered as part of the TSF.

The dependency FMT_SMF.1 of FMT_MSA.1/JCRE is discarded. The dependency
between FMT_MSA.1/JCRE and FMT_SMF.1 is not satisfied because no management
functions are required for the Java Card RE.

The dependency FAU_SAA.1 of FAU_ARP.1 is discarded. The dependency of
FAU_ARP“1 on FAU_SAA.1 assumes that ” "potential security violation" generates an
audit event. On the contrary, the events listed in FAU_ARP.1 are self-contained
(arithmetic exception, ill-formed bytecodes, access failure) and ask for a straightforward
reaction of the TSFs on their occurrence at runtime. The JCVM or other components of
the TOE detect these events during their usual working order. Thus, there is no
mandatory audit recording in this PP.

The dependency FAU_GEN.1 of FAU_STG.2 is discarded. The TOE posseses a Kill Card
area, where failures are recorded.

9.3.3.2 SARs Dependencies

Requirements CC Dependencies Satisfied Dependencies

ADV_ARC.1 (ADV_FSP.1) and (ADV_TDS.1) ADV_FSP.5, ADV_TDS.4

ADV_FSP.5 (ADV_IMP.1) and (ADV_TDS.1) ADV_IMP.1, ADV_TDS.4

ADV_IMP.1 (ADV_TDS.3) and (ALC_TAT.1) ADV_TDS.4, ALC_TAT.2

ADV_TDS.4 (ADV_FSP.5) ADV_FSP.5

ADV_INT.2 (ADV_IMP.1) and (ADV_TDS.3) and
(ALC_TAT.1)

ADV_IMP.1, ADV_TDS.4,
ALC_TAT.2

AGD_OPE.1 (ADV_FSP.1) ADV_FSP.5

AGD_PRE.1 No Dependencies

ALC_CMC.4 (ALC_CMS.1) and (ALC_DVS.1) and
(ALC_LCD.1)

ALC_CMS.5, ALC_DVS.2,
ALC_LCD.1

ALC_CMS.5 No Dependencies

ALC_DEL.1 No Dependencies

ALC_DVS.2 No Dependencies

ALC_LCD.1 No Dependencies

ALC_TAT.2 (ADV_IMP.1) ADV_IMP.1

ASE_CCL.1 (ASE_ECD.1) and (ASE_INT.1) and
(ASE_REQ.1)

ASE_ECD.1, ASE_INT.1,
ASE_REQ.2

 ID-ONE COSMO V8.2
Public Security Target

 174 | 210

Requirements CC Dependencies Satisfied Dependencies

ASE_ECD.1 No Dependencies

ASE_INT.1 No Dependencies

ASE_OBJ.2 (ASE_SPD.1) ASE_SPD.1

ASE_REQ.2 (ASE_ECD.1) and (ASE_OBJ.2) ASE_ECD.1, ASE_OBJ.2

ASE_SPD.1 No Dependencies

ASE_TSS.1 (ADV_FSP.1) and (ASE_INT.1) and
(ASE_REQ.1)

ADV_FSP.5, ASE_INT.1,
ASE_REQ.2

ATE_COV.2 (ADV_FSP.2) and (ATE_FUN.1) ADV_FSP.5, ATE_FUN.1

ATE_DPT.3 (ADV_ARC.1) and (ADV_TDS.4) and
(ATE_FUN.1)

ADV_ARC.1, ADV_TDS.4,
ATE_FUN.1

ATE_FUN.1 (ATE_COV.1) ATE_COV.2

ATE_IND.2 (ADV_FSP.2) and (AGD_OPE.1) and
(AGD_PRE.1) and (ATE_COV.1) and
(ATE_FUN.1)

ADV_FSP.5, AGD_OPE.1,
AGD_PRE.1, ATE_COV.2,
ATE_FUN.1

AVA_VAN.5 (ADV_ARC.1) and (ADV_FSP.4) and
(ADV_IMP.1) and (ADV_TDS.3) and
(AGD_OPE.1) and (AGD_PRE.1) and
(ATE_DPT.1)

ADV_ARC.1, ADV_FSP.5,
ADV_IMP.1, ADV_TDS.4,
AGD_OPE.1, AGD_PRE.1,
ATE_DPT.3

 Table 26: SARs Dependencies

9.3.4 Rationale for the Security Assurance Requirements

The ID-One Cosmo V8.2 product claims a conformance to the Common Criteria level EAL5,
augmented with the component ALC_DVS.2 (sufficiency of security measures), AVA_VAN.5
(advanced methodical vulnerability analysis).

9.3.5 AVA_VAN.5 Advanced methodical vulnerability analysis

The TOE is intended to operate in h“stile environments. AVA_VAN.5 "Advanced me”hodical
vulnerability analysis" is considered as the expected level for Java Card technology-based
products hosting sensitive applications, in particular in payment and identity areas.
AVA_VAN.5 has dependencies on ADV_ARC.1, ADV_FSP.1, ADV_TDS.3, ADV_IMP.1,
AGD_PRE.1 and AGD_OPE.1. All of them are satisfied by EAL5.

9.3.6 ALC_DVS.2 Sufficiency of security measures

Development security is concerned with physical, procedural, personnel and other technical
measures that may be used in the development environment to protect the TOE and the
embedding product. The standard ALC_DVS.1 requirement mandated by EAL5 is not
enough. Due to the nature of the TOE and embedding product, it is necessary to justify the

 ID-ONE COSMO V8.2
Public Security Target

 175 | 210

sufficiency of these procedures to protect their confidentiality and integrity. ALC_DVS.2 has
no dependencies.

10 TOE Summary Specification

10.1 TOE Summary Specification

SF_ATOMIC_TRANSACTION

This TSF provides means to execute a sequence of modifications and allocations on the
persistent memory so that either all of them are completed, or the TOE behaves as if none
of them had been attempted. The transaction mechanism is used for updating internal
TSF data as well as for performing different functions of the TOE, like installing a new
package on the card. This TSF is also available for applet instances through the
javacard.framework.JCSystem, javacard.framework.Util and
javacardx.framework.util.ArrayLogic classes. The first class provides the applet instances
with methods for starting, aborting and committing a sequence of modifications of the
persistent memory. The other classes provide methods for atomically copying arrays. This
TSF ensures that the following data is never updated conditionally:

o The validated flag of the PINs

o The validated flag of the BIO template

o The reason code of the CardException and CardRuntimeException

o Transient objects

o Global arrays, like the APDU buffer and the buffer that the applet instances use to
store installation data

o Any intermediate result state in the implementation instance of the Checksum,
Signature, Cipher, and Message Digest classes of the JavaCard API.

This TSF also performs the actions necessary to roll back to a safe state upon interruption
of the following procedures, for example because of a card withdrawal or an unexpected
fatal error:

o Loading and linking of a package

o Installing a new applet instance

o Deleting a package

o Deleting an applet instance

o Collecting unreachable objects

o Reading from and writing to a static field, instance field or array position

o Populating, updating or clearing a cryptographic key

o Modifying a PIN value

Finally, this TSF ensures that no transaction is in progress when a method of an applet
instance is invoked for installing, deselecting, selecting or processing an APDU sent to the
applet instance. Concerning memory limitations on the transaction journal, this TSF
guarantees that an exception is thrown when the maximal capacity is reached. The TSF
preserves a secure state when such limit is reached. Atomic Transactions are detailed in
the chapter Atomicity and Transactions of the [R7] and in the documentation associated to
the JCSystem class in the [R6].

 ID-ONE COSMO V8.2
Public Security Target

 176 | 210

SF_CARD_CONTENT_MANAGEMENT

This TSF ensures the following functionalities:

o Loading (Section 9.3.5 of [R12]): This function allows the addition of code to
mutable persistent memory in the card. During card content loading, this TSF
checks that the required packages are already installed on the card. If one of the
required packages does not exist, or if the version installed on the card is not
binary compatible with the version required, then the loading of the package is
rejected. Loading is also rejected if the version of the CAP format of the package
is newer than the one supported by the TOE. If any of those checks fails, a
suitable error message is returned to the CAD.

o Installation (Section 9.3.6 of [R12]): This function allows the Installer to create an
instance of a previously loaded Applet subclass and make it selectable. In order to
do this, the install() method of the Applet subclass is invoked using the context of
that new instance as the currently active context. If this method returns with an
exception, the exception is trapped and the smart card rolls back to the state
before starting the installation procedure.

o Deletion (Section 9.5 of [R12]): This function allows the Applet Deletion Manager
to remove the code of a package from the card, or to definitely deactivate an
applet instance, so that it becomes no longer selectable. This TSF performs
physical removal of those packages and applet data stored in NVRAM, while only
logical removal is performed for packages in ROM. This TSF checks that the
package or applet actually exists, and that no other package or applet depends on
it for its execution. In this case, the entry of the package or applet is removed from
the registry, and all the objects on which they depend are garbage collected.
Otherwise, a suitable error is returned to the CAD. The deletion of the Applet
Deletion Manager, the Installer or any of the packages required for implementing
the Java Card platform Application Programming Interface (Java Card API) is not
allowed.

o Extradition (Section 9.4.1 of): This function allows the Installer to associate load
files or applet instances to a Security Domain different than their currently
associated Security Domain. It is also used to associate a Security Domain to
another Security Domain or to itself thus creating Security Domains hierarchies. If
this method returns with an exception, the exception is trapped and the smart card
rolls back to the state before starting the extradition procedure.

o Registry update (Section 9.4.2 of): This function allows the Installer to populate,
modify or delete elements of the Registry entry of applet instances. If this method
returns with an exception, the exception is trapped and the smart card rolls back
to the state before starting the extradition procedure.

SF_CARD_MANAGEMENT_ENVIRONMENT

This TSF is in charge of initializing and managing the internal data structures of the Card
Manager. During the initialization phase of the card, this TSF creates the Installer and the
Applet Deletion Manager and initializes their internal data structures. The internal data
structures of the Card Manager includes the Package and Applet Registries, which
respectively contains the currently loaded packages and the currently installed applet
instances, together with their associated AIDs. This TSF is also in charge of dispatching
the APDU commands to the applets instances installed on the card and keeping traces of
which are the currently active ones. It therefore handles sensitive TSF data of other
security functions, like the Firewall or the Remote Access Control function.

 ID-ONE COSMO V8.2
Public Security Target

 177 | 210

SF_CARDHOLDER_VERIFICATION

This TSF enables applet instances to authenticate the sender of a request as the true
cardholder. Applet instances have access to these services through the OwnerPIN class.
Cardholder authentication is performed using the following security attributes:

o A secret enabling to authenticate the cardholder

o The maximum number of consecutive unsuccessful comparison attempts that are
admitted

o A counter of the number of consecutive unsuccessful comparison attempts that
have been performed so far

o The current life cycle state of the secret (reference value). This state is always
updated, even if the modification is in the scope of an open transaction. Each time
an attempt is made to compare a value to the reference value, and prior to the
comparison being actually performed, if the reference is blocked, then the
comparison fails and the reference value is not accessed. Otherwise, the try
counter is decremented by one. This operation is always performed, even if it is in
the scope of an open transaction. If the comparison is successful, then the try
counter is reset to the try limit. When the try counter reaches zero, the reference
enters into a blocked state, and cannot be used until it is unblocked. Cardholder
Verification Method services are implemented to resist to environmental stress
and glitches and include measures for preventing information leakage through
covert channels. In particular, unsuccessful authentication attempts consume the
same power and execution time than successful ones. The Cardmanager uses
the class OwnerPin to provide the services to the Applet that want benefit of the
Shared GP_PIN.

SF_CLEARING_OF_SENSITIVE_INFORMATION

This TSF clears all the data containers that hold sensitive information when that
information is no longer used. This includes:

o The contents of the memory blocks allocated for storing class instances, arrays,
static field images and local variables, before allocating a fresh block

o The objects reclaimed by the Java Card VM garbage collector

o The code of the deleted packages

o The objects accessible from a deleted applet instance

o All the information contained in the packages that is not necessary for executing
the code of the applets, like the Descriptor Component, the Reference Location
Component and the Constant Pool of the CAP files

o The contents of the APDU buffer after processing an APDU command

o The content of the bArray argument of the Applet.install method after a new applet
instance is installed

o The content of CLEAR ON DESELECT transient objects owned by an applet
instance that has been deselected when no other applets from the same package
are active on the card

o The content of all transient objects after a card reset

o The reason code contained in the instances of a CardException or
CardRuntimeException classes after a card reset

o The validated flag of the PINs after a card reset

o The validated flag of the BIO templates after a card reset

o The contents of the cryptographic buffer after performing cryptographic operations

 ID-ONE COSMO V8.2
Public Security Target

 178 | 210

o The content of the input parameters of a remote method invocation after returning
the response to the terminal

Application Note:

This function is in charge of clearing the information contained in the objects that are no
longer accessible from the installed packages and applet instances. Clearing is performed
on demand of an applet instance through the JCSystem.requestObjectDeletion() method.

SF_DAP_VERIFICATION

An Application Provider may require that its Application code to be loaded on the card is
checked for integrity and authen ticity. The DAP Verification privil’ge of the Application
Provider's Security Domain detailed in Section 9.2.1 of provides this service on behalf of
an Application Provider. A Controlling Authority may require that all Application code to be
loaded onto the card shall be checked for integrity and authenticity. The Mandated DAP
Verification privile’e of the Controlling Authority's Security Domain detailed in Section 9.2.1
of provides this service on behalf of the Controlling Authority. The keys and algorithms to
be used for DAP Verification or Mandated DAP Verification are implicitly known by the
corresponding Security domain.

SF_DATA_COHERENCY

As coherency of data should be maintained, and as power is provided by the CAD and
might be stopped at all moment (by tearing or attacks), a transaction mechanism is
provided. When updating data, before writing the new ones, the old ones are saved in a
specific memory area. If a failure appears, at the next start-up, if old data are valid in the
transaction area, the system restores them for staying in a coherent state.

SF_DATA_INTEGRITY

Some of the data in non volatile memory can be protected. Keys, PIN, BIO templates
package and patch, if any code are protected with integrity value. When reading and
writing operation are, the integrity value is checked and maintained valid. In case of
incoherency, an exception is raise to prevent the bad use of the data. SecureStore is a
mean for protecting JavaCard data in integrity.

SF_ENCRYPTION_AND_DECRYPTION

This TSF provides the applet instances with mechanisms for encrypting and decrypting the
contents of a byte array.

The ciphering algorithms are available to the applets through the Cipher class of the Java
Card API, ISOSecureMessaging class and SecureChannel class. The length of the key to
be used for the ciphering operation is defined by the applet instance when the key is
generated. Before encrypting or decrypting the byte array, the TSF verifies that the
specified key has been previously initialized, and that is in accordance with the specified
ciphering algorithm (DES, RSA, etc). The TSF also checks that it has been provided with
all the information necessary for the encryption/decryption operation. Once the ciphering
operation is performed, the internal TSF data used for the operation like the ICV is
cleared. Ciphering operations are implemented to resist to environmental stress and
glitches and include measures for preventing information leakage through covert
channels.

Mechanisms of encrypting and decrypting for Secure Messaging are available to the
applets through the SecureChannel (Global Platform Card 2.2" specification) and
ISOSecureMessaging (Proprietary API) classes.

 ID-ONE COSMO V8.2
Public Security Target

 179 | 210

SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL

Off-card entity authentication is achieved by initiating a Secure Channel and provides
assurance to the card that it is communicating with an authenticated off-card entity. If any
step in the off-card authentication process fails, the process shall be restarted (i.e. new
session keys generated). The Secure Channel initiation and off-card entity authentication
implies the creation of session keys derived from card static key(s).

SF_EXCEPTION

In case of abnormal event: data unavailable on an allocation, illegal access to a data, the
system owns an internal mechanism that allows to stop the code execution and raise “n
exception”

SF_FIREWALL

This TSF enforces the Firewall security policy and the information flow control policy at
runtime. The former policy controls object sharing between different applet instances, and
between applet instances and the Java Card RE. The latter policy controls the access to
global data containers shared by all applet instances. This TSF is enforced by the Java
Card platform Virtual Machine (Java Card VM). During the execution of an applet, the
Java Card VM keeps track of the applet instance that is currently performing an action.
This information is known as the currently active context. Two kinds of contexts are
considered: applet instances contexts and the Java Card RE context, which has special
privileges for accessing objects. The TSF makes no difference between instances of
applets defined in the same package: all of them belong to the same active context. On
the contrary, instances of applets defined in different packages belong to different
contexts. Each object belongs to the context that was active when the object was
allocated. Initially, when the Java Card VM is launched, the context corresponding to the
applet instance selected for execution becomes the first active context. Each time an
instance method is invoked on an object, a context switch is performed, and the owner of
the object becomes the new active context. On the contrary, the invocation of a static
method does not entail a context switch. Before executing a bytecode that accesses an
object, the object's owner is checked against the currently active context in order to
determine if access is allowed. Access is determined by the Firewall access control rules
specified in the chapter Applet Isolation and Object Sharing of the [R7]. Those rules
enable controlled sharing of objects through interface methods that the object's owner
explicitly exports to other applet instance, and provided that the object's owner explicitly
accepts to shar it upon request of the method's invoker.

SF_GP_DISPATCHER

While a Security Domain is selected, this function tests for every command, according to
the Security Domain life cycle state and the Card life cycle state, if security requirements
are needed (if a Secure Channel is require).

SF_HARDWARE_OPERATING

When needed, at each start up or before first use, a self test of each hardware functional
module is done, i.e.: DES, RSA, RNG implements a know calculus and checks if the result
is correct. When executing, external hardware event can be trigged to prevent attacks or
bad use. Temperature, frequency, voltage, light, glitch are considered as abnormal
environmental conditions and put the card in frozen state. The TOE shall monitor IC
detectors (e.g. out-of-range voltage, temperature, frequency, active shield, memory aging)

 ID-ONE COSMO V8.2
Public Security Target

 180 | 210

and shall provide automatic answers to potential security violations through interruption
routines that leave the device in a secure state.

The TOE with the IC has detectors of operational conditions. It shall resist to attackers
with high-attack potential according to [R36] characterisation, in particular, to leakage
attacks, intrusive (e.g. probing, fault injection) and non-intrusive (e.g. SPA, DPA, EMA)
attacks, operational conditions manipulation (voltage, clock, temperature, etc) and
physical attacks aiming at modification of the IC content or behaviour. To be compliant to
related SUN Protection Profile [R5], the off-card verifier is mandatory in this ST; however,
this TOE runs some additional verification at execution time. These verifications ensure
that: 1. No read accesses are made to Java Card System code, data belonging to another
application, data belonging to the Java Card System, 2. No write accesses ’re made to
another application's code, Java Card System code, another application's data Java Card
System or API data, 3. No execution of code is done from a method or from a method
fragment belonging to another package (including execution on arbitary data).

SF_KEY_ACCESS

This TSF enforces secure access to all cryptographic keys of the card: RSA keys, DES
keys, EC keys, AES keys

SF_KEY_AGREEMENT

This TSF provides the applet instances with a mechanism for supporting key agreement
algorithms such as Diffie-Hellman and EC Diffie-Hellman [IEEE P363].

SF_KEY_DESTRUCTION

This TSF disables the use of a key both logically and physically. When a key is cleared,
the internal life cycle of the key container is moved to a state in which no operation is
allowed. Applet instances may invoke this TSF through the interfaces declared in the
javacard.security package of the Java Card API.

SF_KEY_DISTRIBUTION

This TSF enforces the distribution of all the cryptographic keys of the card using the
method specified in that SFR.

SF_KEY_GENERATION

This TSF enforces the creation and/or the oncard generation of all the cryptographic keys
of the card using the method specified in that SFR.

SF_KEY_MANAGEMENT

This function enables key sets management (PIN, BIO). It allows creating updating and
deleting key sets. It is used to load keys to the card. It also implements verification of Key
sets attributes: key lengths, key types... and enforces the loaded keys integrity

SF_MANUFACTURER_AUTHENTICATION

At prepersonalisation phase, manufacturer authentication at the beginning of a
communication session is mandatory prior to any relevant data being transferred to the
TOE.

SF_MESSAGE_DIGEST

 ID-ONE COSMO V8.2
Public Security Target

 181 | 210

This TSF provides the applet instances with a mechanism for generating an (almost)
unique value for a byte array content. That value can be used as a short representative of
the information contained in the whole byte array. The hashing algorithms are available to
the applets through the MessageDigest class of the Java Card API. Before generating the
hash value, the TSF verifies that it has been provided with all the information necessary
for the hashing operation. For those algorithms that do not pad the messages, the TSF
checks that the information is block aligned before computing its hash value. Message
digest generation is implemented to resist to environmental stress and glitches and
include measures for preventing information leakage through covert channels.

SF_MEMORY_FAILURE

When using the non volatile memory, in case of a bad writing, internal mechanisms are
implemented to prevent an incoherency of the written data. In case of an impossible
writing, an exception is raised.

SF_PREPERSONALISATION

This function is in charge of pre-initializing the internal data structures, loading the
configuration of the card and loading patch code if needed.

SF_RANDOM_NUMBER

This TSF provides to card manager, resident application, applets a mechanism for
generating challenges and key values. Random number generators are available to the
applets through the RandomData class of the Java Card API. Off-card entity
authentication is achieved through the process of initiating a Secure Channel and
provides assurance to the card that it is communicating with an authenticated off-card
entity. If any step in the off-card authentication process fails, the process shall be
restarted (i.e. new session keys generated). The Secure Channel initiation and off-card
entity authentication implies the creation of session keys derived from card static key(s).

SF_RESIDENT_APPLICATION_DISPATCHER

During prepersonalisation phase, this function tests for every command if manufacturer
authentication is required.

SF_RUNTIME_VERIFIER

This security functionality ensures the secure processing of information by ensuring the
following elements:

o Stack Control

o Heap Control

o Transient Control

Information on the processing is described on the related FDP_ACF.1.

SF_SECURITY_FUNCTIONS_OF_THE_IC

The TOE uses the security functions of the IC. The list of the security function is presented in
the ST lite of the IC component.

SF_SIGNATURE

 ID-ONE COSMO V8.2
Public Security Target

 182 | 210

This TSF provides the applet instances with a mechanism for generating an electronic
signature of a byte array content and verifying an electronic signature contained in a byte
array. An electronic signature is made of a hash value of the information to be signed
encrypted with a secret key. The verification of the electronic signature includes
decrypting the hash value and checking that it actually corresponds to the block of signed
bytes.

The signature algorithms are available to the applets through the javacard.Signature class
of the Java Card API, ISOSecureMesssaging class and SecureChannel class. The length
of the key to be used for the signature is defined by the applet instance when the key is
created. Before generating the signature, the TSF verifies that the specified key is suitable
for the operation (secret keys for signature generation), that it has been previously
initialized, and that is in accordance with the specified signature algorithm (DES, RSA,
etc). The TSF also checks that it has been provided with all the information necessary for
the signature operation. For those algorithms that do not pad the messages, the TSF
checks that the information to be signed is block aligned before performing the signature
operation. Once the signature operation is performed, the internal TSF data used for the
operation like the ICV is cleared. Signature operations are implemented to resist to
environmental stress and glitches and include measures for preventing information
leakage through covert channels.

Mechanisms of signature for Secure Messaging are available to the applets through the
SecureChannel (Global Platform Card 2.2 specification) and ISOSecureMessaging
(Proprietary API) classes. The signature is included in Data Objects.

SF_UNOBSERVABILITY

This function assures that processing based on secure elements of the TOE does not
reveal any information on those elements. For example, observation of a PIN verification
cannot reveal the PIN value, observation a cryptographic computation cannot give
information on the key.

 ID-ONE COSMO V8.2
Public Security Target

 183 | 210

10.2 SFRs and TSS

10.2.1 SFRs and TSS - Rationale

CoreG_LC Security Functional Requirements

Firewall Policy

FDP_ACC.2/FIREWALL The access control policy is ensured by SF_FIREWALL, it controls
whether an instance of an applet class declared in a package (subject) may read, write or
execute an instance method (operations) of an object (object).

FDP_ACF.1/FIREWALL FIREWALL Security attribute based access control -which security
attributes is attached to which subject/object of the policy- is specified in the
SF_FIREWALL.

FDP_IFC.1/JCVM This requirement is fulfilled by SF_FIREWALL, this TSF enforces the
information flow control rules of Firewall security policy. It controls whether an applet
instance or javacard RE (subject) may store into persistent memory a reference of a
global shared data container (objects).

FDP_IFF.1/JCVM This requirement is fulfilled by SF_FIREWALL. This TSF controls
operations, based on current active context implemented in SF_FIREWALL.

FDP_RIP.1/OBJECTS SF_CLEARING_OF_SENSITIVE_INFORMATION. The TSF clears
the contents of the freshly allocated objects before releasing the object to the applet. On
the TSF, memory is cleared when the object is removed during Garbage Collection. All
this TSFI lead to Garbage Collection

FMT_MSA.1/JCRE SF_FIREWALL When an instance method is applied to an object, this
TSF is in charge of performing a context switch to the context of the object's owner. The
TSF is also in charge of dispatching the APDU commands to the applets instances
installed on the card and keeping trace of which are the currently active ones.

FMT_MSA.1/JCVM SF_FIREWALL When an instance method is applied to an object, this
TSF is in charge of performing a context switch to the context of the object's owner. The
TSF is also in charge of dispatching the APDU commands to the applets instances
installed on the card and keeping traces of which are the currently active ones.

FMT_MSA.2/FIREWALL_JCVM SF_FIREWALL When an applet instance is selected for
execution, this TSF initializes the currently active context with (the context of) that
instance. Applet selection includes the verification that the instance actually exists on the
card. Then, during the execution of the Java Card VM, this TSF propagates that secure
value the other security attributes involved in the Firewall policy (object's owner).

FMT_MSA.3/FIREWALL SF_FIREWALL The TSF initializes the security attributes of the
Firewall and Java Card VM security policies when an applet instance is selected for
execution, when an instance method is invoked and when an object is allocated. This TSF
does not provide means for a subject to override those initial values.

 ID-ONE COSMO V8.2
Public Security Target

 184 | 210

FMT_MSA.3/JCVM SF_FIREWALL. The TSF initializes the security attributes of the Firewall
and Java Card VM security policies when an applet instance is selected for execution,
when an instance method is invoked and when an object is allocated. This TSF does not
provide means for a subject to override those initial values.

FMT_SMF.1 This SFR is fulfilled by SF_CARD_CONTENT_MANAGEMENT, when an
instance method is applied to an object; this TSF is in charge of performing a context
switch to the context of the object's owner.

FMT_SMR.1 This requirement is full filled by SF_FIREWALL, this TSF uses a special value
for the currently active context that identifies the Java Card RE (JCRE) and Java Card VM
(JCVM).

Application Programming Interface

FCS_CKM.1 This requirement is fulfilled by SF_KEY_GENERATION. It enforces the creation
and/or the oncard generation of all the cryptographic keys of the card.

FCS_CKM.2 This SFR is fulfilled by SF_KEY_DISTRIBUTION. It enforces the distribution of
all the cryptographic keys of the card using the method specified in that SFR.

FCS_CKM.3 This SFR is implemented by SF_KEY_ACCESS. It enforces the access of all
the cryptographic keys of the card using the method specified in that SFR

FCS_CKM.4 SF_KEY_DESTRUCTION fulfils this SFR, it enforces the destruction of all the
cryptographic keys of the card using the method specified in that SFR.

FCS_COP.1 This SFR is verified by the following set of Security functionalities:

o All signature and verification operation by RSA, TDES and AES are fulfilled by
SF_SIGNATURE, also fulfilled by SF_KEY_AGREEMENT by providing the applet
instances with a mechanism for supporting key agreement algorithms such EC
Diffie-Hellman [R27].

o This requirement by using SF_ENCRYPTION_AND_DECRYPTION provides the
applet instances with a mechanism for encrypting and decrypting the contents of a
byte array.

o SF_SIGNATURE permits to hash functions with SHA-1, SHA-224, SHA-256,
SHA-384 and SHA-512. It is also fulfilled by SF_MESSAGE_DIGEST by providing
applet instances with a mechanism for generating an (almost) unique value for the
contents of a byte array. Also fulfilled by SF_KEY_AGREEMENT by providing the
applet instances with a mechanism for supporting key agreement algorithms such
as EC Diffie-Hellman [R27].

 ID-ONE COSMO V8.2
Public Security Target

 185 | 210

FDP_RIP.1/ABORT Any reference to an object instance created during an aborted
transaction- see SF_ATOMIC_TRANSACTIONS- is cleaned by using
SF_CLEARING_OF_SENSITIVE_INFORMATION.

FDP_RIP.1/APDU The TSF SF_CLEARING_OF_SENSITIVE_INFORMATION enforces the
clearing of the previous contents of the APDU buffer before processing a new APDU.

FDP_RIP.1/bArray The TSF SF_CLEARING_OF_SENSITIVE_INFORMATION enforces the
clearing of the previous contents of the buffer containing the installation data of an applet
instance before installing a new one.

FDP_RIP.1/KEYS In order to perform a cryptographic operation, the key involved in the
operation has to be copied out of its secure container into the cryptographic buffer of the
IC co-processor. This function is in charge of ensuring that such buffer is cleared
immediately after completing the operation, the clearing is done by
SF_CLEARING_OF_SENSITIVE_INFORMATION.

FDP_RIP.1/TRANSIENT This function is in charge of clearing the information contained in
the transient objects when a clearing event arrives (deselection or card reset), invoked by
SF_CLEARING_OF_SENSITIVE_INFORMATION.

FDP_ROL.1/FIREWALL SF_ATOMIC_TRANSACTION, when the operations specified are
not completed, this TSF is in charge of setting back the state of the persistent memory as
it was before they were started. As required in chapter 7 of the [R7] and the [R6], this TSF
does not undo those modifications performed on the RAM, like the modification of the
APDU buffer, the installation buffer, the transient objects, the try counters of the PINs and
the reason code of the card exceptions. If the commit capacity is reached, this TSF
prevents any further modification of the persistent memory

Card Security Management

FAU_ARP.1 The SF_FIREWALL throws an instance of the SecurityException class when an
attempt to violate a security policy rule is detected.

FDP_SDI.2 The TSF SF_DATA_INTEGRITY ensures integrity of PIN, Keys (CRC 16) and
application code (package and patch, if any) using CRC 32. A loss of integrity increases
killcard counter.

FPR_UNO.1 The TSF SF_DATA_INTEGRITY ensures integrity of PIN, Keys (CRC 16) and
application code (package and patch, if any) using CRC 32. A loss of integrity increases
killcard counter.

FPT_FLS.1 This SFR is enforced by the following TSF:

o SF_ATOMIC_TRANSACTIONS: card tearing and power failures and abortion of a
transaction in an unexpected context

o SF_FIREWALL: violations of the Firewall access control rules,

o SF_CARD_CONTENT_MANAGEMENT: insufficient resources to install a
package and CAP file inconsistency errors.

 ID-ONE COSMO V8.2
Public Security Target

 186 | 210

FPT_TDC.1 This SFR is fulfilled by
SF_CARD_CONTENT_MANAGEMENT_ENVIRONMENT. It interprets cap files: bytes
code and data arguments.

AID Management

FIA_ATD.1/AID This SFR is fulfilled by SF_ARD_CONTENT_MANAGEMENT: It controls the
addition of new entries in the Applet Registry. Each time a new entry is added, the TSF
controls that it contains the information specified in that SFR. This is done on package
loading and applet installation.

FIA_UID.2/AID The TSF SF_FIREWALL identifies the applet instance requesting access to
objects through the currently active context. Retrieving the currently active context always
precedes the execution of the bytecodes under the control of the Firewall, as this
information is required for checking the premises of its access control rules.

FIA_USB.1/AID The TSF SF_FIREWALL uses the security attribute introduced in the SFR to
check whether an applet instance (subject) representing an Application Provider (user)
may access an object through the firewall.

FMT_MTD.1/JCRE SF_CARD_CONTENT_MANAGEMENT fulfils this SFR, it controls the
creation of new applet instances on the card. Each time an applet instance is created, the
Installer adds an entry for it in the Applet Registry

FMT_MTD.3/JCRE This SFR is fulfilled by SF_CARD_CONTENT_MANAGEMENT: it
controls that only secure values are assigned as attributes of an applet instance. Invalid
AIDs for the applet instances, like an AID that is already in use, are also rejected

InstG Security Functional Requirements

FDP_ITC.2/Installer This SFR is implemented by SF_CARD_CONTENT_MANAGEMENT:
The SF ensures safe package loading and applet installation process. It modifies the CAP
files to produce the TOE intern representation of the loaded package. It also performs
coherency checks on the CAP files and verifies the export references.

FMT_SMR.1/Installer This SFR is implemented by SF_CARD_CONTENT_MANAGEMENT:
The TSF is in charge of creating the applet instance that plays the role of the Applet
Installation Manager.

FPT_FLS.1/Installer This SFR is fulfilled by the following SF:

o The SF_CARD_CONTENT_MANAGEMENT: is in charge of checking that all the
conditions for safely installing a package or an applet instance are fulfilled during
the installation procedure. If conditions cannot be verified the installation is
deemed unsuccessful and either an exception is thrown or the card is frozen,
depending of the failure severity. Card tearing or reset also cause an installation
failure.

o SF_ATOMIC_TRANSACTIONS is in charge of rolling back to a secure state when
the installation of a package or an applet instance is aborted

 ID-ONE COSMO V8.2
Public Security Target

 187 | 210

FPT_RCV.3/Installer This SFR is fulfilled by the following SF:

o SF_Card Content Management: In case of severe failure during package or applet
installation, the card is frozen (KillCard). Such failures (for example the loading of
a CAP file with an invalid format) are considered as security problems. The
maintenance mode is represented by the frozen state of the card. The secure
state is then reached on next card reset where Garbage Collector is launch to
retrieve lost memory and where the transaction mechanism allows retrieving the
initial state.

o SF_Atomic Transactions: The TSF is in charge of rolling back to a secure state
when the installation of a package or an applet instance is aborted

ADELG Security Functional Requirements

FDP_ACC.2/ADEL The access control policy for deletion is made by
SF_CARD_CONTENT_MANAGEMENT, it controls whether the Applet Deletion Manager
(subject) may delete (operation) a package or an applet instance (object).

FDP_ACF.1/ADEL The access control policy for deletion is made by
SF_CARD_CONTENT_MANAGEMENT, it controls whether the Applet Deletion Manager
(subject) may delete (operation) a package or an applet instance (object).

FDP_RIP.1/ADEL The TSF SF_CLEARING_OF_SENSITIVE_INFORMATION renders
inaccessible the code of a deleted package and the class instances and arrays allocated
by a deleted applet instance.

FMT_MSA.1/ADEL The ADEL access policy is implemented in
SF_CARD_MANAGEMENT_ENVIRONMENT, this TSF keeps track of which applet
instances are currently active on which logical channels. Only the Card Manager (which in
[R5] is identified with the Java Card RE role) is allowed to associate or remove the
association between an applet instance and a logical channel. These actions are
performed as part of command dispatching

FMT_MSA.3/ADEL The SF_CARD_CONTENT_MANAGEMENT enforces the assignment of
restrictive values for the security attributes of the Applet Deletion policy.

FMT_SMF.1/ADEL Modifying the active applet security context is done by
SF_CARD_MANAGEMENT_ENVIRONMENT, it's allowed to card manager.

FMT_SMR.1/ADEL This SFR is fulfilled by SF_CARD_MANAGEMENT_ENVIRONMENT: it
keeps track of which applet instances are currently active on which logical channels. Only
the Card Manager is allowed to associate or remove the association between an applet
instance and a logical channel.

FPT_FLS.1/ADEL This SFR is ensured by the following TSF:

o SF_CARD_CONTENT_MANAGEMENT is in charge of checking that all the
conditions for safely deleting a package or an applet instance are fulfilled before
starting the deletion procedure.

o SF_ATOMIC_TRANSACTION: This TSF is in charge of rolling back to a secure
state when the deletion of a package or an applet instance is aborted.

 ID-ONE COSMO V8.2
Public Security Target

 188 | 210

FMT_MTD.1/PIN_BIO The SFR is implemented by the following TSF:

o SF_CARDHOLDER_VERIFICATION provides a complete PIN_BIO mechanism:
change_default, query and modify to applets.

ODELG Security Functional Requirements

FDP_RIP.1/ODEL This SFR is met by:

o SF_CLEARING_OF_SENSITIVE_INFORMATION: This TSF renders inaccessible
the code of a deleted package and the class instances and arrays allocated by a
deleted applet instance.

 ID-ONE COSMO V8.2
Public Security Target

 189 | 210

FPT_FLS.1/ODEL The TSF SF_CLEARING_OF_SENSITIVE_INFORMATION is in charge
of checking that all the conditions for safely deleting a package or an applet instance are
fulfilled before starting the deletion procedure.

CarG Security Functional Requirements

FCO_NRO.2/CM During the loading phase, the SF_CARD_CONTENT_MANAGEMENT:
controls card content loading, it verifies the proof of the origin of the Load File. Before to
start the loading, the open checks that the user is authenticated, checks the presence of
the < DAPBlock > in the < LoadFile >, requires the Security Domain Verifier to verify it.

FDP_IFC.2/CM The rule of the package loading flow control policy is specified by
SF_CARD_CONTENT_MANAGEMENT: it verifies that all the loading commands are
issued in the Secure Channel session. It compares the Load File Data Block Hash present
in the command install for load against the received. It also requires the Dap verification of
all entities committed in the loading phase, ensured by SF_DAP_VERIFICATION.

FDP_IFF.1/CM This SFR is implemented by SF_DAP_VERIFICATION, it controls the
communication protocol used by the CAD and the card for transmitting packages.

FDP_UIT.1/CM This SFR is implemented by SF_DAP_VERIFICATION, it controls imported
data from modification, deletion, insertion, replay of some of the pieces of the application
sent by the CAD. The verification is made by using: Encryption and decryption operations
by SF_ENCRYPTION_AND_DECRYPTION function.

FIA_UID.1/CM The Security Functionality SF_GP_DISPATCHER met this SFR: While the
Card manager (ISD) or Supplementary Security domain is selected, these functions test
for every command if the secure channel is open. When the secure channel is not open
then only these commands are available: Get_data() and Initialize_Update(). The initialize
Update returns to the user the key set version, Secure Channel identifier and the card
random and the card cryptogram.

FMT_MSA.1/CM This SFR is implemented by two security functions:
SF_KEY_MANAGEMENT: The TSF controls that only the CM can modify its key set and
can change the card life cycle and set the default application
SF_CARD_CONTENT_MANAGEMENT: This TSF controls whether the active entity has
the privilege and the pre-authorization for make the Card Content Management
operations, and that operation still available on the card. Its controls also that the card
state allows the operations.

FMT_MSA.3/CM The TSF SF_CARD_CONTENT_MANAGEMENT provides the way to lock
the Security Domain with Authorized Management privilege in order to restrict its card
content management ability. This TSF provides also to disable permanently the Card
Content Management operations for all entities on the card.

FMT_SMF.1/CM The TSF SF_CARD_CONTENT_MANAGEMENT controls whether the
active entity has the privilege and the pre-authorization for making the Card Content
Management operations - modify security attributes. -, and that operation still available on
the card. Its controls also that the card state allows the operations.

 ID-ONE COSMO V8.2
Public Security Target

 190 | 210

FMT_SMR.1/CM The TSF SF_CARD_CONTENT_MANAGEMENT verifies that
authentication is successful and the active entity has loading privilege (Authorized
Management privilege) before processes any Card Content management command. The
successful authentication proves the user identity and role.

FTP_ITC.1/CM Installing a new package is verified by
SF_CARD_CONTENT_MANAGEMENT: the SF_GP_Dispatcher tests if secure channel
is required, and verification is made by SF_DAP_VERIFICATION.

Additional Security Functional Requirements

Additional Security Functional Requirements for CM

FCO_NRO.2/CM_DAP During the loading phase, SF_DAP_VERIFICATION verifies the
proof of the origin of the Load File. Before to start the loading, the open checks that the
user is authenticated, checks the presence of the < DAPBlock > in the < LoadFile >,
requires the Security Domain Verifier to verify it.

FIA_AFL.1/CM This Requirement is fulfilled by
SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL. It tests the result of
authentication. By default the authentication result is assumed unsuccessful, so the
authentication failure is recorded, the associated counter and the slowdown counter are
incremented. If the authentication is successful, the authentication failure counter is
decremented and the slowdown counter is reset.

FIA_UAU.1/CM This SFR is implemented by the following TSF:

o SF_GP_DISPATCHER: While the Card manager (ISD) or Supplementary Security
domain is selected, these functions test for every command by
SF_GP_Dispatcher if the secure channel is open.

o SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL: When the secure
channel is not open then only the command available are GET DATA Initialize
Update.

FIA_UAU.4/CardIssuer Present the use of CardIssuer authentication, function implemented
in SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL, is given by using a RNG
defined in SF_RANDOM_NUMBER.

FIA_UAU.7/CardIssuer This SFR is implemented by the following TSF:

o SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL: It uses the key set
version, Secure channel identifier and the card random and the card cryptogram
for authentication. - SF_RANDOM_NUMBER: It permits CardIssuer Protected
authentication feedback, no other information is given while the authentication is
in progress.

 ID-ONE COSMO V8.2
Public Security Target

 191 | 210

FPR_UNO.1/Key_CM Import of keys are not observable by all subjects. This requirement is
ensured by SF_KEY_MANAGEMENT.

FPT_TDC.1/CM Key set and packages when imported are consistently interpreted by
implementation of SF_KEY_MANAGEMENT.

FMT_SMR.2/CM The TSF SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL verifies
that authentication is successful and the active entity has loading privilege before
processes any Card Content management command. The successful authentication
proves the user identity and role.

FCS_COP.1/CM The TSF SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL covers
this SFR. It requires the cryptographic operations for the creation and management of
secure channel.

Additional Security Functional Requirements for Resident application

FDP_ACC.2/PP The SFR is implemented by the following TSF:

o SF_RESIDENT_APPLICATION_DISPATCHER: This TSF implements Access
control policy for the resident application,

o SF_MANUFACTURER_AUTHENTICATION: This TSF is in charge of the card
manufacturer authentication.

o SF_PREPERSONALISATION: This TSF is in charge of enforcing the access
control policy for the personalisation stage, including the patch loading, if any.

These TSF controls all access to all objects and all operations.

FPT_TST.1 This SFR is supported by the following TSF:

o SF_HARDWARE_OPERATING: At each start up, security function
SF_Hardware_Operating is done. Random, DES, and CRC functional modules
systematically tested: a known calculus is implemented and the result is checked.
SHA, RSA, AES and ECC functional modules are tested at each start up or at first
use, using the same method.

o SF_DATA_INTEGRITY: At each start up, the patch code integrity, if any is
checked.

FDP_ACF.1/PP This SFR is met by the following TSF:

o SF_MANUFACTURER_AUTHENTICATION: The rules garanting access rights
are made by SF_MANUFACTURER_AUTHENTICATION, it guarantees once the
Prepersonalisation is authenticated, the card verifies for each action that the
authentication is successful

FDP_UCT.1/PP This SFR is met by the following TSF:

o SF_MANUFACTURER_AUTHENTICATION: To transmit the InitKey (ISK) to Card
Manager, user or subject must be successfully authenticated with the MSK. The
transmitted InitKey is protected from disclosure by being ciphered by the MSK

o SF_PREPERSONALISATION: This TSF is in charge of the prepersonalisation
stage, this includes the patch loading, if any.

 ID-ONE COSMO V8.2
Public Security Target

 192 | 210

FDP_ITC.1/PP The SFR is implemented by the following TSF:

o SF_MANUFACTURER_AUTHENTICATION enables trusted channel
establishment thanks to authentication with the MSK.

o SF_PREPERSONALISATION enables to load patchs and locks in
prepersonalisation.

FIA_AFL.1/PP The SFR is implemented by the following TSF:

o SF_MANUFACTURER_AUTHENTICATION: After 3 consecutive unsuccessful
authentications a status error is always returned by the card.

FIA_UAU.1/PP The SFR is met by the following SF:

o SF_RESIDENT_APPLICATION_DISPATCHER: The set of command (INITIALIZE
AUTHENTICATION PROCESS, GET DATA, MANAGE CHANNEL, SELECT
APPLET, MANAGE PDC) of the resident application can be performed without
authentication.

FIA_UID.1/PP This SFR is implemented by the following TSF:

o SF_RESIDENT_APPLICATION_DISPATCHER: The set of command (INITIALIZE
AUTHENTICATION PROCESS, GET DATA, MANAGE CHANNEL, SELECT
APPLET, MANAGE PDC) of the resident application can be performed without
authentication.

FMT_MSA.1/PP This SFR is implemented by the following TSF:

o SF_PREPERSONALISATION: The MSK keys of the Card Manufacturer can be
modified in Prepersonalisation phase after a successful authentication with the
MSK.

FMT_SMF.1/PP This SFR is implemented by the following TSF:

o SF_PREPERSONALISATION: The MSK keys of the Card Manufacturer can be
modified in Prepersonalisation phase after a successful authentication with the
MSK.

FIA_ATD.1/CardManu This SFR is implemented by the following TSF:

o SF_MANUFACTURER_AUTHENTICATION: The TSF shall maintain the following
list of security attributes belonging to individual users: AS.AUTH_MSK_STATUS

FIA_UAU.4/CardManu This SFR is implemented by the following TSF:

o SF_MANUFACTURER_AUTHENTICATION: Random numbers are used to
ensure that authentication data is used once.

FIA_UAU.7/CardManu This SFR is implemented by the following SFR:

o SF_MANUFACTURER_AUTHENTICATION: During authentication, the command
"INITIALIZE AUTHENTICATION PROCESS" is used to provide a random
number.

FMT_MOF.1/PP This SFR is implemented by the following TSF:

o SF_CARD_MANAGEMENT_ENVIRONMENT: Some commands and features of
the resident application are active only during the Prepersonalisation Phase, such

 ID-ONE COSMO V8.2
Public Security Target

 193 | 210

as the patch and lock loading. As soon as the Card Manager status is set to
OP_READY this phase stops, and the commands and features are irreversibly
disabled.

o SF_PREPERSONALISATION: This function permits on Prepersonalisation phase
to load patch code on the card.

FMT_SMR.2/PP This SFR is implemented by the following TSF:

o SF_PREPERSONALISATION: This function permits on Prepersonalisation phase
to load patch code on the card.

o SF_MANUFACTURER_AUTHENTICATION: After a successful authentication (of
Card Manufacturer) using MSK, the TSF and card stay still in Prepersonalisation
state.

FMT_MSA.3/PP This SFR is implemented by the following TSF:

o SF_MANUFACTURER_AUTHENTICATION: This TSF implements Access control
policy in preperso phase.

o SF_PREPERSONALISATION: This TSF, once authenticated, implements
prepersonalisations operations.

FCS_COP.1/PP At prepersonalisation phase, authentication cryptogram (signature
computation and verification) are used by SF_MANUFACTURER_AUTHENTICATION.
Data decryption (of patch, locks or keys), integrity pattern verification (signature/MAC) are
used by SF_PREPERSONALISATION. These functions call Cryptographic ones defined
in previous FCS_COP operation SF_MANUFACTURER_AUTHENTICATION: This TSF
implements Access control policy in preperso phase.

FCS_CKM.4/PP This SFR is implemented by the following TSF:

o SF_KEY_DESTRUCTION: As soon as the Card Manager status is set to
OP_READY, the MSK and LSK key is set to null (as the checksum is also to null)
the key is not useful. The MSK after the first use is diversified, according to
AGD_PRE [R39]. The new version of the key replaces the previous one.

FTP_ITC.1/PP This SFR is implemented by the following TSF:

o SF_PREPERSONALISATION: The TOE developer shall be authenticated prior to
any data loading, patch or locks or ISK, in the TOE in personalisation. For the
patch or locks loading, the TOE developer is authenticated thanks to the signature
computed with the LSK, which is affixed to the data sent to the TOE. For the ISK
loading, the TOE developer is authenticated with the MSK.

FDP_UIT.1/PP The SFR is implemented by the following TSF:

o SF_PREPERSONALISATION: The data (patch or locks) sent to the TOE are
protected in integrity thanks to a signature computed by the TOE developer with
the LSK (PUT KEY command). The ISK is loaded ciphered with the MSK, and
requires an authentication with the MSK.

FCS_CKM.1/PP The SFR is implemented by the following TSF:

o SF_PREPERSONALISATION: During first command, the individual MSK of the
TOE is generated from the master MSK.

 ID-ONE COSMO V8.2
Public Security Target

 194 | 210

FAU_STG.2 The SFR is implemented by the following TSF:

o SF_PREPERSONALISATION: Upon request, the identification of the patch is
returned.

Additional Security Functional Requirements for SmartCard Platform

FPT_PHP.3/SCP When executing, SF_HARDWARE_OPERATING shall resist changing
operational conditions every times, external hardware event can be trigged to prevent
attacks or bad use. Temperature, frequency, voltage, light, glitch are considered as
abnormal environmental conditions and put the card in frozen state.

FPT_FLS.1/SCP When failures occur detected by SF_DATA_INTEGRITY,
SF_DATA_COHERENCY and SF_MEMORY_FAILURE, the TOE sends a specific
exception status or doesn't start SF_EXCEPTION

FPT_RCV.3/SCP This requirement is fulfilled by two security functions:
SF_MEMORY_FAILURE and SF_DATA_COHERENCY. In case of a bad writing, internal
mechanisms are implemented to prevent an incoherency of the written data. The TSF
have the capacity to determine if the objects were capable of being recovered. In case of
an impossible writing, an exception is raised.

FPT_RCV.4/SCP The TSF SF_DATA_COHERENCY shall ensure that reading from and
writing to static and objects' fields interrupted by power loss have the property that the
function either completes successfully, or for the indicated failure scenarios, recovers to a
consistent and secure state.

FRU_FLT.1/SCP When there is a lack of EEPROM, in case of bad in case of a bad writing,
the SF_MEMORY_FAILURE implements internal mechanisms to prevent an incoherency
of the written data. In case of an impossible writing, an exception is raised.

FPR_UNO.1/USE_KEY This SFR is implemented by the following TSF:

o SF_UNOBSERVABILITY: No user are able to observe keys whether the keys are
in use.

FCS_RNG.1/SCP This SFR is implemented by the following TSF:

o SF_SECURITY_FUNCTIONS_OF_THE_IC: This TSF ensures that the security
functionalities from the chip are provided to the software, and in particular RNG
based on AIS31.

o SF_RANDOM_NUMBER: This TSF is in charge of providing random numbers.

Additional Security Functional Requirements for the applets

FIA_AFL.1/PIN This SFR is implemented by the following TSF:

o SF_CARDHOLDER_VERIFICATION: The TSF detects that the number of PIN
presentations exceeds the maximum value previously configured. It blocks the
PIN in this case. The entire OwnerPin class in involved in the process since it is
used to set the PIN size and the maximum of successful tries, to verify the PIN, to
reset the validation flag.

 ID-ONE COSMO V8.2
Public Security Target

 195 | 210

FMT_MTD.2/GP_PIN This SFR is implemented by the following TSF:

o SF_CARDHOLDER_VERIFICATION: The TOE ensures that the GlobalPin is
blocked when its associated PIN try counter at reach the PIN try limit value.

FPR_UNO.1/Applet This SFR is implemented by the following SFR:

o SF_UNOBSERVABILITY: Unobservability of Comparison on two byte arrays is a
service provided to the applet.

FMT_MTD.1/PIN The SFR is implemented by the following TSF:

o SF_CARDHOLDER_VERIFICATION provides a complete PIN mechanism:
change_default, query and modify to applets.

FIA_AFL.1/GP_PIN This SFR is implemented by the following TSF:

o SF_CARDHOLDER_VERIFICATION: The TOE checks that only the Card
Manager and privileged application can change the pin try limit and Update the
global Pin.

Additional Security Functional Requirements for BIO

FIA_AFL.1/PIN_BIO This SFR is implemented by the following TSF:

o SF_CARDHOLDER_VERIFICATION: The TSF detects that the number of
PIN_BIO presentations using the MOC algorithm exceeds the maximum value
previously configured. It blocks the PIN_BIO in this case.

Additional Security Functional Requirements for Runtime Verification

FDP_ACC.2/RV_Stack This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: The Firewall mechanism possesses additional security
rules which guarantee the protection of the Stack.

FDP_ACF.1/RV_Stack This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: The Firewall mechanism possesses additional security
rules which guarantee the protection of the Stack.

FMT_MSA.1/RV_Stack This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements additional operations performed
by the firewall mechanism over the Stack.

FMT_MSA.2/RV_Stack This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements additional operations performed
by the firewall mechanism over the Stack.

FMT_MSA.3/RV_Stack This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements additional operations performed
by the firewall mechanism over the Stack.

 ID-ONE COSMO V8.2
Public Security Target

 196 | 210

FMT_SMF.1/RV_Stack This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: The TSF directly controls the Stack and is able to
change the associated parameter.

FDP_ACC.2/RV_Heap This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: The Firewall mechanism possesses additional security
rules which guarantee the protection of the Heap.

FDP_ACF.1/RV_Heap This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: The Firewall mechanism possesses additional security
rules which guarantee the protection of the Heap.

FMT_MSA.1/RV_Heap This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements additional operations performed
by the firewall mechanism over the Heap.

FMT_MSA.2/RV_Heap This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements additional operations performed
by the firewall mechanism over the Heap.

FMT_MSA.3/RV_Heap This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements additional operations performed
by the firewall mechanism over the Heap.

FMT_SMF.1/RV_Heap This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: The TSF directly controls the Heap and is able to
change the associated parameter.

FDP_ACC.2/RV_Transient This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: The Firewall mechanism possesses additional security
rules which guarantee the protection of Transient objects.

FDP_ACF.1/RV_Transient This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: The Firewall mechanism possesses additional security
rules which guarantee the protection of Transient objects.

FMT_MSA.1/RV_Transient This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements additional operations performed
by the firewall mechanism over the Transient.

FMT_MSA.2/RV_Transient This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements additional operations performed
by the firewall mechanism over the Transient.

FMT_MSA.3/RV_Transient This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: This TSF implements additional operations performed
by the firewall mechanism over the Transient.

 ID-ONE COSMO V8.2
Public Security Target

 197 | 210

FMT_SMF.1/RV_Transient This SFR is implemented by the following TSF:

o SF_RUNTIME_VERIFIER: The TSF directly controls the Transient and is able to
change the associated parameter.

 ID-ONE COSMO V8.2
Public Security Target

 198 | 210

10.2.2 Association tables of SFRs and TSS

Security Functional
Requirements

TOE Summary Specification

FDP_ACC.2/FIREWALL SF_FIREWALL

FDP_ACF.1/FIREWALL SF_FIREWALL

FDP_IFC.1/JCVM SF_FIREWALL

FDP_IFF.1/JCVM SF_FIREWALL

FDP_RIP.1/OBJECTS SF_CLEARING_OF_SENSITIVE_INFORMATION

FMT_MSA.1/JCRE SF_FIREWALL

FMT_MSA.1/JCVM SF_FIREWALL

FMT_MSA.2/FIREWALL_JCVM SF_FIREWALL

FMT_MSA.3/FIREWALL SF_FIREWALL

FMT_MSA.3/JCVM SF_FIREWALL

FMT_SMF.1 SF_CARD_CONTENT_MANAGEMENT

FMT_SMR.1 SF_FIREWALL

FCS_CKM.1 SF_KEY_GENERATION

FCS_CKM.2 SF_KEY_DISTRIBUTION

FCS_CKM.3 SF_KEY_ACCESS

FCS_CKM.4 SF_KEY_DESTRUCTION

FCS_COP.1 SF_KEY_AGREEMENT, SF_MESSAGE_DIGEST, SF_ENCRYPTION_AND_DECRYPTION,
SF_SIGNATURE

 ID-ONE COSMO V8.2
Public Security Target

 199 | 210

Security Functional
Requirements

TOE Summary Specification

FDP_RIP.1/ABORT SF_CLEARING_OF_SENSITIVE_INFORMATION, SF_ATOMIC_TRANSACTION

FDP_RIP.1/APDU SF_CLEARING_OF_SENSITIVE_INFORMATION

FDP_RIP.1/bArray SF_CLEARING_OF_SENSITIVE_INFORMATION

FDP_RIP.1/KEYS SF_CLEARING_OF_SENSITIVE_INFORMATION

FDP_RIP.1/TRANSIENT SF_CLEARING_OF_SENSITIVE_INFORMATION

FDP_ROL.1/FIREWALL SF_ATOMIC_TRANSACTION

FAU_ARP.1 SF_FIREWALL

FDP_SDI.2 SF_DATA_INTEGRITY

FPR_UNO.1 SF_DATA_INTEGRITY

FPT_FLS.1 SF_FIREWALL, SF_ATOMIC_TRANSACTION, SF_CARD_CONTENT_MANAGEMENT

FPT_TDC.1 SF_CARD_MANAGEMENT_ENVIRONMENT

FIA_ATD.1/AID SF_CARD_CONTENT_MANAGEMENT

FIA_UID.2/AID SF_FIREWALL

FIA_USB.1/AID SF_FIREWALL

FMT_MTD.1/JCRE SF_CARD_CONTENT_MANAGEMENT

FMT_MTD.3/JCRE SF_CARD_CONTENT_MANAGEMENT

FDP_ITC.2/Installer SF_CARD_CONTENT_MANAGEMENT

FMT_SMR.1/Installer SF_CARD_CONTENT_MANAGEMENT

FPT_FLS.1/Installer SF_CARD_CONTENT_MANAGEMENT, SF_ATOMIC_TRANSACTION

FPT_RCV.3/Installer SF_CARD_CONTENT_MANAGEMENT, SF_ATOMIC_TRANSACTION

 ID-ONE COSMO V8.2
Public Security Target

 200 | 210

Security Functional
Requirements

TOE Summary Specification

FDP_ACC.2/ADEL SF_CARD_CONTENT_MANAGEMENT

FDP_ACF.1/ADEL SF_CARD_CONTENT_MANAGEMENT

FDP_RIP.1/ADEL SF_CLEARING_OF_SENSITIVE_INFORMATION

FMT_MSA.1/ADEL SF_CARD_MANAGEMENT_ENVIRONMENT

FMT_MSA.3/ADEL SF_CARD_CONTENT_MANAGEMENT

FMT_SMF.1/ADEL SF_CARD_MANAGEMENT_ENVIRONMENT

FMT_SMR.1/ADEL SF_CARD_MANAGEMENT_ENVIRONMENT

FPT_FLS.1/ADEL SF_CLEARING_OF_SENSITIVE_INFORMATION, SF_ATOMIC_TRANSACTION

FMT_MTD.1/PIN_BIO SF_CARDHOLDER_VERIFICATION

FDP_RIP.1/ODEL SF_CLEARING_OF_SENSITIVE_INFORMATION

FPT_FLS.1/ODEL SF_CLEARING_OF_SENSITIVE_INFORMATION

FCO_NRO.2/CM SF_CARD_CONTENT_MANAGEMENT

FDP_IFC.2/CM SF_CARD_CONTENT_MANAGEMENT, SF_DAP_VERIFICATION

FDP_IFF.1/CM SF_DAP_VERIFICATION

FDP_UIT.1/CM SF_DAP_VERIFICATION, SF_ENCRYPTION_AND_DECRYPTION

FIA_UID.1/CM SF_GP_DISPATCHER

FMT_MSA.1/CM SF_CARD_CONTENT_MANAGEMENT, SF_KEY_MANAGEMENT

FMT_MSA.3/CM SF_CARD_CONTENT_MANAGEMENT

FMT_SMF.1/CM SF_CARD_CONTENT_MANAGEMENT

FMT_SMR.1/CM SF_CARD_CONTENT_MANAGEMENT

 ID-ONE COSMO V8.2
Public Security Target

 201 | 210

Security Functional
Requirements

TOE Summary Specification

FTP_ITC.1/CM SF_CARD_CONTENT_MANAGEMENT, SF_DAP_VERIFICATION, SF_GP_DISPATCHER,
SF_PREPERSONALISATION

FPT_TST.1 SF_HARDWARE_OPERATING, SF_DATA_INTEGRITY

FCO_NRO.2/CM_DAP SF_DAP_VERIFICATION

FIA_AFL.1/CM SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL

FIA_UAU.1/CM SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL, SF_GP_DISPATCHER

FIA_UAU.4/CardIssuer SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL, SF_RANDOM_NUMBER

FIA_UAU.7/CardIssuer SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL, SF_RANDOM_NUMBER

FPR_UNO.1/Key_CM SF_KEY_MANAGEMENT

FPT_TDC.1/CM SF_KEY_MANAGEMENT

FMT_SMR.2/CM SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL

FDP_ACC.2/PP SF_RESIDENT_APPLICATION_DISPATCHER, SF_MANUFACTURER_AUTHENTICATION,
SF_PREPERSONALISATION

FDP_ACF.1/PP SF_MANUFACTURER_AUTHENTICATION

FDP_UCT.1/PP SF_MANUFACTURER_AUTHENTICATION, SF_PREPERSONALISATION

FDP_ITC.1/PP SF_MANUFACTURER_AUTHENTICATION, SF_PREPERSONALISATION

FIA_AFL.1/PP SF_MANUFACTURER_AUTHENTICATION

FIA_UAU.1/PP SF_RESIDENT_APPLICATION_DISPATCHER

FIA_UID.1/PP SF_RESIDENT_APPLICATION_DISPATCHER

FMT_MSA.1/PP SF_PREPERSONALISATION

 ID-ONE COSMO V8.2
Public Security Target

 202 | 210

Security Functional
Requirements

TOE Summary Specification

FMT_SMF.1/PP SF_PREPERSONALISATION

FIA_ATD.1/CardManu SF_MANUFACTURER_AUTHENTICATION

FIA_UAU.4/CardManu SF_MANUFACTURER_AUTHENTICATION

FIA_UAU.7/CardManu SF_MANUFACTURER_AUTHENTICATION

FMT_MOF.1/PP SF_CARD_MANAGEMENT_ENVIRONMENT, SF_PREPERSONALISATION

FMT_SMR.2/PP SF_MANUFACTURER_AUTHENTICATION, SF_PREPERSONALISATION

FMT_MSA.3/PP SF_MANUFACTURER_AUTHENTICATION, SF_PREPERSONALISATION

FCS_COP.1/PP SF_PREPERSONALISATION, SF_MANUFACTURER_AUTHENTICATION

FCS_CKM.4/PP SF_KEY_DESTRUCTION,

FPT_PHP.3/SCP SF_HARDWARE_OPERATING

FPT_FLS.1/SCP SF_MEMORY_FAILURE, SF_EXCEPTION, SF_DATA_INTEGRITY, SF_DATA_COHERENCY

FPT_RCV.3/SCP SF_DATA_COHERENCY, SF_MEMORY_FAILURE

FPT_RCV.4/SCP SF_DATA_COHERENCY

FRU_FLT.1/SCP SF_MEMORY_FAILURE

FPR_UNO.1/USE_KEY SF_UNOBSERVABILITY

FCS_RNG.1/SCP SF_RANDOM_NUMBER, SF_SECURITY_FUNCTIONS_OF_THE_IC

FIA_AFL.1/PIN SF_CARDHOLDER_VERIFICATION

FMT_MTD.2/GP_PIN SF_CARDHOLDER_VERIFICATION

FPR_UNO.1/Applet SF_UNOBSERVABILITY

FMT_MTD.1/PIN SF_CARDHOLDER_VERIFICATION

 ID-ONE COSMO V8.2
Public Security Target

 203 | 210

Security Functional
Requirements

TOE Summary Specification

FIA_AFL.1/GP_PIN SF_CARDHOLDER_VERIFICATION

FIA_AFL.1/PIN_BIO SF_CARDHOLDER_VERIFICATION

FDP_ACC.2/RV_Stack SF_RUNTIME_VERIFIER

FDP_ACF.1/RV_Stack SF_RUNTIME_VERIFIER

FMT_MSA.1/RV_Stack SF_RUNTIME_VERIFIER

FMT_MSA.2/RV_Stack SF_RUNTIME_VERIFIER

FMT_MSA.3/RV_Stack SF_RUNTIME_VERIFIER

FMT_SMF.1/RV_Stack SF_RUNTIME_VERIFIER

FDP_ACC.2/RV_Heap SF_RUNTIME_VERIFIER

FDP_ACF.1/RV_Heap SF_RUNTIME_VERIFIER

FMT_MSA.1/RV_Heap SF_RUNTIME_VERIFIER

FMT_MSA.2/RV_Heap SF_RUNTIME_VERIFIER

FMT_MSA.3/RV_Heap SF_RUNTIME_VERIFIER

FMT_SMF.1/RV_Heap SF_RUNTIME_VERIFIER

FDP_ACC.2/RV_Transient SF_RUNTIME_VERIFIER

FDP_ACF.1/RV_Transient SF_RUNTIME_VERIFIER

FMT_MSA.1/RV_Transient SF_RUNTIME_VERIFIER

FMT_MSA.2/RV_Transient SF_RUNTIME_VERIFIER

FMT_MSA.3/RV_Transient SF_RUNTIME_VERIFIER

FMT_SMF.1/RV_Transient SF_RUNTIME_VERIFIER

 ID-ONE COSMO V8.2
Public Security Target

 204 | 210

Security Functional
Requirements

TOE Summary Specification

FAU_STG.2 SF_PREPERSONALISATION

FTP_ITC.1/PP SF_PREPERSONALISATION

FCS_CKM.1/PP SF_PREPERSONALISATION

FDP_UIT.1/PP SF_PREPERSONALISATION

FCS_COP.1/CM SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL

Table 27: SFRs and TSS – Coverage

TOE Summary Specification Security Functional Requirements

SF_ATOMIC_TRANSACTION FPT_FLS.1/Installer, FPT_RCV.3/Installer, FPT_FLS.1/ADEL, FDP_RIP.1/ABORT,
FDP_ROL.1/FIREWALL, FPT_FLS.1

SF_CARD_CONTENT_MANAGEMENT FDP_ITC.2/Installer, FMT_SMR.1/Installer, FPT_FLS.1/Installer, FPT_RCV.3/Installer,
FDP_ACC.2/ADEL, FDP_ACF.1/ADEL, FMT_MSA.3/ADEL, FCO_NRO.2/CM,
FDP_IFC.2/CM, FMT_MSA.1/CM, FMT_MSA.3/CM, FMT_SMF.1/CM,
FMT_SMR.1/CM, FTP_ITC.1/CM, FMT_SMF.1, FPT_FLS.1, FIA_ATD.1/AID,
FMT_MTD.1/JCRE, FMT_MTD.3/JCRE

SF_CARD_MANAGEMENT_ENVIRONMENT FMT_MSA.1/ADEL, FMT_SMF.1/ADEL, FMT_SMR.1/ADEL, FPT_TDC.1,
FMT_MOF.1/PP

SF_CARDHOLDER_VERIFICATION FMT_MTD.1/PIN_BIO, FIA_AFL.1/PIN, FMT_MTD.2/GP_PIN, FMT_MTD.1/PIN,
FIA_AFL.1/GP_PIN, FIA_AFL.1/PIN_BIO

 ID-ONE COSMO V8.2
Public Security Target

 205 | 210

TOE Summary Specification Security Functional Requirements

SF_CLEARING_OF_SENSITIVE_INFORMATION FDP_RIP.1/ADEL, FPT_FLS.1/ADEL, FDP_RIP.1/ODEL, FPT_FLS.1/ODEL,
FDP_RIP.1/OBJECTS, FDP_RIP.1/ABORT, FDP_RIP.1/APDU, FDP_RIP.1/bArray,
FDP_RIP.1/KEYS, FDP_RIP.1/TRANSIENT

SF_DAP_VERIFICATION FDP_IFC.2/CM, FDP_IFF.1/CM, FDP_UIT.1/CM, FTP_ITC.1/CM,
FCO_NRO.2/CM_DAP

SF_DATA_COHERENCY FPT_FLS.1/SCP, FPT_RCV.3/SCP, FPT_RCV.4/SCP

SF_DATA_INTEGRITY FDP_SDI.2, FPR_UNO.1, FPT_FLS.1/SCP, FPT_TST.1

SF_ENCRYPTION_AND_DECRYPTION FDP_UIT.1/CM, FCS_COP.1

SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL FIA_AFL.1/CM, FIA_UAU.1/CM, FIA_UAU.4/CardIssuer, FIA_UAU.7/CardIssuer,
FMT_SMR.2/CM, FCS_COP.1/CM

SF_EXCEPTION FPT_FLS.1/SCP

SF_FIREWALL FDP_ACC.2/FIREWALL, FDP_ACF.1/FIREWALL, FDP_IFC.1/JCVM,
FDP_IFF.1/JCVM, FMT_MSA.1/JCRE, FMT_MSA.1/JCVM,
FMT_MSA.2/FIREWALL_JCVM, FMT_MSA.3/FIREWALL, FMT_MSA.3/JCVM,
FMT_SMR.1, FAU_ARP.1, FPT_FLS.1, FIA_UID.2/AID, FIA_USB.1/AID

SF_GP_DISPATCHER FIA_UID.1/CM, FTP_ITC.1/CM, FIA_UAU.1/CM

SF_HARDWARE_OPERATING FPT_TST.1, FPT_PHP.3/SCP

SF_KEY_ACCESS FCS_CKM.3

SF_KEY_AGREEMENT FCS_COP.1

SF_KEY_DESTRUCTION FCS_CKM.4, FCS_CKM.4/PP

SF_KEY_DISTRIBUTION FCS_CKM.2

SF_KEY_GENERATION FCS_CKM.1

SF_KEY_MANAGEMENT FMT_MSA.1/CM, FPR_UNO.1/Key_CM, FPT_TDC.1/CM

 ID-ONE COSMO V8.2
Public Security Target

 206 | 210

TOE Summary Specification Security Functional Requirements

SF_MANUFACTURER_AUTHENTICATION FDP_ACC.2/PP, FDP_ACF.1/PP, FDP_UCT.1/PP, FDP_ITC.1/PP, FIA_AFL.1/PP,
FIA_ATD.1/CardManu, FIA_UAU.4/CardManu, FIA_UAU.7/CardManu,
FMT_SMR.2/PP, FMT_MSA.3/PP, FCS_COP.1/PP

SF_MESSAGE_DIGEST FCS_COP.1

SF_MEMORY_FAILURE FPT_FLS.1/SCP, FPT_RCV.3/SCP, FRU_FLT.1/SCP

SF_PREPERSONALISATION FDP_ACC.2/PP, FMT_MSA.1/PP, FMT_SMF.1/PP, FMT_MOF.1/PP, FMT_MSA.3/PP,
FCS_COP.1/PP , FTP_ITC.1/CM, FDP_UIT.1/PP, FDP_ITC.1/PP, FCS_CKM.1/PP,
tok267FTP_ITC.1/PP, FDP_UCT.1/PP, FAU_STG.2, FMT_SMR.2/PP

SF_RANDOM_NUMBER FIA_UAU.4/CardIssuer, FIA_UAU.7/CardIssuer, FCS_RNG.1/SCP

SF_RESIDENT_APPLICATION_DISPATCHER FDP_ACC.2/PP, FIA_UAU.1/PP, FIA_UID.1/PP

SF_RUNTIME_VERIFIER FDP_ACC.2/RV_Stack, FDP_ACF.1/RV_Stack, FMT_MSA.1/RV_Stack,
FMT_MSA.2/RV_Stack, FMT_MSA.3/RV_Stack, FMT_SMF.1/RV_Stack,
FDP_ACC.2/RV_Heap, FDP_ACF.1/RV_Heap, FMT_MSA.1/RV_Heap,
FMT_MSA.2/RV_Heap, FMT_MSA.3/RV_Heap, FMT_SMF.1/RV_Heap,
FDP_ACC.2/RV_Transient, FDP_ACF.1/RV_Transient, FMT_MSA.1/RV_Transient,
FMT_MSA.2/RV_Transient, FMT_MSA.3/RV_Transient, FMT_SMF.1/RV_Transient

SF_SECURITY_FUNCTIONS_OF_THE_IC FCS_RNG.1/SCP

SF_SIGNATURE FCS_COP.1

SF_UNOBSERVABILITY FPR_UNO.1/USE_KEY, FPR_UNO.1/Applet

Table 1: TSS and SFRs - Coverage

 ID-ONE COSMO V8.2
Public Security Target

 207 | 210

11 Rationale for the composition with the IC

Some sensitive rationales are removed from the Public ST.

 ID-ONE COSMO V8.2
Public Security Target

 208 | 210

12 RELATED DOCUMENTS

Ref Document details

[R1]
"Common Criteria for information Technology Security Evaluation, Part”1:
Introduction and general model", April 2017, Version 3.1 revision 5.“

[R2]
"Common Criteria for information Technology Security Evaluation, Par” 2:
Security Functional component", April 2017, Version 3.1 revision 5.“

[R3]
"Common Criteria for information Technology Security Evaluation, Par” 3:
Security Assurance components", April 2017, Version 3.1 revision 5.

[R4]
“Composite product evaluation for Smart Cards and similar devices”

August 2015, Version 1.4, -.

[R5]
PP SUN Java Card™ System Protection Profile Open Configuration v3.0

May 2012, ANSSI-CC-PP-2010/03_M01

[R6]
"Java Card - API" Application Programming Interfaces, Classic Edition

Version 3.0.4, May, 2009, Sun Microsystems.

[R7]
"Java Card – JCRE” Runtime Environment Specification, Classic Edition

Version 3.0.4, September, 2011, Sun Microsystems.

[R8]
"Java Card - Virtual Machine Specifications" Classic Edition, Version 3.0.4

May, 2009, Sun Microsystems.

[R9]
Global Platform, Card Specification

Version 2.2.1 – January 2011.

[R10]

Global Platform Card, Mapping Guidelines of Existing GP v2.1.1
Implementation on v2.2.1

Version 1.0.1 – January 2011.

[R11]
Global Platform Card, ID Configuration

Version 1.0 - December 2011.

[R12]

Global Platform Card Technology, Secure Channel Protocol 03, Card
Specification v 2.2 - Amendment D

Version 1.1 - September 2009.

[R13]

Global Platform Card Technology, Security Upgrade for Card Content
Management, Card Specification v 2.2 – Amendment E

Version 0.14 - October 2011.

[R14]

"Identification cards - Integrated Circuit(s) Cards with contacts, Part 6:
Interindustry data elements for interchange"

ISO/IEC 7816-6 (2004)

 ID-ONE COSMO V8.2
Public Security Target

 209 | 210

[R15]

"Digital Signatures using Reversible Public Key Cryptography for the Financial
Services Industry (rDSA)"

ANSI X9.31-1998, American Bankers Association

[R16]

"FIPS PUB 46-3, Data Encryption Standard"

October 25, 1999 (ANSI X3.92), National Institute of Standards and
Technology

[R17]
"FIPS PUB 81, DES Modes of Operation"

April 17, 1995, National Institute of Standards and Technology

[R18]
"FIPS PUB 180-3, Secure Hash Standard"

October 2008 , National Institute of Standards and Technology

[R19]
"FIPS PUB 186-3"

June 2009, Digital Signature Standard (DSS)

[R20]
"Public Key Cryptography using RSA for the financial services industry"

ISO/IEC 9796-1, annex A, section A.4 and A.5, and annex C (1995)

[R21]

“Information technology – Security techniques: Data integrity mechanism
using a cryptographic check function employing a block cipher algorithm”

ISO/IEC 9797-1 (1999) , International Organization for Standardization

[R22]
“FIPS PUB 140-2, Security requirements for cryptographic modules”

Mars 2002 , National Institute of Standards and Technology

[R23]
PKCS#1 The public Key Cryptography standards

RSA Data Security Inc. 1993

[R24]
Security IC Platform Protection Profile with Augmentation Packages Version
1.0, 13 January 2014, BSI-CC-PP-0084-2014

[R26]

NXP Secure Smart Card

Controller P6022y VB

Security Target Lite
Rev. 2.1 — 6 April 2018
BSI-DSZ-CC-1059

[R27] IEEE Std 1363a-2004 Standard Specification of Public-Key Cryptography

[R28]
FIPS PUB 197, The Advanced Encryption Standard (AES)

U.S. DoC/NIST, November 26, 2001.

[R29] Certification of « open » smart card products, Version 1.1 (for trial use),
 4 February 2013.

[R30]
The NIST SP 800-90 Recommendation for Random Number Generation
Using Deterministic Random Bit Generators (Revise)
March 2007

 ID-ONE COSMO V8.2
Public Security Target

 210 | 210

[R31]

Référentiel général de sécurité

Processus de qualification d’un produit de sécurité - niveau renforcé –

version 1.0

[R33] ANSSI-CC-NOTE-06/2.0 du 23/01/2015

[R34]
ANSI x9.62-2005 Public Key Cryptography for the Financial Services Industry
– The Elliptic Curve Digital Signature Algorithm (ECDSA)

[R35]
ANSI x9.63-2001 Public Key Cryptography for the Financial Services Industry
– Key Agreement and Key Transport Using Elliptic Curve Cryptography

[R36] JIL-Guidance-for-smartcard-evaluation-v2-0

[R37]
ID-One Cosmo v8.2 Security Recommendations

FQR 110 8963 Ed4

[R38]
ID-One Cosmo v8.2 Reference Guide

FQR 110 8885 Ed3

[R39]
ID-One Cosmo v8.2 Pre-Perso Guide

FQR 110 8875 Ed3

[R40]
ID-One Cosmo v8.1-N Application Loading Protection Guidance

FQR 110 8001 Ed1

[R41]
FQR 110 9106 Ed2 - OPTIONAL CODE R1.0 APPLI DESELECTION
BEFORE DESFIRE

[R42]
The Java Virtual Machine Specification. Lindholm, Yellin

ISBN 0-201-43294-3

[R43]
Java Card 3 Platform Off-card Verification Tool Specification, Classic Edition,
Version 1.0. Published by Oracle

[R44]
Java Card System Standard 2.2 Configuration Protection Profile – PP/0305

Version 1.0b – August 2003

