ORACLES ‘;} Common Criteria

Java Card System i Closed
Configuration Protection

Profile
July 2018
Version 3.0.5
Security Evaluations
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
Java Card System i Closed Configuration Protection Profile 1

Version 3.0.5

Java Card Protection Profile T Closed Configuration
Version 3.0.5

Copyright © 2018, Oracle Corporation. All rights reserved. This documentation contains proprietary information of Oracle
Corporation; it is protected by copyright law. Reverse engineering of the software is prohibited. If this documentation is
delivered to a U.S. Government Agency of the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of DFARS
252.227-7013, Rights in Technical Data and Computer Software (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The information in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. Oracle Corporation does not warranty that this document is error free.

Java Card is a registered trademark of Oracle Corporation.

2 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

For any correspondence on this document please contact the following organisations:

9 Oracle Corporation,
500 Oracle Parkway
Redwood City,

CA 94065 USA
http://www.oracle.com
seceval us@oracle.com

Bundesamt fur Sicherheit in der Informationstechnik
Postfach 200363

53133 Bonn, Germany
https://www.bsi.bund.de/

bsi@bsi.bund.de

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

http://www.oracle.com/
mailto:seceval_us@oracle.com
https://www.bsi.bund.de/
mailto:bsi@bsi.bund.de

Executive Summary

Java CardE technology was tailored in order

programming language to run on smart cards and other resourcel constrained devices.
Due to these constraints, every component of the original Java platform was significantly
reduced. On the other hand, smart cards require specific security features beyond the
scope of the standard Java platform. For instance, even the legitimate holder of a credit
card should not be able to tamper with some of the data contained on the card (for
instance, its credit value). Moreover, just like browsers are to distrust downloaded applets
to protect the loc al resources, the environment of a Java Card technology-enabled device
must prevent the terminal or even the installed applets, which may come from various
sources, from accessing vendoii specific confidential data.

A security evaluation, according to a standard such as the Common Criteria scheme, is an
appropriate answer to meet this need for enhanced security. It provides assurance
measures to gauge risks and induced costs, discover weak points prior their exploitation
by hostile agents, and finally grants a level of certification according to recognized
standards of industry for future reference. It also highlights numerous points that may
easily be overlooked although they are extremely relevant to the security of a Java Card
technology-based implementation.

This document presents a set of security requirements for a Java Card technology-enabled
system (AJava Card Systemo), compl i ant
Card specificationso). These r eq dtingCemmeom
Criteria security targets of specific implementations of Java Card Systems. It therefore
almost solely looks at the Java Card System from the security angle, a viewpoint that
somewhat sets it apart from the usual functional documentation; tha t is, focused on what
can happen rather than what should happen. It was written with critical real T life
applications in mind. Accordingly, some aspects of the development and lifei cycle of the
applications are controlled, even though they are out of the sc ope of the software
embedded on a Java Card platform.

In order to achieve a better understanding of the security issues of the Java Card System,
this document provides a precise description of its background and possible environments,
which is the first step to risk analysis. The division of duties and assignment of
responsibilities among the several involved actors (both physical and IT components)
leads to the definition of detailed security policies. Of course, there are cases where the
choice is left to implementers; in all cases, risks and assets at stake are described to pave
the way to security targets (ST).

One of the challenges of writing a Protection Profile for the Java Card technology is to
address in a single description the wide range of choices offered (logical communication
channels with the card, remote invocations of services, object deletion, among others),
and the different security architectures that have been conceived so far (closed platforms,
off-card verification of applications code, embedded verifiers, and so on).

Wi

ts

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

t h

The answer to this challenge is the definition of two main configurations corresponding to
standard use-cases, the Closed Configuration and the Open Configuration. Each
configuration is addressed in a dedicated Protedion Profile conformant to Common
Criteria version 3.1.

The Closed and Open Configuration address versions 2.2.x and versions 3.0.x Classic
Edition of Java Card Platform specifications.The Closed Configuration addresses Java Card
Systems without post-issuance loading of applets and deletion of packages; the Open
Configuration addresses Java Card Systems with full capabilities, in particular post
issuance content management the Remote Method Invocation is optional. Both
configurations consider off-card bytecode verification.

The Java Card System- Closed Configuration Protection Profile 3.0.5 replaces the Java

Card Systemi Closed Configuration Protection Profile, version 3.0, registered under the

reference PR2010/07 (Agence Nationd e de | a S®curit® des Sys
(ANSSI)).

The Java Card System- Open Configuration Protection Profile replaces the Java Card

System T Open Configuration Protection Profile, version 3.0, registered under the

reference PFR2010/03 ((Agence Natonal e de |l a S®curit® des Sy
(ANSSI)).

Java Card System i Closed Configuration Protection Profile 5
Version 3.0.5

TABLE OF CONTENTS

1 INTRODUCTION oottt eettteee e errereeeeaaaaeaeaanns 10
1.1 PROTECTIONPROFILEIDENTIFICATION.....cttttttiieeeeaaaiiiiiiiiis eeeesssssnnsnnssnnneeeeeaaaeens .10
1.2 PROTECTIONPROFILEPRESENTATION....cccciuttiiiiiiieieaaaeees tvverrreeeeeeaesssssnnssnnnnees .10
1.3 REFERENCES. ...t ettt iees ariirrrr e e e e e e e e e e 13

2 TOE OVERVIEW ...ooiiiiiiiiiiiiiiiiiiiiiis ittt aens avviisisseeaneeeees 15
2.1 TOETYPE .ottt ettt e e e s aaaaaaaaeaaaaaaaaa e, aeeees 15

D B B KO) o) 1) RS 15
2.1.2 TOE OF RO ST ... eeeeeesiies aeeeeee e e eessssssitttttttaaaas tvissssssassssassaasnsns 15
2.2 TOESECURITYFUNCTIONSociiiiiiiiiiiiiiiiiiiiiiins artttiiaaa s a e e e e e e aaaaane aeeeeaaaaeees 16
2.3 NON-TOEHW/SW/FW AVAILABLETOTHE TOE...ccccciiiiiiiiiiiiis e, 19
2.3.1 Bytecode Verification.........cccceeeeeeeiiiiiiiiis aeeiiiiiieeeeeeeiiies i 20
2.3.2 Loading, Linking and Installation of applets........ccccvvvevvvvvviss v, 20
2.3.3 The Card Manager (CM).........cccommmmmimieiiiiies i eessineee aviiinns 20
2.3.4 Smart Card PlatformM..........coovvvieeiiiiiiiiiss ettt vvieaaaaaiiian, 21
2.4 TOELIFE CYCLE wutttttiitiiiiieeeasiiiiiiiiiis eeesasssassssssnseseeeeaaaaaaes taneseeeeseseessssnnnnnnnnes 21
2.5 TOEUSAGE ..oiiiiiii e i iiiiitiiiiiies aitititieeee e e e e e e e e s s sanies aaeeasaasasnnnnrrrrerreaaaaeeas .24

3 CONFORMANCE CLAIMS ...ttt tetttee e sirrieee eveeees 25
3.1 CC CONFORMANCE CLAIMS ...oovttiiiieeeaiiiiiiiiiiiiins aersssssssssssseeeeeeeeaaaannns teeeeeseeees 25
3.2 CONFORMANCE CLAIM TO A PACKAGEccciiitiiiiiiiiiiiieeeeeaes aeeeeaeeaaesasssssnnnnnnnnnes 25
3.3 PROTECTION PROFILE CONFORMANCE CLAIMS ...ovviiiiiiieeeeeiiiiiiiiiinns aeeeeesnnnnssnnnns 25
3.4 CONFORMANCE CLAIMS TO THIS PROTECTION PROFILE........ccccciuviriiiiiiiieeeees avveee 25

4 SECURITY ASPECTSiiiiiiiiiiiiieeees aeeeeeissirnnnnnnnnnnnneaes aaeaenaaanaans 26
4.1 CONFIDENTIALITY . utttttriiiteeeeeeaeaaaaaiiies aeeeessssssssssssssseserreeeaaes trsrssssseeeeeeessenannnssnes 26
N 1 N 1 = 1 I USSP 27
4.3 UNAUTHORIZEDEXECUTIONS. .. .uuuuitiiiirieiieieeaaaaies teeereaaeeasssssssssssssssnnsees aossssssssssees 27
4.4 BYTECODEVERIFICATION.....cciiiiiuutttinriereeeaaees tvreeereeesaaessssaaanssnnnnns aeeesssnsssssssnes 28

44.1 CAPfile Verification..........covvvveieeiiiiiiies ettt iieeaaaeiiaan, 28
4.4.2 Integrity and AUtNENtICAtION............cooeeiiiiiiiiiiies e e 29
4.4.3 Linking and VEerifiCatioN.............ccoovvviviviiiiies eveeririsiiisttiteeaaaaaes vviaaaaaaans 29
4.5 CARDMANAGEMENT....ccitittititiiiiiiiiiiiies aarssnnnnsreeeeeeeaeaaaaaaaaaas teeeeeeesssssnnsnssnneees 29
4.6 SERVICES...citiiiiiieeeiiiiiiiiiiiiiis oeeesssisssssssteaeeeeaaaaaaaas erereaaaaeeessssnnnnnnrrnnnee aaaaas 30
5 SECURITY PROBLEM DEFINITION .ooiiiiiiiiiiiiieeeiiiiiies vviieeeeeeeeeaa e 32
ST R N 7 ORI 32
R O R U - o - - 32
L I Y s - | - B .33
5.2 THREAT S ottt icttttiitiettt e e e e e e aes etteetaaeeaaaasssaasrraerares aasssssssseeeeeeeeaaaeaaaaaaaas aeeeees 33
521 CONAACNIANLYcccooeeeeeeeeeeeeeees eeeeeeeeeees eeesaaa e aa e 33
5,22 IUEGITLY ..ot et ees et .34
523 1dentity USUIDAIIONcooovvveiiiiiiis e aee tveeeaaaaaaaaaeens 34
524 UnauthoriZe€a €XECUHONcccuuvueisiasiiiis rvissaasseississaasssssssiises aarsessnans 35
525 DENIAI OF SEIVICE........uceeeeeeveeeeeiieiits eeeeeeeeettseeeeeetitiaaes aevttiisiaaassesssaaas 35

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

B.2.6 SOIVICES ... ettt ettt e etiee et aananen

5.2.7 MiSCEIANEOUS............coeeeeeieiaeeaeiees e et 36
5.3 ORGAVISATIONALSECURITYPOLICIES.....ccttiiiiiiiiiiiiiiiiineees iiiaaanaeeaeeeeeeeaeeeeeaeeee .. 36
5.4 ASSUMPTIONS . . ttuuuuuiiaeaaaa e e e e e e e e e ees tettaaeaeeeta e et e e et eeerrarritee ceeessressnbeeenne e aeeas .36

6 SECURITY OBJIECTIVESooiiiiiiiiiiieeeeeiiiiiiiiis tttveiietttaaea e e e e e e e nnnenens 37
6.1 SECURITYOBJECTIVES FOR THEOEcoiiiiiiiiiiiiiiiiiiii et .. 37

6.1.1 JACHHIFICALIONovvvveeaaaiseseisssssiicis ettt ittt aaaaes tttittaaaaaeeesssssssiaes 37

L 2 =y (- oV 1 (o) ¢ F S 37

6.1.3 SEOIVIGBS..........iiiiiiiiiiiieiiiss ettt avs ittt .. 38

6.1.4 OBJECt AEIEHION............eeeeeeeeeeeeisiiiss e ieeeeis et 39
6.2 SECURITY OBJECTIVESIR THEOPERATIONALENVIRONMENT.....ccceeeeeeeieiiiiiiiiinees aeees 39
6.3 SECURITYOBJIECTIVETRATIONALEcciiiiiiiiiiiiiceiiiiiiiiis eeeeviresineiinnan e a e eees aaeeeas 41

6.3 1 THICALS.......oovveeieiiieeeeiesisicies ettt e e aees ittt e e e e s .41

6.3.2 Organisational Security POICIES....................ccccecccee coeiieieeeiiinreeeeee .45

6.3.3 ASSUIMPLONScccceeeeeeesssiiiiiiiiiis ettt sssssssses tvvsssssssaaaaaaaassasasess 46

6.3.4 SPDand SeCUItY OBJECHVES..........cuuueeceieisiiiiiss cvviisiiiaeaaaaaaasassssssaaaens aa, 46

7 SECURITY REQUIREMENT S...oiiiiiiiiiiiiiiiiieeiiiiiiiis ciiviiiiireeeere e e e e e e .. 52
7.1 EXTENDEDCOMPONENTEEFINITION. ..cciiiiiiiiiiiiiiiiiiiiiiiies anrnrrsesneeeeeseaaeesssnnnnnns Y

7.1.1 Definition of the Family FCS RNG.........ccovveveiieeeeiiiiiins e, 52
7.2 SECURITYFUNCTIONALREQUIREMENTS....ccicutiiiiiiiiiieieeeaaaes avevresaaaaeaaessssnnnnsnsnenes .53

7.2.1 CoreG_LC Security Functional ReQUIrEMENIS.ccccveevvvviiieees cvvivsssineens 56

7.2.2 InstG Security Functional REQUIFEMENILS.cccouueeeeieiiiiiiiss eviieaeeiieiiiia 73

7.2.3 ADELG Security Functional ReQUIr€MENIS..................ccccvvieveees cvviirnnnnnnnnnn. 75

7.2.4 ODELG Security Functional ReQUITE€MENIS................ccevvvvvvvies vvsrsiiiiinnns 79
7.3 SECURITYASSURANCHREQUIREMENTS . ..uuviiiiieieeeeeeiiiiiiiiies aeeeeeeassssnnnnnsneserseaaeens ..80
7.4 SECURITYREQUIREMENTIRATIONALE. .. .uvvtitiieeeeeeeeeiiiiiiins aeeeeeasssssnnnnssnnneesaaaeens ... 80

74D OBJECHVES...........ccoeeeeeeeeeeiiiiiiis ettt ttssssssssaaaaes tvsssssaaasasssssssssssssssssns 80

7.4.2 Rationale tables of Security Objectives ana SFRS.............cccvvvvvvcvviees avrennns 84

7.:4.3 DEPENCEICIES. ...t ettt eeeeiee e 88

7.4.4 Rationale for the Security Assurance RequiremMents................cccceeevveunnn. ... 91

7.4.5 ALC DVS.2 Sufficiency of SECUITLY MEASUIES.............eveiiiiieees cvvviisiiaens 91

7.4.6 AVA VAN.5 Advanced methodical vulnerability analysis............................. 92

APPENDIX 1: JAVA CAR D SYSTEM 2.1.1 i CLOSED CONFIGURATION 93

APPENDIX 2: JAVA CAR D SYSTEM 1 CLOSED CONFIGURATION OPTI ONAL

e N] P 95
1 OVERVIEW . ..cttttieeieteeee e e e e aaaisiis taeeeeaasssssnsstsseeeeeaaaeaes teteeeeeeaeeeeessssmnnnnnnnnnes 1enns 95
2 BIOMETRICTEMPLATES ..ottt aeeeeeiiiiiirrree e e e e e e es aeeeeeaaaaaaanns 96
3. JORMI ey e e iaeeeaaa 97
4, EXTENDEDMEMORY.....cciiiiiiiiiiiiiiiiiiies titieieee e e e e e e e e e s e siiiies aeeeesnnnnssneeeees 107
5 SENSITIVEARRAY.....cettttiiiiiiiie ettt aeeee e iireereeeees raeareeeeeeaaaaeaaaans 112
6 SENSITIVERESULT ... s et e e eee teeeetneeeaaeeens 114

APPENDIX 3: AUNIFIED VIEW O F CONFIGURATIONScccccciiiiiiiiiieeeeeennn, . 117

APPENDIX 4: SUPPORTE D CRYPTOGRAPHIC ALGORITHMScccovvvviieieeen. 123

APPENDIX 5: GLOSSARY ..ottt ettt ees eeiae e 138

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

Figures

Figure 1: Java Card Platform............uuuiiiiiiiiins it eeeeeeee e e e e, 12
Figure 2: Java Card System and applet installation environment................ccccccccviiiiiies vvvvvnnns 17
Figure 3: JCS (TOE) Life Cycle within Product Life CycCle...........ccccconiiiiiiiiiies oo, 22

Tables

Table 1 Threats and Security ObjectiveS- COVEIage..........ccccurrriiiiiiiiiiies riiiiieeeeeeeeaeenaanes 47
Table 2 Security Objectives and ThreatS- COVEIrage.............oevvvvvvviviiiiins cvvvviiniiiinaseeeeeens 48
Table 3 OSPs and Security Objectives COVEIage..........uuvuvvrriiieiiiiiiins iiiiiaaneeneeeeeeaaaeeees 49
Table 4 Security Objectives and OSPS COVEIage........ccuuvurrrriiimiiiiiiiies iiiiiaaseeaaeeeaaaaaanaens 50

Table 5 Assumptions and Security Objectives for the Operational Environment- Coverage.. 51
Table 6 Security Objectives for the Operational Environment and Assumptions- Coverage.. 51

Table 7 Security Objectives and SFRS COVErage...........ccoovvvviiiviiiiiiiis ceeevvveenviiiennnnnnens 86
Table 8 SFRs and Security ODJECHIVES............ccooiiiiiiiiiiiiiis e v 87
Table 9 SFRS DEPENUENCIES.coviiiieiieeeiiiiiiiies eeeeviririi e eees aaaraaasaaeaaaaaaaaaeeeeees 90
Table 10 SARS DEPENUENCIES.uuiiiiiiiiiiiiiiiiiiiiiis aeeeeeee e eeees rrrrereeeeeaaaaaeaaaanns 91
Java Card System i Closed Configuration Protection Profile 9

Version 3.0.5

1 INTRODUCTION

This chapter provides the identification of the Protection Profile, presents its general structure
and introduces key notions used in the following chapters.

1.1 PROTECTION PROFILE | DENTIFICATION

Title : Java Card System- Closed Configuration Protection Profile

Version : 3.0.5

Publication date : July 2018

Certified by: Bundesamt fur Sicherheit in der Informationstechnik

Sponsor: Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94063JSA.

Review Committee : Java Card Forumi Common Criteria Subgroup

This Protection Profile is conformant to the Common Criteria version 3.1, revision 5.

The minimum assurance level for this Protection Profile is EAL 4 augmented with AVA_VAN.5
fMAdvanced methodical vulnerability analysiso and

1.2 PROTECTION PROFILE P RESENTATION

This Protection Profile replaces the Java CardSystem i Closed Protection Profile 3.0 [PP-JCS].

It has been developed by Oracle Corporationwith the aim of providing a full set of up -to-date

security requirements: it relies on current Common Criteria version 3.1 revision 5 and it
addresses versions 2.2.x as well as version 3 Classic Edition of the Java Card Specifications,

namely [JCVM22], [JCRE22], [JCAPI22], [JCVM221], [JCVM222], [JCAPI221], [JCVM222],
[JCRE222], [JCAPI222][JCVM3, [JCAPI3 and [JCRE3. Those specifications cover the Java

Card platform virtual machine (fAiJava Card virtdu
platform runtime environment (AJava Card runti.
Java Card Application Programming Interface (API).

! In this document, any reference to a specific version of Java CardPlatform Specification can be replaced by any
newer version of specification. For instance [JCRE22] can be replaced by [JCRE3] but not theinverse.

10 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

This Protection Profile applies to evaluations of closed Java Card Platforns, that is, smart cards

or similar devices enabled with Java Card technology that do not support post-issuance
downloading of applications, referred to as Java Card technology-b ased appl ets (AJ
appl et so o iTheAaagQaid ee¢chsolngy combines a subset of the Java programming

language with a runtime environment optimized for smart cards and similar small -memory
embedded devices. The main security goal of the Java Card platform is to counter the
unauthorized disclosure or modification of the code and data (keys, PINs, biometric templates,

etc) of applications and platform. In order to achieve this goal, the Java Card System provides

strong security features such as the firewall mechanism, dedicated API for security services,

etc.

Figure 1 shows the typical architecture of a Java Card Platform (JCP), composed of a Smart
Card Platform (SCP), a Java Card System (JCS) and of native code running on top of the SCP.

The SCPisthecanbi nati on of a Security Integrated Circl
the Al Cd) consisting of processing uni t-eolatlesecur
memori es, with a native Operati ndavaSGad Systam (her

implements the Java Card RE, the Java Card VMand the Java Card API along with the native
libraries that supports the Java Card API. The Java Card System provides a layer between the
SCPand the applets space. This layer allows applications written for one SCP enabled with Java
Card technology to run on any other such platform. The applets space is out of the scope of

this Protection Profile.

Native code is usually compiled to the native instruction set of the platform, hence their name.
There are two kinds of native code:
1 Native Applications: This is native code, which resides in parallel to the Java Card System
and can be used from outside the card in the same way as a Java Card applet.
9 Native Libraries: This code can be used by the implementation of some Java Card APls
(e.g. cryptographic libraries) or by native applications. This code cannot be used from
the outside of the card directly.

Application note:

The AAdditional Nat i Figure Creptesebts dil the mative code othenthan n
the native application implementing the JCS and the native libraries used by the JCS.

T 1 3
i ¢h9o 27
! LJLJfEE Preissuance Applets / [¢
I

I
-l 1!
1 Additional 1
1 NativeCode | i
| — e =
wi g | !
i { /1t il ¢ho 273
1 1
1 1
1 1

Java Card System i Closed Configuration Protection Profile
11

Version 3.0.5

Figure 1: Java Card Platform

This Protection Profile focuses on the security requirements for the JCS and considers the SCP
as the environment of the TOE, thus covered by security objectives. Nevertheless, any smart
card evaluation against this PP shall comprehend the IC and all the embedded software,
including the OS, the JCS as well as the additional native code (if any) and the pre-issuance
applets (if any). That is, the TOE of the ST conformant to this PP is as shown in Figure 1. The
aim of introducing all the native code in the scope of the evaluation is to test that the native
code that does not implement any security function cannot be used to circumvent or jeopar dize
the JCS TSFs.

This Protection Profile does not require formal compliance to a specific IC Protection Profile or
a smart card OS Protection Profile but those IC and OS evaluated against [PP00844 and [PP-
ESforSSID) respectively, fully meet the objectiv es.

This Protection Profile requires fidemonstrableo

The PP has been certified by the German Scheme Bundesamt fir Sicherheit in der
Informationstechnik..

The structure of this document is as follows:

1 Chapter 2 presents an overview of the TOE, its security features and its life cycle.

1 Chapter 3 defines the conformance claims applicable to this Protection Piofile.

1 Chapter 4 introduces general Java Card System securityc oncer ns, call ed
aspectso.

1 Chapter 5 presents the assets of the JCS the links between users and subjects, the
relevant threats, the organisational security policies, and the assumptions.

1 Chapter 6 describes the TOE security objectives the security objectives for the
operational environment and the security objectives rationale.

1 Chapter 7 defines the TOE security functional and assurance requirements the security
requirements rationales, the dependencies analysisand the rationales for assurance
requirements.

1 Appendix 1 defines the Java Card SystemClosed 2.1.1 Configuration, compliant with
Java Card specification version 2.1.1. No conformance can be claimed to the Closed
2.1.1 Configuration since it is out of the scope of the Protection Profile (not evaluated).

1 Appendix 2 describes the optional features introduced in Java Card System versions
2.2.2 and 3.0.5 (External Memory, Biometric templates, JCRMI, SensitiveArraysand
SensitiveResul).

1 Appendix 3 provides a comprehensive view of the two Java Card System Protection
Profiles, Open and Closed Configurations, as well as the Open 2.1.1 Configuration.
Appendix 4 contains a table of supported cryptographic algorithms.

Appendix 5 contains a glossary of technical terms used in this document.

= =

2 A product evaluation « against» this PPseands f or a pr odbiming cordovnmanhce tactthis @ i

12 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

1.3 REFERENCES

[CC1]

[CC2]

[CC3]

[CEM]

[CSRS]

[GP]

[JCVM21]

[JCAPI21]

[JCRE21]

[JCVM22]

[JCAPI22]

[JCRE22]

[JCVM221]

[JCAPI221]

[JCRE221]

Common Criteria for Information Technology Security Evaluation, Part 1:
Introduction and general model, Version 3.1, Revision5, April 2017, CCMB
2017-04-001.

Common Criteria for Information Technology Security Evaluation, Part 2:
Security functional requirements, Version 3.1, Revision 5, April 2017,
CCMB2017-04-002.

Common Criteria for Information Technology Security Evaluation, Part 3:
Security assurane requirements, Version 3.1, Revision 5, April 2017,
CCMB2017-04-003.

Common Methodology for Information Technology Security Evaluation:
Evaluation Methodology, Version 3.1, Revision5, April 2017, CCMB2017-
04-004.

GlobalPlatform CardSecurity Requirements Specification Version 1.0, May
2003.

GlobalPlatform Card Specification,Version 2.3.1, March 2018.

Java Card Platform, version 2.1.1 Virtual Machine (JCVM) Specification.
Revision 1.0. May 18, 2000. Published by Sun Microsystems, Inc.

Java Card Platform, version 2.1.1 Application Programming Interface.
Revision 1.0. May 18, 2000. Published by Sun Microsystems, Inc.

Java Card Platform 2.1.1 Runtime Environment (Java Card RE)
Specification. Revision 1.0. May 18, 2000. Published by Sun Microsystems,
Inc.

Java Card Platform, version 2.2 Virtual Machine (Java Card VM)
Specification. June 2002. Published by Sun Microsystems, Inc.

Java Card Platform, version 2.2 Application Programming Interface. June
2002. Published by Sun Microsystems, Inc.

Java Card Platform, version 2.2 Runtime Environment (Java Card RI
Specification. June 2002. Published by Sun Microsystems, Inc.

Java Card Platform, version 2.2.1 Virtual Machine (Java Card VM)
Specification. October 2003. Published by Sun Microsystems, Inc.

Java Card Platform, version 2.2.1 Apgdication Programming Interface.
October 2003. Published by Sun Microsystems, Inc.

Java Card Platform, version 2.2.1 Runtime Environment (Java Card RE)

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

13

[JCVM222]

[JCAPI222]

[JCRE222]

[JCVM3]

[JCAPI3]

[JCRE3]

[JCBV]

[JAVASPEC]

[JVM]

[PP-ESforSSD

[PP0084H

[PP JCS]

[PP-JCSG3.0.5]

Specification. October 2003. Published by Sun Microsystems, Inc.

Java Card Platfam, version 2.2.2 Virtual Machine (Java Card VM)
Specification. Beta release, October 2005. Published by Sun Microsystems,
Inc.

Java Card Platform, version 2.2.2 Application Programming Interface,
March 2006. Published by Sun Microsystems, Inc

Java Card Platform, version 2.2.2 Runtime Environment (Java Card RE)
Specification. March 2006. Published by Sun Microsystems, Inc.

Java CardPlatform, versions 3.0up to 3.0.5, Classic Edition, Virtual Machine
(Java Card VM) Specificdion. Published by Oracle.

Java Card Platform, versions 3.0 up to 3.0.5, Classic Edition, Application
Programming Interface,. Published by Oracle.

Java Card Platform, versions 3.0 up to 3.0.5, Classic Edition, Runtime
Environment (Java Card RE) Specification Published by Oracle.

Java Card 3 Platform Offcard Verification Tool Specification, Classic
Edition, Version 1.0. Published by Oracle.

The Java Language Specification Third Edition, May 2005. Gosling, Joy,
Steele and Bracha. ISBN 0-321-24678-0.

The Java Virtual Machine Specification Lindholm, Yellin. ISBN 0-201-
43294-3.

Embedded Software for Smart Secure Devices Protection Profile v1.0,
November 27" 2009, ANSSI.

BSI-CGPR0084-2014, Security IC Platform Protection Profile with
Augmentation Packages, Version 1.0, 13January 2014

Java Card Protection Profile Collection, Version 1.0b, August 2003,
registered and certified by the French certification body (ANSSI) under the
followi n g references: [PP/ 0303] iAMi ni ma
AiStandard 2.1.1 Configurationbo, [PP/ O
and [PP/ 0306] nDefensive Configuration

Java Card System Protection Profilei Open Configuration, Version 3.0.5,
December 2017, registered and certified by the German certification body
(BSI) under the reference [BSI-CGPR0099-2017]

14

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

2 TOE OVERVIEW

This chapter defines the Target of Evaluation (TOE) type and describes the main security
features of the TOE, the components of the TOE environment, the TOE life-cycle and TOE
intended usage.

2.1 TOETYPE

211 TOE OFTHIS PP

The TOE type in this PP is the Java Card System (Java Card RE, Java Card VM and Java Card
API) along with the additional native code embedded in a Smart Card Phatform. The Java Card
System is compliant with Java Card specifications versions 2.2.x or 3 Classic Editionwithout
post-issuance loading facilities of applications verified off-card. The TOE may implement the
Java Card Remote Method Invocation functionality, which is optional in this PP. Native code
post-issuance downloading is out of the scope in this PP.

This TOE constitutes the target of the security requirements stated in this Protection Profile. It
defines the perimeter of the security requirements stated in this Protection Profile but does not
define the perimeter of an actual evaluated product (TOE of the ST) that must include the Smart
Card Platform.

2.1.2 TOE OFTHE ST

The TOE type of the Security Target (ST) that declares conformity to t his PP is the Smart Card
Platform (IC and OS) along with the native applications (if any), pre -issuance applets (if any)
and the Java Card System.

Application note:

In case where the TOE of the ST includes additional native code that provides security

features, the writer of the ST that complies with this PP shall add specific security objectives

and security functional requirements for the TOE. He shall then provide full Common Criteria
evidence that the additional native code satisfies all these new requirements. In addition,

since the TOE of the ST includes the Smart Card Platform which belongs to the operational
environment of the TOE of the PP, all the security objectives on the IC and the OS introduced

in this PP shall be redefined as securityobjec t i ves fAon the TOEO in the

Java Card System i Closed Configuration Protection Profile
15
Version 3.0.5

2.2 TOE SECURITY FUNCTIO NS

The Java Card SystemClosed Configuration considered in this Protection Profile implements
Java Card Specificationsversions 2.2.x or 3 Classic Editionwithout post-issuance downloading
of applications.

Figure 2 shows the Java Card Systemand the relationship with the environment for applet
installation purposes in two scenarios: one relying on off-card verification (black lines),
described hereafter, the other one relying on on -card verification by the installer (dotted red
lines).

The development of the applets is carried on in a Java programming environment. The
compilation of the code produces the corresponding class file. Then, this latter file is processed
by the converters which validates the code and generates a converted applet (CAP) file, the
equivalent of a Java class file for the Java Card platform. A CAP file contains an executable
binary representation of the classes of a package. A padkage is a namespace within the Java
programming language that may contain classes and interfaces, and in the context of Java Card
technology, it defines either a user library, or one or several applets. Then, the off -card bytecode
verifier checks the CAP fle (cf. Section 2.3.1 for more details). After the validation is carried
out, the CAP file has to be loaded into the card by means of a safe loading mechanism.

The loading of a file into the card embodies two ma in steps: First an authentication step by
which the card issuer and the card recognize each other, for instance by using a type of
cryptographic certification. Once the identification step is accomplished, the CAP file is
transmitted to the card. Due to re source limitations, usually the file is split by the card issuer
into a list of Application Protocol Data Units (APDUSs), which are in turn sent to the card. Once
loaded into the card the file is linked, what makes it possible in turn to install, if defined ,
instances of any of the applets defined in the file.

3 The converter is defined in the specifications [JCVM221] as the off-card component of the Java Cardvirtual
machine.

16 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

- OF-Cass Varifiar
OfCard Loader AP

On-Card Loader cérd
J . [Manager Ll Wewappet | Applet 2
I‘ava Card S_\;stem i
: ~;‘7:;r;':'1 o ——— lInstaller JCRE %
On<. A_‘:‘J-::::‘:z ——— 1 JCAPI JCVM

Smart Card Platform (OS, Firmware,...)

Figure 2:Java Card System and applet installation environment

The linking process consists of a rearrangement of the information contained in the CAP file in
order to speed up the execution of the applications. There is a first step where indirect external
and internal references contained in the file are resolved by replacing those references with
direct ones. This is what is referred to as the resolution step in the [JVM]. In the next step,
called the preparation step in [JVM], the static field image+ and the statically initialized arrays
defined in the file are allocate d. Those arrays in turn are also initialized, thus giving rise to what
shall constitute the initial state of the package for the embedded interpreter.

During the installation process the applet is registered on the card by using an application
identifier (AID). This AID will allow the identification of unique applet instances within the card.
In particular, the AID is used for selecting the applet instance for execution. In some cases, the
actual installation (and registration) of applets is postponed; in the same way, a package may
contain several applets, and some of them might never be installed. Installation is then usually
separated from the process of loading and linking a CAP file on the card.

4 The memory area containing the static fields of the file.

Java Card System i Closed Configuration Protection Profile
17

Version 3.0.5

The installer is the Java Card System component dealingwith loading, linking and installation
of new packages, as described in [JCRE22] Once selected, it receives the CAP file, stores the
classes of the package on the card, initializes static data, if any, and installs any applets
contained in the package. The installer is also in charge of applet deletion ([JCRE22],811.3.4):

- Applet instance deletion, which is the removal of the applet instance and the objects
owned by the applet instance.

- Applet/library package deletion, which entails the removal of all the card resident
components of the CAP file, including code and any associated JCRE management
structures.

- Deletion of an applet package and contained instances, which is the removal of the card
resident code and JCRE structures associated with the applet package, and all the applet
instances in the context of the package.

In this Protection Profile, the installer's functionality is limited to applet instance creation
(installation of applets contained in pre-loaded packages) and applet instance deletion.
Application loading and linking are performed pre-issuance in a controlled environment.

The Java Card VM is the bytecode interpreter as specified h [JCVM22] The Java Card RE is
responsible for card resource management, communication, applet execution, on-card system
and applet security. The Java CardAPI provides classes and interfaces to the Java Card applets.
It defines the calling conventions by which an applet may access the Java Card RE and native
services such as, I/O management functions, PIN and cryptographic specific management and
the exceptions mechanism.

While the Java Card VMis responsible for ensuring language-level security, the Java Card RE
provides additional security features for Java Card technology-enabled devices. Applets from

different vendors can coexist in a single card, and they can even share information. An applet,

however, is usually intended to store highly sensitive information, so the sharing of that
information must be carefully limited. In the Java Card platform, applet isolation is achieved

through the applet firewall mechanism ([JCRE22]and [JCRE386.1). That mechanism confines

an applet to its own designated memory area, thus each applet is prevented from accessing

fields and operations o f objects owned by other appl et s, L
explicitly provided by the applet who owns it } for allowing access to that information. The Java

Card RE allows sharing using the concepitpubdlid fsh
variables. Java Card VM dynamically enforces the firewall that is, at runtime . However applet

isolation cannot be entirely granted by the firewall mechanism if certain integrity conditions are

not satisfied by the applications loaded on the card. Those conditions can be statically verified

to hold by a bytecode verifier ([JCRE22], §6.1.1).

The Java Card VM ensures that the only way for applets to access any resources are either

through the Java Card RE or through the Java Card API (or other vendor-specific APIs). This
objective can only be guaranteed i f applets are
in chapter 7 of [JCVM22] on the bytecodes and the correctness of the CAP file format are

satisfied).

The Java CardSystem compliant with Java Card specification versions 2.2.x or 3 Classic Edition
supports the Java Card Sytem Remote Method Invocation (JCRMI) and logical channels.

18 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

Implementation of JCRMI is mandatory in versions 2.2.x of Java Card specification and optional
in version 3 Classic Edition. The JCS developer may also choose not to activate this functionality
in the TOE. For these reasons, this PP considers thatthe TOE may or may not provide the JCRMI
functionality.

Logical channelsallow a terminal to open multiple sessions into the smart card, one session per
logical channel ([JCRE22], 84). Commands may ke issued on a logical channel to instruct the
card either to open or to close a logical channel. An applet instance that is selected to be active
on a channel shall process all the commands issued to that channel. The platform also
introduces the possibility for an applet instance to be selected on multiple logical channels at
the same time, or accepting other applets belonging to the same package to be selected
simultaneously. These applets are referred to as multiselectable. A non-multiselectable applet
can be active at most on one channel. Applets within a package are either all multiselectable or
all non-multiselectable.

The Java Card System may optionally provide

- Object deletion upon request of an applet instance. The JCRE ensures that any
unreferenced object owned by that instance is deleted and the associated space is
recovered for reuse.

- Extended memory facilities, introduced in Java Card specification version2.2.2. This is an
API-based mechanism to access the external memory outside the addressable Java Card
VM space.

- SensitiveResult, introduced in Java Card specification version 3.0.5. This APIprovides
methods to assert results of sensitive functions.

- SensitiveArray, introduced in Java Card specification version 3.0.5. This API provides
methods for creating and handling integrity -sensitive array objects.

Java Card System 2.2.2 also provides support for biometric templates management, external
memory access and contactless I/O interface.

Note that the optional features fAExtended memor
the TOE since they are not included in the Java Card System 2.2.1. Nonetheless, they are
detailed in Appendix 2 for informative purposes.

Java Card System 3 Classic Edition provides support for ETSI defined SWP protocol for
contactless communication, and for independent contacted and contactless interfaces.
Moreover, it provides support for USB connected interface communication.

Finally, Java Card System 3.0.5 specification provides sensitive array and sensitive result
optional features described in Appendix 2.

2.3 NON -TOE HW/SW/FW AVA ILABLE TO THE TOE

The following sections further describe the components involved in the environment of the Java
Card System. The role they play will help in understanding the importance of the assumptions
on the environment of the TOE.

Java Card System i Closed Configuration Protection Profile
19

Version 3.0.5

2.3.1 BYTECODE VERIFICATION

The bytecode verifier is a program that performs static checks on the bytecodes of the methods

of a CAP file prior to the execution of the file on the card. Bytecode verification is a key
component of security: applet isolation, for instance, depends on the file satisfying the

properties a verifier checks to hold. A method of a CAP file that has been verified shall not

contain, for instance, an instruction that allows forging a memory address or an instruction that

makes improper use of a return address as if it were an object reference. In other words,

bytecodes are verified to hold up to t he intended use to which they are defined. Bytecode
verification could be performed totally or partially dynamically. No standard procedure in that

concern has yet been recognized. Furthermore, different approaches have been proposed for

the implementation of bytecode verifiers, most notably data flow analysis, model checking and
lightweight bytecode verification, this latter being an instance of what is known as proof carrying

code. The actual set of checks performed by the verifier is implementation -dependent, but it is
required that it should at | east ¢JGVYM22] acnethe a | | t
bytecodes and the corrmnatt ness of the CAP fil esod

2.3.2 LOADING , LINKING AND |NSTALLATION OF APPLE TS

The loading and linking of applets in the card occurs in a controlled environment prior to
issuance of the product and is therefore out of the scope of the TOE. The installer's functionality
is limited to applet instance creation (installation of applets contained in pre -loaded packages)
and applet instance deletion.

2.3.3 THE CARD M ANAGER (CM)

The card manager is an application with specific rights, which is responsible for the
administration of the smart car d. This component will in practice be tightly connected with the

Java Card RE. The card manager is in charge of the life cycle of the whole card, as well as the
installed applications (applets). It may have other roles (such as the management of security

domains and enforcement of the card issuer security policies) that we do not detail here, as

they are not in the scope of the TOE and are implementation i dependent.

The card managerds role is also to manage and
and the card acceptance device (CAD) or the proximity-coupling device (PCD}. It is the
controller of the card, but relies on the TOE to manage the runtime of client applets.

A candidate for this component is the Global Platform card manager [GP].

5 The acronym CAD is used here and throughout this specification to refer to both types of card readers - the
conventional Card Acceptance Device (CAD) for contacted /O interfaces and the Proximity Coupling Device (PCD)
for contactless interfaces.

20 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

2.3.4 SMART CARD PLATFORM

The SCP is composed of an IC with a Dedicated Software (DS) if any and a native OS. SCP
provides memory management functions, I/O functions that are compliant with ISO standards,
transaction facilities and secure (shielded, native) implementation of cryptographic functions.
The SCP shall be evaluated along with the TOE in a product evaluation.

2.4 TOE LIFE CYCLE

The Java Card System (the TOE) lie cycle is part of the product life cycle, i.e. the Java Card
platform with applications, which goes from product development to its usage by the final user.
The product life cycle phases are those detailed in Figure 3. We refer to [PP00844 for a
thorough description of Phases 1 to 7:

9 Phases 1 and 2 compose the product development: Embedded Software (IC Dedicated
Software, OS, Java Card System, other platform components such as Card Manager,
Applets) and IC development.

1 Phase 3 ard Phase 4 correspond to IC manufacturing and packaging, respectively. Some
IC pre-personalization steps may occur in Phase 3.

1 Phase 5 concerns the embedding of software components within the IC.
1 Phase 6 is dedicated to the product personalization prior final use.
1 Phase 7 is the product operational phase.

The Java Card System life cycle is composed of four stages:
1 Development,
9 Storage, pre-personalization and testing
9 Personalkzation and testing
1 Final usage.

JCS storage is not necessarily a single st@ in the life cycle since it can be stored in parts. JCS
delivery occurs before storage and may take place more than once if the TOE is delivered in
parts. These stages map to the typical smartcard life cycle phases as shown in Figure 3.

8 This is true for a product which security target is claiming conformance to this PP.

Java Card System i Closed Configuration Protection Profile
21

Version 3.0.5

JCSDevelopment Phase 1
. Security IC Embedded Software
Development

JCS Phase 2
Delivery Security IC Development
JCSStorage, Phase 3
—» pre-personalization, testing Security IC Manufacturing
Phase 4

Security IC packaging

JCSStorage, Phase 5
—® pre-personalization, testing Composite Product Integration
JCSPersonalization Phase 6

Personalization

JCSFinal usage Phase 7
Operational Usage

Figure 3:JCS (TOE) Life Cycle within Product Life Cycle

JCS Development is performed during Phase 1. This includes JCS conception, design,
implementation, testing and documentation. The JCS developmernt shall fulfill requirements of
the final product, including conformance to Java Card Specifications, and recommendations of
the SCP user guidance. The JCS development shall occur in a controlled environment that avoids
disclosure of source code, data andany critical documentation and that guarantees the integrity
of these elements. The evaluation of a product against this PP shall include the JCS development
environment.

The delivery of the JCS may occur either during Security IC Manufacturing (Phase 3) or during
Composite Product Integration (Phase 5). It is also possible that part of the JCS is delivered in
Phase 3 and the rest is delivered in Phase 5. Delivery and acceptance procedures shall guarantee
the authenticity, the confidentiality and integrit y of the exchanged pieces. JCS delivery shall
usually involve encrypted signed sending and it supposes the previous exchange of public keys.
The evaluation of a product against this PP shall include the delivery process.

22 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

In Phase 3, the Security IC Manufacturer may store, pre-personalize the JCS and potentially
conduct tests on behalf of the JCS developer. The Security IC Manufacturing environment shall
protect the integrity and confidentiality of the JCS and of any related material, for instance test
suites. The evaluation of a product against this PP shall include the whole Security IC
Manufacturing environment, in particular those locations where the JCS is accessible for
installation or testing. If the Security IC has already been certified (e.g. again st [PP00844)
there is no need to perform the evaluation again.

In Phase 5, the Composite Product Integrator may store, pre -personalize the JCS and potentially
conduct tests on behalf of the JCS developer. The Composite Product Integration environment
shall protect the integrity and confidentiality of the JCS and of an y related material, for instance

test suites. Note that (part of) JCS storage in Phase 5 implies a product delivery after Phase 5.

Hence, the evaluation of such product against this PP shall include the Composite Product
Integrator environment (may be more than one if there are many integrators). At the end of

this stage, all the applets of the final product have been installed on top of the JCS.

The JCS (and potentially the applets) is personalized in Phase 6, if necessary. The
Personalization environmentshall be included in a product evaluation only if the product delivery
point is at the end of Phase 6. This means that some of the product personalization operations
may require a controlled environment (secure locations, secure procedures and trusted
personnel). The product shall be tested again and all critical material including personalization
data, test suites and documentation shall be protected from disclosure and modification.

The JCS final usage environment is that of the product where the JCS s embedded in. It covers
a wide spectrum of situations that cannot be covered by evaluations. The JCS and the product
shall provide the full set of security functionalities to avoid abuse of the product by untrusted
entities.

Application note:

The Secuiity Target writer shall specify the life cycle of the product, the JCS delivery point and
the product delivery point. The product delivery point may arise at the end of Phase 3, 4, 5 or
6 depending on the product itself. Note that JCS delivery precedes product delivery. During
product evaluation against this Protection Profile, the ALC security assurance requirements apply
to the whole product life cycle up to delivery.

Java Card System i Closed Configuration Protection Profile
23

Version 3.0.5

2.5 TOE USAGE

Smart cards are used as data carriers that are secure against forgery and tampering as well as

personal, highly reliable, small size devices capable of replacing paper transactions by electronic

data processing. Data processing is performed by a piece of software embedded in the smart

card chip, called an application.

The JavaCard Systemis intended to transform a smart card into a platform capable of executing
applications written in a subset of the Java programming language. The intended use of a Java

Card platform is to provide a framewaork for implementing IC independent app lications conceived

to safely coexist and interact with other applications into a single smart card.

Applications installed on a Java Card platform can be selected for execution when the card

communicates with a card reader.

Notice that these applications may contain other confidentiality (or integrity) sensitive data than

usual cryptographic keys and PINs; for instance, passwords or passphrases are as confidential

as the PIN, or the balance of an electronic purse.

So far, the most typical applications are:

Financial applications, like Credit/Debit ones, stored value purse, or electronic
commerce, among others.

Transport and ticketing, granting pre -paid access to a transport system like the
metro and bus lines of a city.

Telephony, through the subscriber identification module (SIM) or the NFC chip
for mobile phones.

Personal identification, for granting access to secured sites or providing
identification credentials to participants of an event.

Electronic passports and identity cards.

Secure information storage, like health records, or health insurance cards.
Loyalty progr ams, |l i ke the AFrequent
are added and deleted from the card memory in accordance with program
rules. The total value of these points may be quite high and they must be
protected against improper alteration in the same way that currency value is
protected.

Fl

24

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

yer

3 CONFORMANCE CLAIMS

3.1 CC CONFORMANCE CLAIM S

This Protection Profile isCC Part 2 [CC2]extended and CC Part 3 [CC3]conformant of Common
Criteria version 3.1, revision 5. The extended Security Functional Requirements are defined in
chapter 7.1.

3.2 CONFORMANCE CLAIM TO A PACKAGE

The minimum assurance level for the evaluation of a Java Card Platform with a TOE conformant
to this PP is EAL4 augmented wih AVA_ VANSS Advanced met hodical wvulner
ALC DVS. 2 ASufficiency of security measureso.

3.3 PROTECTION PROFILE C ONFORMANCE CLAIMS

This Protection Profile does not claim conformance to any other Protection Profile.

3.4 CONFORMANCE CLAIMS T O THIS PROTECTION PROFILE

The conformance to this PP, required for the Security Targets and Protection Profiles claiming
conformance to it, is demonstrable, as defined in CC Part 1 [CC1].

Java Card System i Closed Configuration Protection Profile
25

Version 3.0.5

4 SECURITY ASPECTS

This chapter describes the main security issues of the Java Card System and its environment
addressed in this Protection Pr cifideperglent wayaInl ed A
addition to this, they also give a semi-formal framework to express the CC security environment

and objectives of the TOE. They can be instantiated as assumptions, threats, objectives (for the

TOE and the environment) or organizational security policies. For instance, we will define

hereafter the following aspect:

#.OPERATE(1) The TOE must ensure continued correct operation of its security functions. (2) The
TOE must also return to a well-defined valid state before a service request in case of failure during
its operation.

TSFs must be continuously active in one way o
Protection Proflemay i ncl ude an assumpti on, call ed AA. OF
that the TOE ensures continued correct operation of its security functions, and so on. However,

it may also include a threat, call ed ATtHhOPERAT

statement #.OPERATE. In this example, this amounts to stating that an attacker may try to
circumvent some specific TSF by temporarily shuttingitdown. The use of AOPERATEDO
to ease the understanding of this document.

This section presents security aspects that will be used in the remainder of this document. Some

being quite general, we give further details, which are numbered for easier cross -reference

within the document. For instance, the two parts of #.OPERATE, when instantiated with an
objective AO0. OPERATEO, may be met by separate
adds further details on the relationship between the objective and those SFRs.

4.1 CONFIDENTIALITY

#. CONFID-APPLIDATA Application data must be protected against unauthorized disclosure.
This concerns logical attacks at runtime in order to gain read access to
other applicationds dat a.

CONFID-JCSCODE Java Card System code must be protected against unauthorized
disclosure. Knowledge of the Java Card System code mg allow
bypassing the TSF. This concerns logical attacks at runtime in order to
gain a read access to executable code, typically by executing an
application that tries to read the memory area where a piece of Java
Card Systemcode is stored.

#CONFID-JCSDATA Java Card System data must be protected against unauthorized
disclosure. This concerns logical attacks at runtime in order to gain a
read access to Java Card Systendata. Java Card Systemdata includes
the data managed by the Java Card RE, the Java Cad VM and the
internal data of Java Card platform API classes as well.

26 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

4.2 INTEGRITY

#INTEG-APPLICODE Application code must be protected against unauthorized modification.

#INTEG-APPLIDATA

#INTEG-JCSCODE

#INTEG-JCSDATA

This concerns logical attacks at runtime in order to gain write access
to the memory zone where executable code is stored.

Application data must be protected against unauthorized modification.
This concerns logical attacks at runtime in order to gain unauthorized
write access to application data.

Java Card System code must be protected against unauthorized
modification. This concerns logical attacks at runtime in order to gain
write access to executable code.

Java Card System data must be protected against unauthorized
modification. This concerns logical attacks at runtime in order to gain
write access to Java Card Systendata. Java Card Systemdata includes
the data managed by the Java Card RE, the Java Card VM and the
internal data of Java Card API classes as well.

4.3 UNAUTHORIZED EXECUT IONS

#.EXEAPPLICODE

#.EXE-JCSCODE

#FIREWALL

Application (byte)code must be protected against unauthorized
execution. This concerns (1) invoking a method outside the scope of
the accessibility rules provided by the access modifiers of the Java
programming language ([JAVASPEC] 86.6); (2) jumping inside a
method fragment or interpreting the contents of a data memory area
as if it was executable code; (3) unauthorized execution of a remote
method from the CAD (if the TOE provides JCRMI functionality).

Java Card System bytecode must be protected against unauthorized
execution. Java Card System bytecode includes any code of the Java
Card RE or API. This concerng1) invoking a method outside the scope
of the accessibility rules provided by the access modifiers of the Java
programming language ([JAVASPEC] 86.6); (2) jumping inside a
method fragment or interpreting the contents of a data memory area
as if it was executable code. Note that execute access to native code
of the Java Card System and applications is the concern of #. NAT/VE

The Firewall shall ensure controlled sharing of class instances, and
isolation of their data and code between packages (that is, controlled
execution contexts) as well as between packages and the JCRE
context. An applet shall not read, write, compare a piece of data

7 This concerns in particular the arrays, which are considered as instances of the Object classin the Java

programming language.

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

27

belonging to an applet that is not in the same context, or execute one
of the methods of an applet in another context without its
authorization.

#NATIVE Because the execution of native code is outside of the JCS TSF scope,
it must be secured so as to not provide ways to bypass the TSFs of the
JCS. Loading of native code, which is as well outside those TSFs, is
submitted to the same requirements. Should native software be
privileged in this respect, exceptions to the policies must include a
rationale for the new security framework they introduce.

4.4 BYTECODE VERIFICATION

VERIFICATION Bytecode must be verified prior to being executed. Bytecode
verification includes (1) how well-formed CAP file is and the verification
of the typing constraints on the bytecode, (2) binary compatibility with
loaded CAP files and the assurance that the export files used to check
the CAP file correspond to those that will be present on the card when
loading occurs.

4.4.1 CAP FILE VERIFICATION

Bytecode verification includes checking at least the following properties: (3) bytecode
instructions represent a legal set of instructions used on the Java Card platform; (4) adequacy
of bytecode operands to bytecode semantics; (5) absence of operand stack overflow/underflow;
(6) control flow confinement to the current method (that is, no control jumps to outside the
method); (7) absence of illegal data conversion and reference forging; (8) enforcement of the
private/public access modifiers for class and class members;(9) validity of any kind of reference
used in the bytecodes (that is, any pointer to a bytecode, class, method, object, local variable,
etc actually points to the beginning of piece of data of the expected kind); (10) enforcement of
rules for binary compatibility (full details are given in [JCVM22], [JVM], [JCBY). The actual set
of checks performed by the verifier is implementation -dependent, but shall at least enforce all
the Amust cl| aud¥dRJontmpbys ead oidres and the correctrn
format.

As most of the actual Java Card VMs do not perform all the required checks at runtime, mainly
because smart cards lack memory and CPU resourcesCAP file verification prior to execution is
mandatory. On the other hand, there is no requirement on the precise moment when the
verification shall actually take place, as far as it can be ensured that the verified file is not
modified thereafter. Therefore, the bytecodes can be verified either before the | oading of the
file on to the card or before the installation of the file in the card or before the execution,
depending on the card capabilities, in order to ensure that each bytecode is valid at execution
time.

Another important aspect to be considered about bytecode verification and application
downloading is, first, the assurance that every package required by the loaded applet is indeed
on the card, in a binary -compatible version (binary compatibility is explained in [JCVM22]84.4),

28 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

second, that the export files used to check and link the loaded applet have the corresponding
correct counterpart on the card.

4.4.2 |INTEGRITY AND AUTHENTICATION

Verification off-card is useless if the application package is modified afterwards. The usage of
cryptographic certifications coupled with the verifier in a secure module is a simple means to
prevent any attempt of modification between package verification and package loading. Once a
verification authority has verified the package, it signs it and sends it to the card. Prior to the
loading of the package, the card verifies the signature of the package, which authenticates the
fact that it has been successfully verified. In addition to this, a secured communication channel
is used to communicate it to the card, ensuring that no modification has been performed on it.

Alternatively, the card itself may include a verifier and perform the checks prior to the effective
installation of the applet or provide means for the bytecodes to be verified dynamically. On-card
bytecode verifier is out of the scope of this Protection Profile.

4.4.3 LINKING AND VERIFICATION

Beyond functional issues, the installer ensures at least a property that matters for security: the
loading order shall guarantee that each newly loaded package references only packages that
have been already loaded on the card. The linker can ensure this property because the Java
Card platform does not support dynamic downloading of classes.

4.5 CARD MANAGEMENT

#CARD-MANAGEMENTT he card manager shall i mpl ement

#INSTALL (1) The TOE must be able to return to a safe and consistent state
when the loading of a package or installation of an applet fails or be
cancelled (whatever the reasons). (2) Installing an applet must have
no effect on the code and data of already installed applets. The
installation procedure should not be used to bypass the TSFs. In short,
it is an atomic operation, free of harmful effects on the state of the
other applets. (3) The procedure of loading a package and installation
of applets shall ensure its integrity and authenticity.

#.SID (1) Users and subijects of the TOE must be identified. (2) The identity
of sensitive users and subjects associated with administrative and
privileged roles must be particularly protected; this concerns the Java
Card RE, the applets registered on the card, and especially the default
applet and the currently selected applet (and all othe r active applets
in Java Card System 2.2x). A change of identity, especially standing
for an administrative role (like an applet impersonating the Java Card
RE), is a severe violation of the Security Functional Requirements
(SFR). Selection controls the access to any data exchange between the

Java Card System i Closed Configuration Protection Profile
29
Version 3.0.5

#.OBJIDELETION

TOE and the CAD and therefore, must be protected as well. Any
exchange of data through the APDU buffer (which can be accessed by
any applet) can lead to disclosure of keys, application code or data,
and so on.

(1) Deallocation of objects should not introduce security holes in the
form of references pointing to memory zones that are not longer in
use, or have been reused for other purposes. Deletion of collection of
objects should not be maliciously used to circumvent the TSFs.
(2) Erasure, if deemed successful, shall ensure that the deleted class
instance is no longer accessible.

4.6 SERVICES

#ALARM

#.OPERATE

#.RESOURCES

#.CIPHER

#KEY-MNGT

#PIN-MNGT

The TOE shall provide appropriate feedback upon detection of a
potential security violation. This particularly concerns the type errors
detected by the bytecode verifier, the security exceptions thrown by
the Java Card VM, or any other security-related event occurring during
the execution of a TSF.

(1) The TOE must ensure continued correct operation of its security
functions. (2) In case of failure during its operation, the TOE must
also return to a well -defined valid state before the next service request.

The TOE controls the availability of resources for the applications in
order to prevent unauthorized denial of service or malfunction of the
TSFs. This concerns both execution (dynamic memory allocation) and
installation (static memory allocation) of appli cations and loading of
packages.

The TOE shall provide a means to the applications for ciphering
sensitive data, for instance, through a programming interface to low -
level, highly secure cryptographic services. In particular, those services
must support cryptographic algorithms consistent with cryptographic
usage policies and standards.

The TOE shall provide a means to securely manage cryptographic keys.
This includes: (1) Keys shall be generated in accordance with specified
cryptographic key generation algorithms and specified cryptographic
key sizes, (2) Keys must be distributed in accordance with specified
cryptographic key distribution methods, (3) Keys must be initialized
before being used, (4) Keys shall be destroyed in accordance wth
specified cryptographic key destruction methods.

The TOE shall provide a means to securely manage PIN objects. This
includes: (1) Atomic update of PIN value and try counter, (2) No
rollback on the PIN-checking function, (3) Keeping the PIN value (once

30

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

initialized) secret (for instance, no clear-PIN-reading function),
@4Protection of PINOs securitryyimtat t ri k
€) in i.ntegrity

#.SCP The smart card platform must be secure with respect to the SFRs.
Then: (1) After a power loss, RF signal loss or sudden card removal
prior to completion of some communication protocol, the SCP will allow
the TOE on the next power up to either complete the interrupted
operation or revert to a secure state. (2) It does not allow the SFRs to
be bypassed or altered and does not allow access to other low-level
functions than those made available by the packages of the Java Card
API. That includes the protection of its private data and code (against
disclosure or modification) from the Java Card System. (3) It provides
secure low-level cryptographic processing to the Java Card System.
(4) It supports the needs for any update to a single persistent object
or class field to be atomic, and possibly a low-level transaction
mechanism. (5) It allows the Java Card System to store data in
Apersistent technology memoryo or in
its needs (for instance, transient objects must not be stored in non -
volatile memory). The memory model is structured and allows for low 1
level control accesses (segmentation fault detection). (6) It safely
transmits lowT level exceptions to the TOE (arithmetic exceptions,
checksum errors), when applicable. Finally, it is required that (7) the
IC is designed in accordance with a well-defined set of policies and
standards (for instance, those specified in [PP00844), and will be
tamper resistant to actually prevent an attacker from extracting or
altering security data (like cryptographic keys) by using commonly
employed techniques (physical probing and sophisticated analysis of
the chip). This especially matters to the management (storage and
operation) of cryptographic keys.

#. TRANSACTION The TOE must provide a means to execute a set of operations
atomically. This mechanism must not jeopardise the execution of the
user applications. The transaction status at the beginning of an applet
session must be closed (no pending updates).

Java Card System i Closed Configuration Protection Profile
31

Version 3.0.5

5 SECURITY PROBLEM DEF INITION

5.1 ASSETS

Assets are security-relevant elements to be directly protected by the TOE. Confidentiality of
assets is always intended with respect to un-trusted people or software, as various parties are
involved during the first stages of the smart card product life -cycle; details are given in threats
hereafter.

Assets may overlap, in the sense that distinct assets may refer (partially or wholly) to the same
piece of information or data. For example, a piece of software may be either a piece of source
code (one asset) or a piece of compiled code (another asset), and may exist in various formats
at different stages of its development (digital supports, printed paper). This separation is
motivated by the fact that a threat may concern one form at one stage, but be meaningless for
another form at another stage.

The assets to be protected by the TOE are listed below. They are grouped according to whether
it is data created by and for the user (User data) or data created by and for the TOE (TSF data).
For each asset it is specified the kind of dangers that weigh on it.

5.1.1 USERDATA

D.APP_CODE
The code of the applets and libraries loaded on the card.
To be protected from unauthorized modification.

D.APP_C_DATA

Confidentiality - sensitive data of the applications, like the data contained in an object, a
static field of a package, a local variable of the currently executed method, or a position of
the operand stack.

To be protected from unauthorized disclosure.

D.APP_|_DATA

Integrity sensitive data of the applications, like the data contained in an object and the PIN
security attributes (PIN Try limit, PIN Try counter and State).

To be protected from unauthorized modification.

D.APP_KEYs
Cryptographic keys owned by the applets.
To be protected from unauthorized disclosure and modification.

32 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

D.PIN
Any end-user's PIN.
To be protected from unauthorized disclosure and modification.

5.1.2 TSF DATA

D.API_DATA
Private data of the API, like the contents of its private fields.
To be protected from unauthoriz ed disclosure and modification.

D.CRYPTO

Cryptographic data used in runtime cryptographic computations, like a seed used to generate
a key.

To be protected from unauthorized disclosure and modification.

D.JCS_CODE
The code of the Java Card System.
To be protected from unauthorized disclosure and modification.

D.JCS_DATA

The internal runtime data areas necessary for the execution of the Java Card VM, such as,
for instance, the frame stack, the program counter, the class of an object, the length
allocated for an array, any pointer used to chain data -structures.

To be protected from unauthorized disclosure or modification.

D.SEC_DATA

The runtime security data of the Java Card RE, like, for instance, the AIDs used to identify
the installed applets, the currently selected applet, the current context of execution , and the
owner of each object.

To be protected from unauthorized disclosure and modification.

5.2 THREATS

This section introduces the threats to the assets against which specific protection within the
TOE or its environment is required. Several groups of threats are distinguished according to the
configuration chosen for the TOE and the means used in the attack. The classification is also
inspired by the components of the TOE that are supposed to counter each threat.

5.2.1 CONFIDENTIALITY

T.CONFID -APPLI -DATA

The attacker executes an application to disclose data belonging to another application. See
#.CONFID-APPL{DATA for detalils.

Java Card System i Closed Configuration Protection Profile
33

Version 3.0.5

Directly threatened asset(s): D.APP_C_DATA, D.PIN and D.APP_KEYs.

T.CONFID -JCS-CODE

The attacker executes an application to disclose the Java Card System code. See #.CONFIDP
JCSCODE for details.

Directly threatened asset(s): D.JCS_CODE.

T.CONFID -JCS-DATA

The attacker executes an application to disclose data belonging to the Java Card System.
See #.CONFIDJCSDATA for details.

Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JC®ATA and D.CRYPTO.

5.2.2 INTEGRITY

T.INTEG -APPLI -CODE

The attacker executes an application to alter (part of) its own code or another application's
code. See #.INTEG-APPLICODE for details.

Directly threatened asset(s): D.APP_CODE.

T.INTEG -APPLI -DATA

The attacker executes an application to alter (part of) another application's data. See
#.INTEG-APPLIDATA for details.

Directly threatened asset(s): D.APP_I_DATA, D.PIN and D.APP_KEYSs.

T.INTEG -JCS-CODE

The attacker executes an application to alter (part of) the Java Card System code. See
#.INTEG-JCSCODE for details.

Directly threatened asset(s): D.JCS_CODE.

T.INTEG -JCS-DATA

The attacker executes an application to alter (part of) Java Card System or API data. See
#.INTEG-JCSDATA for details.

Directly threatened asset(s): D.API_DATA,D.SEC_DATAD.JCS DATA and D.CRYPTO.

Other attacks are in general related to one of the above, and aimed at disclosing or modif ying
on-card information. Nevertheless, they vary greatly on the employed means and threatened
assets, and are thus covered by quite different objectives in the sequel. That is why a more
detailed list is given hereafter.

5.2.3 |DENTITY USURPATION

T.SID.1

An applet impersonates another application, or even the Java Card RE, in order to gain illegal
access to some resources of the card or with respect to the end user or the terminal. See
#.SID for details.

34 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

Directly threatened asset(s): D.SEC_DATA(other assets may be jeopardized should this
attack succeed, for instance, if the identity of the JCRE is usurped), D.PIN and D.APP_KEYSs.

T.SID.2

The attacker modifies the TOE's attribution of a privileged role (e.g. default applet and
currently selected applet), which allows illegal impersonation of this role. See #.SID for
further details.

Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized should this
attack succeed, depending on whose identity was forged).

5.2.4 UNAUT HORIZED EXECUTION

T.EXE-CODE.1

An applet performs an unauthorized execution of a method. See #.EXE-JCSCODE and
#.EXE-APPLICODE for details.

Directly threatened asset(s): D.APP_CODE.

T.EXE-CODE.2

An applet performs an execution of a method fragment or arbitrary data. See #.EXE -JCS
CODE and #.EXEAPPLICODE for details.

Directly threatened asset(s): D.APP_CODE.

T.NATIVE

An applet executes a native method to bypass a TOE Security Function such asthe firewall.
See #.NATIVE for details.

Directly threatened asset(s): D.JCS_DATA.

5.2.5 DENIAL OF SERVICE

T.RESOURCES

An attacker prevents correct operation of the Java Card System through consumption of
some resources of the card: RAM or NVRAM. See #.RESOURCES for details.

Directly threatened asset(s): D.JCS_DATA.

5.2.6 SERVICES

T.OBJ-DELETION

The attacker keeps a reference to a garbage collected object in order to force the TOE to
execute an unavailable method, to make it to crash, or to gain access to a memory containing
data that is now being used by another application. See #.0BJ-DELETION for further details.

Directly threatened asset(s): D.APP_C_DATA, D.APP_I_DATA and D.APP_KEYSs.

Java Card System i Closed Configuration Protection Profile
35

Version 3.0.5

5.2.7 MISCELLANEOUS

T.PHYSICAL

The attacker discloses or modifies the design of the TOE, its sensitive data or application
code by physical (opposed to logical) tampering means. This threat includes IC failure
analysis, electrical probing, unexpected tearing, and DPA. That also ircludes the modification
of the runtime execution of Java Card System or SCP software through alteration of the
intended execution order of (set of) instructions through physical tampering techniques.

This threatens all the identified assets.

This threat refers to the point (7) of the security aspect #.SCP, and all aspects related to
confidentiality and integrity of code and data.

5.3 ORGANISATIONAL SECUR ITY POLICIES

This section describes the organizational security policies to be enforced with respect to the
TOE environment.

OSP.VERIFICATION

This policy shall ensure the consistency between the export files used in the verification and
those used for loading the verified file. The policy must also ensure that no modification of
the file is performed in between its verification and the signing by the verification authority.
See #.VERIFICATION for details.

If the application development guidance provided by the platform developer contains
recommendations related to the isolation property o f the platform, this policy shall also
ensure that the verification authority checks that these recommendations are applied in the
application code.

5.4 ASSUMPTIONS

This section introduces the assumptions made on the environment of the TOE.

A.NO-DELETION
No deletion of loaded packages is possible.

A.NO-LOAD

There is no post-issuance loading of packages Loading of packagesis secure and occurs
only in a controlled environment in the pre -issuance phase. See #.INSTALLfor details.

A.VERIFICATION

All the bytecodes are verified at least once, before the loading, before the installation or
before the execution, depending on the card capabilities, in order to ensure that each
bytecode is valid at execution time.

36 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

6 SECURITY OBJECTIVES

6.1 SECURITY OBJECTIVES FOR THE TOE

This section defines the security objectives to be achieved by the TOE.

6.1.1 |DENTIFICATION

O.SID

The TOE shall uniquely identify every subject (applet, or package) before granting it access
to any service.

6.1.2 EXECUTION

O.FIREWALL

The TOE shall ensure controlled sharing of data containers owned by applets of different
packages or the JCRE and between applets and the TSFs. See #.FIREWALL for details.

O.GLOBAL_ARRAYS_ CONFID

The TOE shall ensure that the APDU buffer that is shared by all applications is alwayscleared
upon applet selection.

The TOE shall ensure that the global byte array used for the invocation of the install method
of the selected applet is always cleared after the return from the install method.

O.GLOBAL_ARRAYS_INTEG

The TOE shall ensure thatno application can store a reference to the APDU buffer, a global
byte array created by the user through makeGlobalArray method and the byte array used for
invocation of the install method of the selected applet.

O.NATIVE

The only means that the Java Card VM shall provide for an application to execute native code
is the invocation of a method of the Java Card API, or any additional API. See #.NATIVE for
details.

O.OPERATE

The TOE must ensure continued correct operation of its security functions. See #.OPERATE
for details.

O.REALLOCATION

The TOE shall ensure that the re-allocation of a memory block for the runtime areas of the
Java Card VM does not disclose any information that was previously stored in that block.

Java Card System i Closed Configuration Protection Profile
37

Version 3.0.5

O.RESOURCES

The TOE shall contol the availability of resources for the applications. See #. RESOURCES
for details.

6.1.3 SERVICES

O.ALARM

The TOE shall provide appropriate feedback information upon detection of a potential
security violation. See #.ALARM for details.

O.CIPHER

The TOE shall provide a means to cipher sensitive data for applications in a secure way. In
particular, the TOE must support cryptographic algorithms consistent with cryptographic
usage policies and standards. See #.CIPHER for details.

O.RNG

The TOEsshall ensure the cryptographic quality of random number generation. For instance
random numbers shall not be predictable and shall have sufficient entropy.

The TOE shall ensure that no information about the produced random n umbers is available
to an attacker since they might be used for instance to generate cryptographic keys.

O.KEY-MNGT

The TOE shall provide a means to securely manage cryptographic keys. This concerns the
correct generation, distribution, access and destruction of cryptographic keys. See #.KEY¥
MNGT.

O.PIN -MNGT

The TOE shall provide a means to securely manage PIN objects(including the PIN try limit,
PIN try counter and states). If the PIN try limit is reached, no further PIN authentication
must be allowed.

See #.PIN-MNGT for details.

Application Note:

PIN objects may play key roles in the security architecture of client applications. The way
they are stored and managed in the memory of the smart card must be carefully considered,
and this applies to the whole object rather than the sole value of the PIN. For instance, the
try limit and the try counter's value are as sensitive as that of the PIN and the TOE must
restrict their m odification only to authorized applications such as the card manager.

O.TRANSACTION

The TOE must provide a means to execute a set of operations atomically. See
#.TRANSACTION for details.

O.KE¥MNGT, O.PINMNGT, O.TRANSACTIONO.RNG and O.CIPHER are actually provided to
applets in the form of Java Card APIs. Vendor-specific libraries can also be present on the card

38 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

and made available to applets; those may be built on top of the Java Card API or independently.
These proprietary libraries will be evaluated together with the TOE.

6.1.4 OBJECT DELETION

0.0OBJ-DELETION
The TOE shall ensure the object deletion shall not break references to objects. See #.0BJ
DELETION for further details.

6.2 SECURITY OBJECTIVES FOR THE OPERATIONAL
ENVIRONMENT

This section introduces the security objectives to be achieved by the environment.

OE.CARD-MANAGEMENT

The card manager shall control the access to card management functions. It shall also
implement the card issuer's policy on the card.

The card manager is an application with specific rights, which is responsible for the
administration of the smart card. This component will in practice be tightly connected with

the TOE, which in turn shall very likely rely on the card manager for the effective enforcing
of some of its security functions. Typically the card manager shall be in charge of the life
cycle of the whole card. It shall also enforce security policies established by the card issuer.

OE.NO-DELETION
No loaded packages shall be deleted from the card.

OE.NO-LOAD
There is no post-issuanceloading of packages Loading of packagesis secure and shall occur
only in a controlled environment in the pre -issuance phase.

OE.SCP.IC
The SCP shall provide all IC security features against physical attacks.
This security objective for the environment refers to the point (7) of the security aspect
#.SCP:

o ltis required that the IC is designed in accorda nce with a well-defined set of
policies and Standards (likely specified in another protection profile), and will
be tamper resistant to actually prevent an attacker from extracting or altering
security data (like cryptographic keys) by using commonly employed
techniques (physical probing and sophisticated analysis of the chip). This
especially matters to the management (storage and operation) of
cryptographic keys.

Java Card System i Closed Configuration Protection Profile
39

Version 3.0.5

OE.SCP.RECOVERY

If there is a loss of power, or if the smart card is withdrawn from the CAD while an operation
is in progress, the SCP must allow the TOE to eventually complete the interrupted operation
successfully, or recover to a consistent and secure state.

This security objective for the environment refers to the secu rity aspect #.SCP(1): The smart
card platform must be secure with respect to the SFRs. Then after a power loss or sudden
card removal prior to completion of some communication protocol, the SCP will allow the
TOE on the next power up to either complete the interrupted operation or revert to a secure
state.

OE.SCP.SUPPORT
The SCP shall support the TSFs of the TOE.

This security objective for the environment refers to the security aspects 2, 3, 4 and 5 of
#.SCP:

(2) It does not allow t he TSFs to be bypassed or altered and does not allow access to other
low-level functions than those made available by the packages of the API. That includes the
protection of its private data and code (against disclosure or modification) from the Java
Card System.

(3) It provides secure low -level cryptographic processing to the Java Card System.
(4) It supports the needs for any update to a single persistent object or class field to be
atomic, and possibly a low-level transaction mechanism.

(5) It allows the Java Card System to store data in "persistent technology memory" or in
volatile memory, depending on its needs (for instance, transient objects must not be stored
in non-volatile memory). The memory model is structured and allows for low -level control
accesses (segmentation fault detection).

OE.VERIFICATION

All the bytecodes shall be verified at least once, before the loading, before the installation or
before the execution, depending on the card capabilities, in order to ensure that each
bytecode is valid at execution time. See #.VERIFICATION for details.

Additionally, the applet shall follow all the recommendations, if any, mandated in the platform
guidance for maintaining the isolation property of the platform.

Application Note:

Constraints to maintain the isolation property of the platform are provided by the platform
developer in application development guidance. The constraints apply to all application code
loaded in the platform.

OE.CODE-EVIDENCE

For application code loaded pre-issuance, evaluated technical measures implemented by the
TOE or audited organizational measures must ensure that loaded application has not been
changed since the code verifications required in OE.VERIFICATION.

The objectives OENO-LOAD and OE.NODELETION have been included so as to describe
procedures that shall contribute to ensure that the TOE will be used in a secure manner.

40 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

Moreover, they have been defined in accordance with the environmental assumptions they
uphold (actually, they are just a reformulation of the corresponding assumptions). The NO -
DELETION andNO-LOAD (assumptions and objectives) constitute the explicit statement that
the Closed configuration corresponds to that of a closed card (no code can be loaded or deleted
once the card has been issued).

6.3 SECURITY OBJECTIVES RATIONALE

6.3.1 THREATS

6.3.1.1 CONFIDENTIALITY

T.CONFID -APPLI -DATA This threat is countered by the security objective for the operational
environment regarding bytecode verification (OE.VERIFICATION). It is also covered by the
isolation commitments stated in the (O.FIREWALL) objective. It relies in its turn on the
correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically
enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.

As the firewall is a software tool automating critical controls, the objective O.ALARM asks for
it to provide clear warning and error messages, so that the appropriate counter -measure can
be taken.

The objectives OE.CARBMANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode,
respectively.

The objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.0OPERATE and O.ALARMbjectives of the TOE, so they are indirectly related to the threats
that these latter objectives contribute to counter.

As applets may need to share some data or communicate with the CAD, cryptographic
functions are required to actually protect the exchang ed information (O.CIPHER O.RNG.
Remark that even if the TOE shall provide access to the appropriate TSFs, it is still the
responsibility of the applets to use them. Keys, PIN's are particular cases of an application's
sensitive data (the Java Card System may possess keys as well) that ask for appropriate
management (O.KE¥X-MNGT, O.PINMNGT, O.TRANSACTION). If the PIN class of the Java
Card API is used, the objective (O.FIREWALL) shall contribute in covering this threat by
controlling the sharing of the glo bal PIN between the applets.

Other application data that is sent to the applet as clear text arrives to the APDU buffer,
which is a resource shared by all applications. The disclosure of such data is prevented by
the security objective O.GLOBAL_ARRAYS CONF

Finally, any attempt to read a piece of information that was previously used by an application
but has been logically deleted is countered by the O.REALLOCATION objective. That objective
states that any information that was formerly stored in a memory block shall be cleared
before the block is reused.

Java Card System i Closed Configuration Protection Profile
41

Version 3.0.5

T.CONFID -JCS-CODE This threat is countered by the list of properties described in the
(#.VERIFICATION) security aspect. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the
intended scope of accessibility. As none of those instructions enables reading a piece of code,
no Java Card applet can therefore be executed to disclose a piece of code. Native applications
are also harmless because of the objective O.NATIVE, so no application can be run to disclose
a piece of code.

The (#.VERIFICATION) security aspect is addressed in this PP by the objective for the
environment OE.VERIFICATION.

The objectives OE.CARBMANAGEMENT and OE.VERICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode,
respectively.

T.CONFID -JCS-DATA This threat is covered by bytecode verification (OE.VERIFICATION) and
the isolation commitments stated in the (O.FIREWALL) security objective. This latter
objective also relies in its turn on the correct identification of applets stated in (O.SID).
Moreover, as the firewall is dynamically enforced, it shall never stop operating, as stated in
the (O.OPERATE) objective.

As the firewall is a software tool automating critical controls, the objective O.ALARM asks for
it to provide clear warning and error messages, so that the appropriate counter -measure can
be taken.

The objectives OE.CARBMANAGEMENT andOE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode,
respectively.

The objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectigeof the TOE, so they are indirectly related to the threats
that these latter objectives contribute to counter.

6.3.1.2INTEGRITY

T.INTEG -APPLI -CODE This threat is countered by the list of properties described in the
(#.VERIFICATION) security aspect. Bytecode verfication ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the
intended scope of accessibility. As none of these instructions enables modifying a piece of
code, no Java Card applet can therefore be executed to modify a piece of code. Native
applications are also harmless because of the objective O.NATIVE, so no application can run
to modify a piece of code.

The (#.VERIFICATION) security aspect is addressed in this configuration by the objective for
the environment OE.VERIFICATION.

The objectives OE.CARBMANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode,
respectively.

The objective OE.CODEEVIDENCE contriloites to cover this threat by ensuring that integrity
and authenticity evidences exist for the application code loaded into the platform.

T.INTEG -APPLI -DATA This threat is countered by bytecode verification (OE.VERIFICATION)
and the isolation commitments stated in the (O.FIREWALL) objective. This latter objective

42 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

also relies in its turn on the correct identification of applets stated in (O.SID). Moreover, as
the firewall is dynamically enforced, it shall never stop operating, as stated in the
(O.OPERATE) olgctive.

As the firewall is a software tool automating critical controls, the objective O.ALARM asks for
it to provide clear warning and error messages, so that the appropriate counter -measure can
be taken.

The objectives OE.CARBMANAGEMENT and OE.VERIFICKON contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode,
respectively.

The objective OE.CODEEVIDENCE contributes to cover this threat by ensuring that the
application code loaded into the platform has not been changed after code verification, which
ensures code integrity and authenticity. The objectives OE.SCP.RECOVERY and
OE.SCP.SUPPORT are intended to support the O.OPERATE and O.ALARM objectives of the
TOE, so they are indirectly related to the threats that these latter objectives contribute to
counter.

Concerning the confidentiality and integrity of application sensitive data, as applets may need
to share some data or communicate with the CAD, cryptographic functions are required to
actually protect the exchanged information (O.CIPHER O.RNG. Remark that even if the TOE
shall provide access to the appropriate TSFs, it is still the responsibility of the applets to use
them. Keys and PIN's are particular cases of an application's sensitive dat (the Java Card
System may possess keys as well) that ask for appropriate management (O.KE¥MNGT,
O.PIN-MNGT, O.TRANSACTION). If the PIN class of the Java Card API is used, the objective
(O.FIREWALL) is also concerned.

Other application data that is sent to the applet as clear text arrives to the APDU bulffer,
which is a resource shared by all applications. The integrity of the information stored in that
buffer is ensured by the objective O.GLOBAL_ARRAYS_INTEG.

Finally, any attempt to read a piece of inform ation that was previously used by an application
but has been logically deleted is countered by the O.REALLOCATION objective. That objective
states that any information that was formerly stored in a memory block shall be cleared
before the block is reused.

T.INTEG -JCS-CODE This threat is countered by the list of properties described in the
(#.VERIFICATION) security aspect. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the
intended scope of accessibility. As none of these instructions enables modifying a piece of
code, no Java Card applet can therefore be executed to modify a piece of code. Native
applications are also harmless because of the objective O.NATIVE, so no applicéion can be
run to modify a piece of code.

The (#.VERIFICATION) security aspect is addressed in this configuration by the objective for
the environment OE.VERIFICATION.

The objectives OE.CARBMANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode,
respectively.

The objective OE.CODEEVIDENCE contributes to cover this threat by ensuring that the
application code loaded into the platform has not been changed after code verification, which
ensures code integrity and authenticity.

Java Card System i Closed Configuration Protection Profile
43

Version 3.0.5

T.INTEG -JCS-DATA This threat is countered by bytecode verification (OE.VERIFICATION) and
the isolation commitments stated in the (O.FIREWALL) objective. This latter objective also
relies in its turn on the correct identification of applets stated in (O.SID). Moreover, as the
firewall is dynamically enforced, it shall never stop operating, as stated in the (O.OPERATE)
objective.

As the firewall is a software tool automating critical controls, the objective O.ALARM asks for
it to provide clear warning and error messages, so that the appropriate counter -measure can
be taken.

The objectives OE.CARBMANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode,
respectively.

The objective OE.CODEEVIDENCE contributes to cover this threat by ensuring that the
application code loaded into the platform has not been changed after code verification, which
ensures code integrity and authenticity. The objectives OE.SCP.RECOVERY and
OE.SCP.SUPPORT are intended to support the O.OPERATE and O.ALARM objectives of the
TOE, so they are indirectly related to the threats that these latter objectives contribute to
counter.

6.3.1.3IDENTITY USUR PATION

T.SID.1 As impersonation is usually the result of successfully disclosing and modifying some
assets, this threat is mainly countered by the objectives concerning the isolation of
application data (like PINs), ensured by the (O.FIREWALL). Uniguenessof subject-identity
(O.SID) also participates to face this threat. It should be noticed that the AIDs, which are
used for applet identification, are TSF data.

The installation parameters of an applet (like its name) are loaded into a global array that is
also shared by all the applications. The disclosure of those parameters (which could be used
to impersonate the applet) is countered by the objectives O.GLOBAL_ARRAYS_ CONFID and
O.GLOBAL_ARRAYS INTEG.

The objective OE.CARDMANAGEMENT contributes, by preverihg usurpation of identity
resulting from a malicious installation of an applet on the card, to counter this threat.

T.SID.2 This is covered by integrity of TSF data, subject-identification (O.SID), the firewall
(O.FIREWALL) and its good working order (O.OPERATE).
The objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE objective of the TOE, so they are indirectly related to the threats that this latter
objective contributes to counter.

6.3.1.4 UNAUTHORIZED EXECUTIO N

T.EXE-CODE.1 Unauthorized execution of a method is prevented by the objective
OE.VERIFICATION. This threat particularly concerns the point (8) of the security aspect
#.VERIFICATION (access modifiers and scope of accessibility for classes, fields and
methods). The O.FIREWALL objective is also concerned, because it prevents the execution

44 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

of non-shareable methods of a class instance by any subject apart from the class instance
owner.

T.EXE-CODE.2 Unauthorized execution of a method fragment or arbitrary data is prevented
by the objective OE.VERIFICATION. This threat particularly concerns those points of the
security aspect related to control flow confinement and the validity of the method references
used in the bytecodes.

T.NATIVE This threat is countered by O.NATIVE which ensures that a Java Card applet can
only access native methods indirectly that is, through an API. In addition to this, the bytecode
verifier also prevents the program counter of an applet to jump into a piece of native code
by confining the control flow to the currently executed method (OE.VERIFICATION).

6.3.1.5 DENIAL OF SERVICE

T.RESOURCESThis threat is directly countered by objectives on resource-management
(O.RESOURCES) for runtime purposes and good working order (O.OPERATE) in a general
manner.

It should be noticed that, for what relates to CPU usage, the Java Card platform is single-
threaded and it is possible for an ill-formed application (either native or not) to monopolize
the CPU. However, a smart card can be physically interrupted (card removal or hardware
reset) and most CADs implement a timeout policy that prevent them from being blocked
should a card fails to answer. That point is out of scope of this Protection Profile, though.
Finally, the objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intendexbifgport the
O.OPERATE and O.RESOURCES obijectives of the TOE, so they are indirectly related to the
threats that these latter objectives contribute to counter.

6.3.1.6 SERVICES

T.OBJ-DELETION This threat is covered by the O.OBJDELETION security objective which
ensures that object deletion shall not break references to objects.

6.3.1.7 MISCELLANEOUS

T.PHYSICAL Covered by OE.SCP.IC. Physical protections rely on the underlying platform and
are therefore an environmental issue.

6.3.2 ORGANISATIONAL SECURITY POLICIES

OSP.VERIFICATIO N This policy is upheld by the security objective of the environment
OE.VERIFICATION which guarantees that all the bytecodes shall be verified at least once,
before the loading, before the installation or before the execution in order to ensure that
each bytecode is valid at execution time.

This policy is also upheld by the security objective of the environment OE.CODEEVIDENCE
which ensures that evidences exist that the application code has been verified and not
changed after verification.

Java Card System i Closed Configuration Protection Profile
45

Version 3.0.5

6.3.3 ASSUMPTIONS

A.NO-DELETION The assumption AANODELETION is upheld by the environmental objective
OE.NGDELETION which guarantees that noloaded packages shall be deleted from the card.
The environmental objective OE.CARDMANAGEMENT also upholds this assumption by
controlling the access to card management functions such as applets deletion.

A.NO-LOAD This assumption is upheld by the environmental objective OE.NO-LOAD which
imposes that no post-issuanceloading of packagesis permitted. The environmental objective
OE.CARBPMANAGEMENT contributes in upholding this assumption by controlling the access
to card management functions such as the loading of packages

A.VERIFICATION This assumption is upheld by the security objective on the operational
environment OE.VERIFICATION whichguarantees that all the bytecodes shall be verified at
least once, before the loading, before the installation or before the execution in order to
ensure that each bytecode is valid at execution time.

This assumption is also upheld by the security objective of the environment OE.CODE
EVIDENCE which ensures that evidences exist that the application code has been verified
and not changed after verification.

6.3.4 SPD AND SECURITY OBJECTIVES

46 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

OE.SCP.RECOVER®E.SCP.SUPPORDE.CARD
T CONEID MANAGEMENTOE.VERIFICATIONO.SID, O.OPERATE
APPLIDATA O.FIREWAL| O.GLOBAL_ARRAYS_CONFID.ALARM || Section 6.3.1
AEEaE O.TRANSACTIONO.CIPHER O.RNG O.PIN-MNGT,
O.KE¥MNGT, O.REALLOCATION
E‘SS'E\'F'DJCS OE.VERIFICATIONOE.CARDMANAGEMENTO.NATIVE || Section 6.3.1
T CONFIDJCS || QE-SCP.RECOVER®E.SCP.SUPPORDE.CARD
SaTA MANAGEMENTOE.VERIFICATIONO.SID, O.OPERATE || Section 6.3.1
s O.FIREWALL O.ALARM
TINTEGAPPLE || OE.CARBMANAGEMENTOE.VERIFICATIONO.NATIVE || ¢ i e o4
CODE OE.CODEEVIDENCE =ER R0
OE.SCP.RECOVER®E.SCP.SUPPORDE.CARD
TINTEGAPPLL || MANAGEMENTOE.VERIFICATIONO.SID, O.OPERATE
SATA O.FIREWALL O.GLOBAL_ARRAYS_INTEG.ALARM Section 6.3.1
S O.TRANSACTIONO.CIPHER O.RNG O.PIN-MNGT,
O.KE¥MNGT, O.REALLOCATIONOE.CODEEVIDENCE
T.INTEGJCS OE.CARBMANAGEMENTOE.VERIFICATIONO.NATIVE || ¢ o e oy
CODE OE.CODEEVIDENCE =ER RS
TINTEGICS OE.SCP.RECOVER®E.SCP.SUPPORDE.CARD
oATA MANAGEMENTOE.VERIFICATIONO.SID, O.OPERATE || Section 6.3.1
s O.FIREWALL O.ALARM OE.CODEEVIDENCE
OE.CARBMANAGEMENTO.FIREWALL
T.SID.1 O.GLOBAL_ARRAYS_CONFID Section 6.3.1
0.GLOBAL_ARRAYS_INTEG.SID
OE.SCP.RECOVER®E.SCP.SUPPORD.SID, .
— 0.OPERATEQ.FIREWALL =eciion 0.3.1
| TEXECODE.1 || OE.VERIFICATIONO.FIREWALL | Section 6.3.1
| TEXECODE.2 || OE.VERIFICATION | Section 6.3.1
| TNATIVE | OE.VERIFICATIONOE.APPLETO.NATIVE | Section 6.3.1
0.OPERATEQ.RESOURCESE.SCP.RECOVERY .
| T.OBJDELETION|| 0.0BJDELETION | Section 6.3.1
| T.PHYSICAL || OE.SCP.IC || Section 6.3.1

Table 1 Threats and Security Objectives

- Coverage

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

47

0.SID T.CONFIDAPPLIDATA T.CONFIBJCSDATA T.INTEG

= APPLIDATA T.INTEGJCSDATA T.SID.1, T.SID.2
T.CONFIDAPPLIDATA T.CONFIBJCSDATA T.INTEG

O.FIREWALL APPLIDATA T.INTEGJCSDATA T.SID.1, T.SID.2, T.EXE
CODE.1

| 0.GLOBAL_ARRAYS_CONF|| T.CONFIDAPPLIDATA T.SID.1 |

| O.GLOBAL_ARRAYS_INTEG| T.INTEGAPPLIDATA T.SID.1 |

T.CONFIBJCSCODE T.INTEGAPPLICODE T.INTEGJCS
O.NATIVE CODE T.NATIVE
O OPERATE T.CONFIDAPPLIDATA T.CONFIBJCSDATA T.INTEG
= APPLIDATA T.INTEGJCSDATA T.SID.2, T.RESOURCES

| O.REALLOCATION

|| T.CONFIDAPPLIDATA T.INTEGAPPLIDATA |

| O.RESOURCES

| T.RESOURCES |

OALARM T.CONFIDAPPLIDATA T.CONFIDJCSDATA T.INTEG
—ERAER APPLIDATA T.INTEGJCSDATA

| O.CIPHER || T.CONFIDAPPLIDATA T.INTEGAPPLIDATA

| O.RNG || T.CONFIDAPPLIDATA T.INTEGAPPLIDATA

| O.KE¥MNGT || T.CONFIDAPPLIDATA T.INTEGAPPLIDATA

| O.PINMNGT

| O.TRANSACTION || T.CONFIDAPPLIDATA T.INTEGAPPLIDATA

| 0.OBJDELETION

| T.OBJDELETION

| OE.NGDELETION

H

| OENOLOAD

|
|
|
| T.CONFIDAPPLIDATA T.INTEGAPPLIDATA |
|
|
|
|

[

OE.CARDMANAGEMENT

T.CONFIDAPPLIDATA T.CONFIBJCSCODE T.CONFID
JCSDATA T.INTEGAPPLICODE T.INTEGAPPLIDATA
T.INTEGJCSCODE T.INTEGJCSDATA T.SID.1,

OE.SCP.IC

| T.PHYSICAL |

OE.SCP.RECOVERY

T.CONFIDAPPLIDATA T.CONFIDJCSDATA T.INTEG
APPLIDATA T.INTEGJCSDATA T.SID.2, T RESOURCES

OE.SCP.SUPPORT

T.CONFIDAPPLIDATA T.CONFIBJCSDATA T.INTEG
APPLIDATA T.INTEGJCSDATA T.SID.2, T RESOURCES

OE.VERIFICATION

T.CONFIDAPPLIDATA T.CONFIBJCSCODE T.CONFID
JCSDATA T.INTEGAPPLICODE T.INTEGAPPLIDATA
T.INTEGJCSCODE T.INTEGJCSDATA T.EXECODE.]
T.EXECODE.2 T.NATIVE

OE.CODEEVIDENCE

T.INTEGAPPLICODE T.INTEGAPPLIDATA T.INTEGJCS
CODE T.INTEGJCSDATA

Table 2 Security Objectives and Threats - Coverage

48

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

OE.VERIFICATIONOE.CODE Section
EVIDENCE 6.3.2

OSP.VERIFICATION

Table 3 OSPs and Security Objectives - Coverage

Java Card System i Closed Configuration Protection Profile
49

Version 3.0.5

| O.FIREWALL [|
| O.GLOBAL_ARRAYS_CONF|| |

O.GLOBAL_ARRAYS_INTEG

[O.NATIVE | |
[0.0PERATE | |
[O.REALLOCATION | |
[0.RESOURCES I |
[0.ALARM I |
[0.CIPHER | |
[ORNG H |
[O.KE¥MNGT | |
[O.PINMNGT [|
|
|
|
|
|
|
|
|

| O.TRANSACTION |
| O.OBJDELETION |
| OENO-DELETION |
| OENOLOAD I
| OE.APPLET |
| OE.CARBMANAGEMENT ||
| OE.SCP.IC |
| OE.SCP.RECOVERY |
| OE.SCP.SUPPORT | |
| OE.VERIFICATION | OSP.VERIFICATION
| OE.CODEEVIDENCE | oSP.VERIFICATION

Table 4 Security Objectives and OSPs - Coverage

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

ANODELETION	OE.CARBMANAGEMENTOE.NGDELETION		Section6.3.3
ANO-LOAD	OE.CARBMANAGEMENTOENO-LOAD	Section 6.3.3	
AVERIFICATION		OE.VERIFICATIONOE.CODEEVIDENCE	Section 6.3.3

Table 5 Assumptions and Security Objectives for the Operational Environment
Coverage

| OE.CARBMANAGEMENT || AANO-DELETION A.NO-LOAD
| OE.NODELETION | ANO-DELETION
| OENO-LOAD | ANO-LOAD

| OE.SCP.RECOVERY I
| OE.SCP.SUPPORT |

|
|
|
| OE.SCP.IC | |
|
|
|
|

| OE.VERIFICATION | AVERIFICATION
| OE.CODEEVIDENCE || A.VERIFICATION
Table 6 Security Objectives for the Operational Environment and Assumptions
Coverage

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

51

7/ SECURITY REQUIREMENT S

7.1 EXTENDED COMPONENTS DEFINITION

7.1.1 DEFINITION OF THE FAMILY FCS_RNG

To define the IT security functional requirements of the TOE an additional family (FCS_RNG) of
the Class FCS (cryptographic support) is defined here. This family describes the functional
requirements for random number generation used for cryptographic purposes.

FCS_RNG Generation of random numbers

Family behaviour

This family defines quality requirements for the generation of random numbers which
are intended to be use for cryptographic purposes.

Component levelling:

FCS5_RNG Generation of random numbers 1
FCS _RNG.1 Generation of random numbers requires that random numbers
meet a defined quality metric.
Management: FCS_RNG.1

There are no management activities foreseen.

Audit; FCS_RNG.1
There are no actions defined to be auditable.

FCS RNG.1 Random number generation

Hierarchical to: No other components.

Dependencies: No dependencies.

52 Java Card System i Closed Configuration Protection Profile

Version 3.0.5

FCS_RNG.1.1 The TSF shall provide a [selection: physical, nonphysical true,
deterministic, hybrid physical, hybrid deterministic] random
number generator that implements: [assignment: list of security
capabilities].

FCS_RNG.1.2 The TSF shall providerandom numbers that meet [assignment: a
defined quality metric].

7.2 SECURITY FUNCTIONAL REQUIREMENTS

This section states the security functional requirements for the Java Card System - Closed
configuration. For readability and for compatibility with previous versions, requirements are
arranged into groups. All the groups defined in the table below apply to this Protection Profile.

The CoreG_LC contains the requirements concerning the runtime
environment of the Java Card System implementing logical channels.

Core with This includes the firewall policy and the requirements related to the
Logical Channels|| Java Card API. Logical channels are a Java Card specification version
(CoreG LG 2.2 feature. This group is the union of requirements from the Co re

(Core@ and the Logical channels (LCG groups defined in [PP/0305]
(cf. Java Card System Protection Profile Collection [PP JCS]).

The InstG contains the security requirements concerning the
installation of post-issuance applications. It does not address card

Installation ; . i
(InstG) management issues in the broad sense, but only those security
aspects of the installation procedure that are related to applet
execution.
. The ADELG contains the security requirements forerasing installed
Applet deletion . . e
(ADELG applets from the card, a feature introduced in Java Card specification

version 2.2.

The ODELG contains the security requirements for the object deletion
capability. This provides a safe memory recovering mechanism. This is
a Java Card specification version 2.2 feature.

Object deletion
(ODELG

The SFRs refer to all potentially applicable subjects, objects, information, operations and
security attributes.

Subjects are active components of the TOE that (essentially) act on the behalf of users. The
users of the TOE include people or institutions (like the applet developer, the card issuer, the
verification authority), hardware (like the CAD where the card is inserted or the PCD) and
software components (like the application packages loaded on the card). Some of the users
may just be aliases for other users. For instance, the verification authority in charge of the
bytecode verification of the applications may be just an alias for the card issuer.

Java Card System i Closed Configuration Protection Profile
53

Version 3.0.5

Subjects (prefixed with an "S") are described in the following table:

The applet deletion manager which also acts on behalf of the card issuer. It
may be an applet ([JCRE22], 811), but its role asks anyway for a specific
treatment from the security viewpoint. This subject is unique and is
involved in the ADEL security policy defined in §7.2.3.1.

S.APPLET H Any applet instance.

S.ADEL

If the TOE provides JCRMIfunctionality, CAD can request RMI services by

S.CAD issuing commands to the card.
The runtime environment under which Java programs in a smart card are
S.JCRE
executed.
| S.JCVM H The bytecode interpreter that enforces the firewall at runtime. |
S LOCAL Operand stack of a JCVM frame, or local variable of a JCVM frame

containing an object or an array of references.

| S.MEMBERH Any object's field, static field or array position. |

A package is a namespace within the Java programming language that may
S.PACKAGH)| contain classes and interfaces, and in the context of Java Card technology,
it defines either a user library, or one or several applets.

Objects (prefixed with an "O") are described in the following table:

‘ O.APPLET H Any installed applet, its code and data. ‘

Java class instance or array. It should be noticed that KEYS, PIN, arrays
0.JAVAOBJEC| and applet instances are specific objects in the Java programming
language.

Information (prefixed with an "I") is described in the following table:

‘ I.LAPDU H Any APDU sent to or from the card through the communication channel. ‘

JCVM Reference Data: objectref addresses of APDU buffer, JCRBwned
instances of APDU class and byte array for install method.

[.DATA

Security attributes linked to these subjects, objects and information are described in the
following table with their values:

54 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

Active Applets The set of the active applets' AIDs. An active applet is an

applet that is selected on at least one of the logical channels.

‘ Applet Selection Status ‘ "Selected" or "Deselected".

Applet's version The version number of an applet (package) indicated in the
number export file.
\ Context H Package AID or "Java Card RE". |
Currently Active Package AID or "Java Card RE".
Context
‘ LC Selection Status H Multiselectable, Non-multiselectable or "None". |
| LifeTime | CLEAR_ON_DESELECT or PERSISTENT |
The Owner of an object is either the applet instance that
created the object or the package (library) where it has been
owner defined (these latter objects can only be arrays that initialize
static fields of the package). If the TOE provides JCRMI
functionality, the owner of a remote object is the applet
instance that created the object.
‘ Package AID H The AID of each package indicated in the export file.
\ Registered Applets H The set of AID of the applet instances registered on the card.

\ Selected Applet Context H Package AID or "None".

\ Sharing H Standard, SIO, Java Card RE entry point or global array.

(*) Transient objects of type CLEAR_ON_RESE®Behave like persistent objects in that they can be

accessedonly when the Currently Active Context is the object's context.

Operations (prefixed with "OP") are described in the following table. Each operation has
parameters given between brackets, among which there is the "accessed object", the first one,
when applicable. Parameters may be seen as security attributes that are under the control of

the subject performing the operation.

OP.ARRAY_ACCESS(0O.JAVAOBJECT, :
Read/Write an array component.

field)

OP.ARRAY_LENGTH (O.JAVAOBJECT,

field) Get length of an array component.
OP.ARRAY_AASTORE(O.JAVAOBJECT .

field) Store into reference array component

OP.CREATE(Sharing, LifeTime})

call).

Creation of an object (new or makeTransient

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

55

Delete an installed applet and its objects,
either logically or physically.

OP.INSTANCE_FIELD(O.JAVAOBJECT,|| Read/Write a field of an instance of a class in

OP.DELETE_APPLET(O.APPLET,...)

field) the Java programming language.
OP.INVK_VIRTUAL(O.JAVAOBJECT, Invoke a virtual method (either on a class
method, argl,...) instance or an array object).

OP.INVK_INTERFACE(O.JAVAOBJECT,

method, arg1,...) Invoke an interface method.

Any access in the sense of [JCREJ} 86.2.8. It
stands for one of the operations
OP.ARRAY_ACCESS, OP.INSTANCE_FIELD,
OP.INVK_VIRTUAL, OP.INVK_INTERFACE,
OP.THROW,OP.TYPE_ACCESS.
OP.ARRAY_LENGTH

Transfer a piece of information | from S1 to
S2.

Throwing of an object (athrow, see [JCRE3J],
86.2.8.7).

Invoke checkcast or instance of on an object
in order to access to classes (standard or
shareable interfaces objects).

OP.JAVA(...)

OP.PUT(S1,S2,I)

OP.THROW(O.JAVAOBJECT)

OP.TYPE_ACCESS(0O.JAVAOBJECT,
class)

(*) For this operation, there is no accessedobject. This rule enforces that shareable transient objects
are not allowed. For instance, during the creation of an object, the JavaCardClassattribute's value is
chosen by the creator.

7.2.1 COREG_LC SECURITY FUNCTIONAL REQUIREMENTS

This group is focused on the main security policy of the Java Card System, known as the firewall.

7.2.1.1 FIREWALL PoLicy

FDP_ACC.2/F IREWALL Complete access control

FDP_ACC.2.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP on
S.PACKAGE, S.JCRE, S.JCVM, O.JAVAOBJECT and all operations among subjects and
objects covered by the SFP.

Refinement:

The operations involved in the policy are:
o OP.CREATE,
0 OP.INVK_INTERFACE,
0 OP.INVK_VIRTUAL,

56 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

OP.JAVA,
OP.THROW,
OP.TYPE_ACCESS.
OP.ARRAY_LENGTH
OP.ARRAY_AASTORE

OO O O O O

FDP_ACC.2.2/FIREWALL The TSF shall ensure that all operations between any subject
controlled by the TSF and any object controlled by the TSF are covered by an access control
SFP.

Application Note:

It should be noticed that accessing array's components of a static array, and more generally
fields and methods of static objects, is an access to the corresponding O.JAVAOBJECT.

FDP_ACF.1/FIREWALL Security attribute based access control

FDP_ACF.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to
objects based on the following:

 SubjectObject [Security attributes
| S.PACKAGE | LC Selection Status |
‘ S.JCVM H Active Applets, Currently Active Context ‘
\ S.JCRE H Selected Applet Context \
| 0.JAVAOBJECT || Sharing, Context, LifeTime |

FDP_ACF.1.2/FIREWALL The TSF shall enforce the following rules to determine if an
operation among controlled subjects and controlled objects is allowed:

o RJAVA1l ([JCRE3], 86.2.8): S.PACKAGE may freely perform
OP.INVK_VIRTUAL, OP.INVK_INTERFACE, OP.THROW or
OP.TYPE_ACCESSupon any O.JAVAOBJECT whose Sharing attribute
has value "JCRE entry point" or "global array".

o R.JAVA.2 ([JCRE3], 86.2.8): S.PACKAGE may freely perform
OP.ARRAY_ACCESS, OP.INSTANCE_FIELD, OP.INVK_VIRTUAL,
OP.INVK_INTERFACE or OP.THROW wupon any O.JAVAOBJECT
whose Sharing attribute has value "Standard" and whose Lifetime
attribute has value "PERSISTENT" only if O.JAVAOBJECT's Context
attribute has the same value as the active context.

o RJAVA3 ([JCRE3], 86.2.8.10): S.PACKAGE may perform

OP.TYPE_ACCESSupon an O.JAVAOBJECT whose Sharing attribute
has value "SIO" only if O.JAVAOBJECT is being cast into (checkcast)

Java Card System i Closed Configuration Protection Profile
57

Version 3.0.5

or is being verified as being an instance of (instanceof) an interface
that extends the Shareable interface.

R.JAVA4 ([JCRE3], 86.2.8.6): S.PACKAGE may perform
OP.INVK_INTERFACE upon an O.JAVAOBJECT whose Sharing
attribute has the value "SIO", and whose Context attribute has the
value "Package AID", only if the invoked interface method extends
the Shareable interface and one of the following conditions applies:

a) The value of the attribute Selection Status of the package whose AID is
"Package AID" is "Multiselectable",

b) The value of the attribute Selection Status of the package whose AID is
"Package AID" is "Non -multiselectable”, and either "Package AID" is the value
of the currently selected applet or otherwise "Package AID" does not occur in
the attribute Active Applets.

(0]

R.JAVA.5: S.PACKAGE may perform OP.CREATE upon
O.JAVAOBJECT only if the value of the Sharing parameter is
"Standard® or A SI OO0

R.JAVA6 ([JCRE3], 86.2.8). S.PACKAGE may freely perform
OP.ARRAY_ACCESS or OP.ARRAY_LENGTH upon any O.JAVAOBJECT
whose Sharing attribute has value "global array".

FDP_ACF.1.3/[FIREWALL The TSF shall explicitly authorise access of subjects to objects
based on the following additional rules:

(0]

1) The subject S.JCRE can freely perform OP.JAVA(") and
OP.CREATE, with the exception given in FDP_ACF.1.4/FIREWALL,
provided it is the Currently Active Context.

2) The only means that the subject S.JCVM shall provide for an
application to execute native code is the invocation of a Java Card
APl method (through OP.INVK_INTERFACE or OP.INVK_VIRTUAL) .

FDP_ACF.1.4/FIREWALL The TSF shall explicitly deny access of subjects to objects based
on the following additional rules:

(0]

Application Note:

1) Any subject with OP.JAVA upon an O.JAVAOBJECT whose
LifeTime attribute has value "CLEAR_ON_DESELECT" if
0O.JAVAOBJECT's Context attribute is not the same as the Selected
Applet Context.

2) Any subject attempting to create an object by the means of
OP.CREATE and a "CLEAR_ON_DESELECT" LifeTime parameter if
the active context is not the same as the Selected Applet Context .

3) S. PACKAGE performing OP.ARRAY_AASTORE of the reference of

an 0. JAVAOBJECT whose sharing attribute

or Tefmporary JCREentry poi nt o

4) S.PACKAGE performing OP.PUTFIELD or OP.PUTSTATIC of the
reference of an O.JAVAOBJECT whose sharing attribute has value
gl obal arrayo or ATemporary JCRE

entry

58

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

FDP_ACF.1.4/FIREWALL:

1 The deletion of applets may render some O.JAVAOBJECT inaccessible, and the Java Card
RE may be in charge of this aspect. This can be done, for instance, by ensuring that
references to objects belonging to a deleted application are considered as a null
reference. Such a mechanism is implementation-dependent.

In the case of an array type, fields are components o f the array ([JVM], 82.14, §2.7.7), as well
as the length; the only methods of an array object are those inherited from the Object class.

The Sharing attribute defines four categories of objects:

i Standard ones, whose both fields and methods are under the firewall policy,

1 Shareable interface Objects (SIO), which provide a secure mechanism for inter-applet
communication,

1 JCRE entry points (Temporary or Permanent), who have freely accessible methods but
protected fields,

1 Global arrays, having both unprotected fields (including components; refer to
JavaCardClass discussion above) and methods.

When a new obiject is created, it is associated with the Currently Active Context. But the object
is owned by the applet instance within the Currently Active Context when t he object is
instantiated ([JCRES3], §86.1.3). An object is owned by an applet instance, by the JCRE or by the
package library where it has been defined (these latter objects can only be arrays that initialize
static fields of packages).

([JCREJ, Glossary) Selected Applet Context. The Java Card RE keeps track of the currently
selected Java Card applet. Upon receiving a SELECT command with this applet's AID, the Java
Card RE makes this applet the Selected Applet Context. The Java Card RE sends all APDU
commands to the Selected Applet Context.

While the expression "Selected Applet Context" refers to a specific installed applet, the relevant
aspect to the policy is the context (package AID) of the selected applet. In this policy, the
"Selected Applet Context" is the AID of the selected package.

([JCRE3], 86.1.2.1) At any point in time, there is only one active context within the Java Card
VM (this is called the Currently Active Context).

It should be noticed that the invocation of static methods (or access to a static field) is not
considered by this policy, as there are no firewall rules. They have no effect on the active
context as well and the "acting package" is not the one to which the static method belongs to
in this case.

It should be noticed that the Java Card platform, version 2.2.x and version 3 Classic Edition,
introduces the possibility for an applet instance to be selected on multiple logical channels at

Java Card System i Closed Configuration Protection Profile
59

Version 3.0.5

the same time, or accepting other applets belonging to the same package being selected
simultaneously. These applets are referred to as multiselectable applets. Applets that belong to
a same package are either all multiselectable or not ([JCVM3], §2.2.5). Therefore, the selection
mode can be regarded as an attribute of packages. No selection mode is defined for a library
package.

An applet instance will be considered an active applet instance if it is currently selected in at
least one logical channel. An applet instance is the currently selected applet instance only if it
is processing the current command. There can only be one currently selected applet instance
at a given time ([JCRE3], §4).

FDP_IFC.1/JCVM Subset information flow control

FDP_IFC.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP on
S.JCVM, S.LOCAL, S.MEMBER, I.DATA and OP.PUT(S1, S2,1).

Application Note:

It should be noticed that references of temporary Java Card RE entry points, which cannot be
stored in class variables, instance variables or array components, are transferred from the
internal memory of the Java Card RE (TSF data) to some stack through specific APIs (Java Card
RE owned exceptions) or Java Card RE invoked methods (such as the procesgAPDU apdu));
these are causes of OP.PUT(S1,S2,1) operations as well.

FDP_IFF.1/JCVM Simple security attributes

FDP_IFF.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP based
on the following types of subject and information security attributes:

‘ S.JCVM H Currently Active Context ‘

FDP_IFF.1.2/JCVM The TSF shall permit an information flow between a controlled subject
and controlled information via a controlled operation if the following rules hold:

0 An operation OP.PUT(S1, S.MEMBER, I.DATA) is allowed if and only
if the Currently Active Context is "Java Card RE";

o other OP.PUT operations are allowed regardless of the Currently
Active Context's value .

60 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

FDP_IFF.1.3/JCVM The TSF shall enforce the[assignment: additional information flow
control SFP rules] .

FDP_IFF.1.4/JCVM The TSF shall explicitly authorise an information flow based on the
following rules: [assignment: rules, based on security attributes, that explicitly
authorise information flows] .

FDP_IFF.1.5/JCVM The TSF shall explicitly deny an information flow based on the following
rules: [assignment: rules, based on security attributes, that explicity deny
information flows] .

Application Note.

The storage of temporary Java Card REowned objects references is runtime-enforced ([JCRE],
86.2.8.1-3).

It should be noticed that this policy essentially applies to the execution of bytecode. Native
methods, the Java Card RE itself and possibly some APl methods can be granted specific rights
or limitations through the FDP_IFF.1.3/JCVM to FDP_IFF.1.5/JCVM elements. The way the Jea
Card virtual machine manages the transfer of values on the stack and local variables (returned
values, uncaught exceptions) from and to internal registers is implementation -dependent. For
instance, a returned reference, depending on the implementation o f the stack frame, may transit
through an internal register prior to being pushed on the stack of the invoker. The returned
bytecode would cause more than one OP.PUT operation under this scheme.

FDP_RIP.1/OBJECTS Subset residual information protection

FDP_RIP.1.1/OBJECTS The TSF shall ensure that any previous information content of a
resource is made unavailable upon theallocation of the resource to the following objects:
class instances and arrays .

Application Note:

The semantics of the Java programming language requires for any object field and array position
to be initialized with default values when the resource is allocated [JVM], §2.5.1.

Java Card System i Closed Configuration Protection Profile
61

Version 3.0.5

FMT_MSA.1/JCRE Management of security attributes

FMT_MSA.1.1/JJCR E The TSF shall enforce the FIREWALL access control SFP to restrict
the ability to modify the security attributes Selected Applet Context to the Java Card
RE.

Application Note.

The modification of the Selected Applet Context should be performed in accordance with the
rules given in [JCRE3], 84 and [JCVM3], §3.4.

FMT_MSA.1/JCVM Management of security attributes

FMT_MSA.1.1/JCVM The TSF shall enforce the FIREWALL access control SFP and the
JCVM information flow control SFP to restrict the ability to modify the security
attributes Currently Active Context and Active Applets to the Java Card VM
(S.JCVM) .

Application Note:

The modification of the Currently Active Context should be performed in accordance with the
rules given in [JCRE3], 84 and [JCVM3], §3.4.

FMT_MSA.2/FIREWALL_JCVM Secure security attributes

FMT_MSA.2.1/FIREWALL_JCVM The TSF shall ensure that only secure values are accepted
for all the security attributes of subjects and objects defined in the FIREWALL
access control SFP and the JCVM information flow control SFP.

Application Note:

The following rules are given as examples only. For instance, the last two rules are motivated
by the fact that the Java Card API defines only transient arrays factory methods. Future versions
may allow the creation of transient objects belonging to arbitrary classes; such evolution will
naturally change the range of "secure values" for this component.

1 The Context attribute of an O.JAVAOBJECT muiscorrespond to that of an installed applet
or be "Java Card RE".

1 An O.JAVAOBJECT whose Sharing attribute is a Java Card RE entry point or a global
array necessarily has "Java Card RE" as the value for its Context security attribute.

1 An O.JAVAOBJECT whosBharing attribute value is a global array necessarily has "array
of primitive type" as a JavaCardClass security attribute's value.

62 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

1 Any O.JAVAOBJECT whose Sharing attribute value is not "Standard" has a PERSISTENT
LifeTime attribute's value.

1 Any O.JAVAOBJECTwhose LifeTime attribute value is not PERSISTENT has an array type
as JavaCardClass attribute's value.

FMT_MSA.3/FIREWALL Static attribute initialisation

FMT_MSA.3.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to
provide restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/FIREWALL The TSF shall allowthe [none] to specify alternative initial values
to override the default values when an object or information is cre ated.

Application Note:
FMT_MSA.3.1/FIREWALL

9 Obijects' security attributes of the access control policy are created and initialized at the
creation of the object or the subject. Afterwards, these attributes are no longer mutable
(FMT_MSA.1/JCRE). At the cration of an object (OP.CREATE), the newly created object,
assuming that the FIREWALL access control SFP permits the operation, gets its Lifetime
and Sharing attributes from the parameters of the operation; on the contrary, its Context
attribute has a default value, which is its creator's Context attribute and AID respectively
([JCRE3], §6.1.3). There is one default value for the Selected Applet Context that is the
default applet identifier's Context, and one default value for the Currently Active Context
that is "Java Card RE".

1 The knowledge of which reference corresponds to a temporary entry point object or a
global array and which does not is solely available to the Java Card RE (and the Java
Card virtual machine).

FMT_MSA.3.2/FIREWALL

1 The intent is that n one of the identified roles has privileges with regard to the default
values of the security attributes. It should be noticed that creation of objects is an
operation controlled by the FIREWALL access control SFP. The operation shall fail
anyway if the created object would have had security attributes whose value violates
FMT_MSA.2.1/FIREWALL_JCVM.

Java Card System i Closed Configuration Protection Profile
63

Version 3.0.5

FMT_MSA.3/JCVM Static attribute initialisation

FMT_MSA.3.1/JCVM The TSF shall enforce the JCVM information flow control SFP to
provide re strictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/JCVM The TSF shall allowthe [none] to specify alternative initial values to
override the default values when an object or information is created.

FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions:

o modify the Currently Active Context, the Selected Applet Context
and the Active Applets .

FMT_SMR.1 Security roles

FMT_SMR.1.1 The TSF shall maintain the roles
o Java Card RE (JCRE),
o Java Card VM (JCVM).

FMT_SMR.1.2 The TSF shall be able to associate users with roles.

7.2.1.2 APPLICATION PROGRAMMING |INTERFACE

The following SFRs are related to the JavaCard API.

The whole set of cryptographic algorithms is generally not implemented because of limited
memory resources and/or limitations due to exportation. Therefore, the following requirements
only apply to the implemented subset.

It should be noticed that the execution of the additional native code is not within the TSF.
Nevertheless, access to API native methods from the Java Card System is controlled by TSF
because there is no difference between native and interpreted methods in their interface or
invocation mechanism.

FCS_CKM.1 Cryptographic key generation

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm [assignment: cryptographic key generation

64 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

algorithm] and specified cryptographic key sizes [assignment: cryptographic key
sizes] that meet the following: [assignment: list of standards] .

Application Note.

1 The keys can be generated and diversified in accordance with [JCAPB] specification in
classes KeyPair (at least Session key gaeration) and RandombData

9 This component shall be instantiated according to the version of the Java Card API
applying to the security target and the implemented algorithms [JCAPR].

Refer to Appendix 4 to define the allowed/available key generation algorithms as per Java
Card API specifications [JCAPI3]. The ST Author should choose the algorithm
implemented to perform key generation. For each algorithm chosen, the ST author
should make the appropriate assignments/selections to specify the parameters that are
implemented for that algorithm .

FCS_CKM.4 Cryptographic key destruction

FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified
cryptographic key destruction method [assignment: cryptographic key destruction
method] that meets the following: [assignment: list of standards] .

Application Note:

1 The keys are reset as specified in [JCAPB] Key class, with the method clearKey(). Any
access to a cleared key for ciphering or signing shall throw an exception.

9 This component shall be instantiated according to the version of the Java Card API
applicable to the security target and the implemented algorithms [JCAPI3].

FCS_COP.1 Cryptographic operation

FCS_COP.1.1 The TSF shall perform [assignment : list of cryptographic operations] in
accordance with a specified cryptographic algorithm [assignment: cryptographic
algorithm] and cryptographic key sizes [assignment: cryptographic key sizes] that
meet the following: [assignment: list of standards] .

Application Note:

Refer to Appendix 4 to define the allowed/available algorithms as per Java Card API
specifications [JCAPB] The ST Author should choose the algorithm implemented to perform
crypto operations. For each algorithm chosen, the ST author should make the appropriate
assignments/selections to specify the parameters that are implemented for that algorithm .

Java Card System i Closed Configuration Protection Profile
65

Version 3.0.5

1 The TOE shall provide a subset of cryptographic operations defined in [JCAPB] (see
javacardx.crypto.Cipher and javacard.security packages).

1 This component shall be instantiated according to the version of the Java Card API
applicable to the security target and the implemented algorithms [JCAPI3].

Random Numbers

The TOE generates random numbers. To define the IT security functional requirements of the
TOE an additional family (FCS_RNG) of the Class FCS (cryptographic support) is defined in
chapter 7.1. This family FCS_RNG Generation of random numbers describes the functional
requirements for random number generation used for cryptographic purposes.

TheTOE shall meet Q@Queal irteygumetemrmeantf dir random numb
specified below (Common Criteria Part 2 extended).

FCS_RNG.1 Random number generation

Hierarchical to: No other components.
Dependencies: No dependencies.
FCS RNG.1.1 The TSF shall provide a [selection: physical, non-physical true,

deterministic, hybrid physical, hybrid deterministic] random
number generator that implements: [assignment: list of
security capabilities].

FCS_RNG.1.2 The TSF shall providerandom numbers that meet [assignment:
a defined quality metric].

Application Note:

The ST writer shall perform the open operations. The operation performed in the element
FCS_RNG.1.1 selects RNG types based on physical random number generators as typical
provided by Security IC.

FDP_RIP.1/ABORT Subset residual information protection

FDP_RIP.1.1/ABORT The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following

66 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

objects: any reference to an object instance created during an aborted
transaction

Application Note:

The events that provoke the de-allocation of a transient object are described in [JCRE3], 85.1.

FDP_RIP.1/APDU Subset residual information protection

FDP_RIP.1.1/APDU The TSF shall ensure that any previous information content of a resource
is made unavailable upon the allocation of the resource to the following objects: the
APDU buffer .

Application Note:

The allocation of a resource to the APDU buffer is typically performed as the result of a call to
the process() method of an applet.

FDP_RIP.1/GlobalArray Subset residual information protection

FDP_RIP.1.1/GlobalArray [Refined] The TSF shall ensure that any previous information
content of a resource is made unavailable upon deallocation of the resource from the
applet as a result of returning from the process method to the following objects: a user
Global Array .

Application Note:

An array resource is allocated when a call to the API method JCSystem.makeGlobalArray is
performed. The Global Array is created as atransient JCRE Entry Point Object ensuring that
reference to it cannot be retai ned by any application. On return from the method which called
JCSystem.makeGlobalArray, the array is no longer available to any applet and is deleted and
the memory in use by the array is cleared and reclaimed in the next object deletion cycle.

FDP_RIP.1/bArray Subset residual information protection

FDP_RIP.1.1/bArray The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following
objects: the bArray obiject .

Application Note:
A resource is allocated to the bArray object when a call to an applet's install() method is

performed. There is no conflict with FDP_ROL.1 here because of the bounds on the rollback
mechanism (FDP_ROL.1.2/FIREWALL): the scope of the rollback does not extend outside the

Java Card System i Closed Configuration Protection Profile
67

Version 3.0.5

execution of the install() method, and the de -allocation occurs precisely right after the return
of it.

FDP_RIP.1/KEYS Subset residual information protection

FDP_RIP.1.1/KEYS The TSF shall ensure that any previous information content of a resource
is made unavailable upon the deallocation of the resource from the following objects:
the cryptographic buffer (D.CRYPTO).

Application Note.
1 The javacard.security & javacardx.crypto packages do provide secure interfaces to the

cryptographic buffer in a transparent way. See javacard.security.KeyBuilder and Key
interface of [JCAPI3].

FDP_RIP.1 /TRANSIENT Subset residual information protection

FDP_RIP.1.1/TRANSIENT The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following
objects: any transient object .

Application Note:

1 The events that provoke the de-allocation of any transient object are described in
[JCRB], 85.1.

1 The clearing of CLEAR_ON_DESELECT objects is not necessarily performed when the

owner of the objects is deselected. In the presence of multiselectable applet instances,
CLEAR_ON_DESELECT memory segments may be attached to applets that are active in
different logical channels. Multiselectable applet instances within a same package must
share the transient memory segment if they are concurr ently active ([JCRE3], §4. 3-.

8 Section 84.3 for [JCRE3] versions 3.0.4 and 3.0.5. Section 84.2 for [JCRE3] version 3.0.1

68 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

FDP_ROL.1/FIREWALL Basic rollback

FDP_ROL.1.1/FIREWALL The TSF shall enforcethe FIREWALL access control SFP and
the JCVM information flow control SFP to permit the rollback of the operations
OP.JAVA and OP.CREATE on the object O.JAVAOBJECT.

FDP_ROL.1.2/FIREWALL The TSF shall permit operations to be rolled back within the scope
of a select(), deselect(), process(), install() or uninstall) call, notwithstanding
the restrictions given in [JCRE3], 87.7 , within the bounds of the Commit Capacity
([JCRE 3], 87.8), and those described in [JCAPI 3].

Application Note.

Transactions are a service offered by the APIs to applets. It is also used by some APIs to
guarantee the atomicity of some operation. This mechanism is either implemented in Java Card
platform or relies on the transaction mechanism offered by the underlying platform. Some

operations of the APl are not conditionally updated, as documented in [JCAPI3] (see for
instance, PIN-blocking, PIN-checking, update of Transient objects).

7.2.1.3CARD SECURITY MANAGEMENT

FAU_ARP.1 Security alarms

FAU_ARP.1.1 The TSF shall takeone of the following actions:
o throw an exception,
o lock the card session,
o0 reinitialize the Java Card System and its data,
0 [assignment: list of other actions]
upon detection of a potential security violation.

Refinement:
The "potential security violation" stands for one of the following events:

1 CAP file inconsistency,

9 typing error in the operands of a bytecode,

9 applet life cycle inconsistency,

card tearing (unexpected removal of the Card out of the CAD) and power failure,

abort of a transaction in an unexpected context, (see abortTransaction(), [JCAPI3] and
([JCRE3], §7.6.2)

violation of the Firewall or JCVM SFPs,
unavailability of resources,

array overflow,

[assignment: list of other runtime errors].

= =

=A =4 4 =

Java Card System i Closed Configuration Protection Profile
69

Version 3.0.5

Application Note:

T

The developer shall provide the exhaustive list of actual potential security violations the
TOE reacts to. For instance, other runtime errors related to applet's failure like uncaught
exceptions.

The bytecode verification defines a large set of rules used to detect a "potential security
violation". The actual monitoring of these "events" within the TOE only makes sense
when the bytecode verification is performed on-card.

Depending on the context of use and the required security level, there are cases where
the card manager and the TOE must work in cooperation to detect and appropriately
react in case of potential security violation. This behavior must be described in this
component. It shall detail the nature of the feedback information provided to the card
manager (like the identity of the offending application) and the conditions under which
the feedback will occur (any occurrence of the java.lang.SecurityException exception).

The "locking of the card session" may not appear in the policy of the card manager.
Such measure should only be taken in case of severe violation detection; the same holds
for the re-initialization of the Java Card System. Moreover, the locking should occur
when "clean" re-initialization seems to be impossible.

The locking may be implemented at the level of the Java Card System as a denial of
service (through some systematic "fatal error" message or return value) that lasts up to
the next "RESET" event, without affecting other components of the card (such as the
card manager). Finally, because the installation of applets is a sensitive process, security
alerts in this case should also be carefully considered herein.

FDP_SDI.2 /DATA Stored data integrity monitoring and action

FDP_SDI.2.1 /DATA The TSF shall monitor user data stored in containers controlled by the

TSF for [assignment: integrity errors] on all objects, based on the following attributes:
[assignment: user data attributes].

FDP_SDI.2.2 /DATA Upon detection of a data integrity error, the TSF shall [assignment:

action to be taken] .

Application Note:

T

Although no such requirement is mandatory in the Java Card specification, at least an
exception shall be raised upon integrity errors detection on cryptographic keys, PIN
values and their associated security attributes. Even if all the objects cannot be
monitored, cryptographic keys and PIN objects shall be considered with particular
attention by ST authors as they play a key role in the overall security.

It is also recommended to monitor integrity errors in the code of the native applications

and Java Card applets.

For integrity sensitive application, their data shall be monitored (D.APP_I_DATA):
applications may need to protect information against unexpected modifications, and
explicitly control whether a piece of information has been changed between two

70

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

accesses. for example, maintaining the integrity of an electronic purse's balance is
extremely important because this value represents real money. Its modification must be
controlled, for illegal ones would denote an important failure of the payment system.

1 A dedicated library could be implemented and made available to developers to achieve
better security for specific objects, following the same pattern that already exists in
cryptographic APls, for instance.

FPR_UNO.1 Unobservability

FPR_UNO.1.1 The TSF shall ensure that[assignment: list of users and/or subjects] are
unable to observe the operation [assignment: list of operations] on [assignment: list
of objects] by [assignment: list of protected users and/or subjects] .

Application Note:

The non-observability of operations on sensitive information such as keys appears as impossible
to circumvent in the smart card world. The precise list of operations and objects is left
unspecified, but should at least concern secret keys and PIN values when they exist on the card,
as well as the cryptographic operations and comparisons performed on them.

FPT_FLS.1 Failure with preservation of secure state

FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of failures ocaur:
those associated to the potential security violations described in FAU_ARP.1.

Application Note:

The Java Card RE Context is the Current context when the Java Card VM begins running after
a card reset ([JCRE3], §6.2.3) or after a proximity card (PICC) activation sequence ([JCRE)).
Behavior of the TOE on power loss and reset is described in [JCRB], 83.6 and 87.1. Behavior
of the TOE on RF signal loss is described in [JCRB], §3.6.1.

FPT_TDC.1 Inter -TSF basic TSF data consistency

FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret the CAP files, the
bytecode and its data arguments when shared between the TSF and another trusted IT
product.

FPT_TDC.1.2 The TSF shall use
o0 the rules defined in [JCVM 3] specification,

Java Card System i Closed Configuration Protection Profile
71

Version 3.0.5

o the APl tokens defined in the export files of reference
implementation,

o [assignment: list of interpretation rules to be applied by the TSF]
when interpreting the TSF data from another trusted IT product.

Application Note:
Concerning the interpretation of data between the TOE and the underlying Java Card platform,
it is assumed that the TOE is developed consistently with the SCP functions, including memory

management, 1/0 functions and cryptographic functions.

7.2.1.4 AID MANAGEMENT

FIA_ATD.1/ AID User attribute definition

FIA_ATD.1.1/AID The TSF shall maintain the following list of security attributes belonging to
individual users:

Package AID,

Applet's version number,
0 Registered applet AID,
0 Applet Selection Status

Refinement:

"Individual users" stand for applets.

o

FIA_UID.2/AID User identification before any action

FIA_UID.2.1/AID The TSF shall require each user to be successfully identified before allowing
any other TSFmediated actions on behalf of that user.

Application Note:

1 By users here it must be understood the ones associated to the packages (or applets)
that act as subjects of policies. In the Java Card System, every action is always
performed by an identified user interpreted here as the currently selected applet or the
package that is the subject's owner. Means of identification are provided during the
loading procedure of the package and the registration of applet instances.

9 Therole Java Card RE defined in FMT_SMR.1 is attached to an IT security function rather
than to a "user" of the CC terminology. The Java Card RE does not "identify" itself to
the TOE, but it is part of it.

72 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

FIA_USB.1/AID User -subject binding

FIA_USB.1.1/AID The TSF shall associate the following user security attributes with subjects
acting on the behalf of that user: Package AID .

FIA_USB.1.2/AID The TSF shall enforce the following rules on the initial association of user
security attributes with subjects act ing on the behalf of users: [assignment: rules for the
initial association of attributes]

FIA_USB.1.3/AID The TSF shall enforce the following rules governing changes to the user
security attributes associated with subjects acting on the behalf of users: [assignment:
rules for the changing of attributes]

Application Note:

The user is the applet and the subject is the S.PACKAGE. The subject security attribute "Context"
shall hold the user security attribute "package AID".

FMT_MTD.1/ JCRE Management of TSF data

FMT_MTD.1.1/JCRE The TSF shall restrict the ability to modify the list of registered
applets’ AIDs to the JCRE.

Application Note:
i The Java Card RE manags other TSF data such as the applet life cycle or CAP files, but

this management is implementation specific. Objects in the Java programming language
may also try to query AIDs of installed applets through the lookupAID(...) API method.

FMT_MTD.3/JCRE Secure TSF data

FMT_MTD.3.1/JCRE The TSF shall ensure that only secure values are accepted for the
registered applets' AIDs .

7.2.2 INSTG SECURITY FUNCTIONAL REQUIREMENTS

This group consists of the SFRs related to the installation of the applets, which addresses
security aspects outside the runtime. The installation of applets is a critical phase, which lies
partially out of the boundaries of the firewall, and therefore requires specific treatment. This PP
is limited to installation of applet instances. Loading of packages is out of scope for this PP.

Java Card System i Closed Configuration Protection Profile
73

Version 3.0.5

FMT_SMR.1/Installer Security roles

FMT_SMR.1.1l/Installer =~ The TSF shall maintain the roles Installer

FMT_SMR.1.2/Installer =~ The TSF shall be able to associate users with roles.

FPT_FLS.1/l1 nstaller Failure with preservation of secure state

FPT_FLS.1.1l/Installer The TSF shall preserve a secure state when the following types of
failures occur: the installer fails to install an applet instance as described in [JCRE3]
8§11.15 .

Application Note:

The TOE may provide additional feedback information to the card manager in case of potential
security violations (see FAU_ARP.1).

FPT_RCV.3/Installer Automated recovery without undue loss

FPT_RCV.3.1l/Installer =~ When automated recovery from [assignment: list of
failures/service discontinuities] is not possible, the TSF shall enter a maintenance mode
where the ability to return to a secure state is provided.

FPT_RCV.3.2/Installer For [assignment: list of failures/service discontinu ities] , the
TSF shall ensure the return of the TOE to a secure state using automated procedures.

FPT_RCV.3.3/Installer The functions provided by the TSF to recover from failure or service
discontinuity shall ensure that the secure initial state is restored without exceeding
[assignment: quantification] for loss of TSF data or objects under the control of the TSF.

FPT_RCV.3.4/Installer The TSF shall provide the capability to determine the objects that
were or were not capable of being recovered.

Application Note:
FPT_RCV.3.1/Installer:

1 This element is not within the scope of the Java Card specification, which only mandates
the behavior of the Java Card System in good working order. Further details on the
"maintenance mode" shall be provided in specific implementations. The following is an
excerpt from [CC2], p296: In this maintenance mode normal operation might be impossible
or severely restricted, as otherwise insecure situations might occur. Typically, only authorised
users should be allowed accessto this mode but the real details of who can accessthis mode

74 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

is a function of FMT: Security management. If FMT: Security management does not put any
controls on who can accessthis mode, then it may be acceptable to allow any user to restore
the system if the TOE enters such a state. However, in practice, this is probably not desirable
as the user restoring the system has an opportunity to configure the TOE in such a way as to
violate the SFRs.

FPT_RCV.3.2/Installer:

9 Should the installer fail during installation of an applet, it has to revert to a "consistent
and secure state". The Java Card RE has some clean up duties as well; see [JCRE3],
811.1.5 for possible scenarios. Precise behavior is left to implementers. This component
shall include among the listed failures the deletion of an applet instance. See ([JCRE3],
11.3.4) for possible scenarios. Precise behavior is left to implementers.

9 Other events such as the unexpected tearing of the card, power loss, and so on, are
partially handled by the underlying hardware platform (see [PP0084b]) and, from the
TOE's side, by events "that clear transient objects" and transactional features. See
FPT_FLS.1.1, FDP_RIP.1/TRANSIENT, FDP_RIP.1/ABORT and FDP_ROL.1/FIREWALL.

FPT_RCV.3.3/Installer:

1 The quantification is implementation dependent, but some facts can be recalled here.
First, the SCP ensures the atomicity of updates for fields and objects, and a power-
failure during a transaction or the normal runtime does not create the loss of otherwise -
permanent data, in the sense that memory on a smart card is essentially persistent with
this respect (EEPROM). Data stored on the RAM and subject to such failure is intended
to have a limited lifetime anyway (runtime data on the stack, transient objects'
contents). According to this, the loss of data within the TSF scope should be limited to
the same restrictions of the transaction mechanism.

7.2.3 ADELG SECURITY FUNCTIONAL REQUIREMENTS

This group consists of the SFRs related to the deletion of applets instances, enforcing the appl et
deletion manager (ADEL) policy on security aspects outside the runtime. Deletion is a critical
operation and therefore requires specific treatment. This policy is better thought as a frame to
be filled by ST implementers. Deletion of packages is out of scope for this PP.

FDP_ACC.2/ADEL Complete access control

FDP_ACC.2.1/ADEL The TSF shall enforce the ADEL access control SFP on S.ADEL,
S.JCRE, S.JCVM, O.JAVAOBJECT and O.APPLET and O.CODE_PKG and all operations
among subjects and objects covered by the SFP.

Refinement:
The operations involved in the policy are is:
0 OP.DELETE_APPLET

Java Card System i Closed Configuration Protection Profile
75

Version 3.0.5

FDP_ACC.2.2/ADEL The TSF shall ensure that all operations between any subject controlled
by the TSF and any object controlled by the TSF are covered by an access control SFP.

FDP_ACF.1/ADEL Security attribute based access control

FDP_ACF.1.1/ADEL The TSF shall enforce the ADEL access control SFP to objects based
on the following:

‘ S.JCVM H Active Applets ‘
‘ S.JCRE H Selected Applet Context, Registered Applets, Resident Packages ‘
| 0.CODE_PKG || PackageAID, Dependent PackageAlD, Static References |
\ O.APPLET H Applet Selection Status \

|

| 0.JAVAOBJECT || Owner, Remote

FDP_ACF.1.2/ADEL The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed:

In the context of this policy, an object O is reachable if and only one of the
following conditions hold:
o (1) the owner of Ois a registered applet instance A (O is reachable
from A),
0 (2) a static field of a resident package P contains a reference to O
(O is reachable from P),
0 (3) there exists a valid remote reference to O (O is remote
reachable),

0 (4) there exists an object O' that is reachable according to either
(1) or (2) or (3) above and O' contains a reference to O (the
reachability status of O is that of O").

The following access control rules determine when an operation among
controlled subjects and objects is allowed by the policy:
o0 R.JAVA.14 ([JCRE3], 811.3.4.2 °, Applet Instance Deletion): S.ADEL
may perform OP.DELETE_APPLET upon an O.APPLET only if,
(1) S.ADEL is currently selected,
(2) there is no instance in the context of O.APPLET that is active in any logical
channel and

(3) there is no O.JAVAOBJECT owned by O.APPLET such that either
O.JAVAOBJECT is reachable from an applet instance distinct from O.APPLET,

9 Section 811.3.4.2 for [JCRES3] versions 3.0.4 and 3.0.5. Section §11.3.4.1 for [JCRE] version 3.0.1

76 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

or O.JAVAOBJECT is reachable from a package P, or ([JCRE3], 88.5)
O.JAVAOBJECT is remote reachable.

o RJAVA15 ([JCRE3], 811.3.4.2.1 », Multiple Applet Instance
Deletion): S.ADEL may perform OP.DELETE_APPLET upon several
O.APPLET only if,

(1) S.ADEL is currently selected,

(2) there is no instance of any of the O.APPLET being deleted that is active in
any logical channel and

(3) there is no O.JAVAOBJECT owned by any of the O.APPLET being deleted
such that either O.JAVAOBJECT is reachable from an applet instance distinct
from any of those O.APPLET, or O.JAVAOBJECT is reachable from a package P,
or ([JCRE3], 8§8.5) O.JAVAOBJECT is remote reacha ble.

FDP_ACF.1.3/ADEL The TSF shall explicitly authorise access of subjects to objects based on
the following additional rules: none .

FDP_ACF.1.4/ADEL The TSF shall explicitly deny access of subjects to objects based on the
following additional rules:

Any subject but S.ADEL to O.APPLET for the purpose of deleting them from the
card .

Application Note:
FDP_ACF.1.2/ADEL:

9 This policy introduces the notion of reachability, which provides a general means to
describe objects that are referenced from a certain applet instance or package.

1 S.ADEL calls the "uninstall" method of the applet instance to be deleted, if implemented
by the applet, to inform it of the deletion request. The order in which these calls and the
dependencies checks are performed are out of the scope of this protection profile.

FDP_RIP.1/ADEL Subset residual information protection

FDP_RIP.1.1/ADEL The TSF shall ensure that any previous information content of a resource
is made unavailable upon the deallocation of the resource from the following objects:

10 Section §11.3.4.2.1 for [JCREZ] versions 3.0.4 and 3.0.5. Section §11.3.4.1 for [JCRE] version 3.0.1

Java Card System i Closed Configuration Protection Profile
7

Version 3.0.5

applet instances when one of the deletion operations in FDP_ACC.2.1/ADEL is
performed on them .

Application Note.
Deleted freed resources may be reused, depending on the way they were deleted (logically or

physically). Requirements on de-allocation during applet/package deletion are described in
[JCRES], §11.3.4.2, 811.3.4.3 and 8§11.3.4.4.

FMT_MSA.1/ADEL Management of security attributes

FMT_MSA.1.1/ADEL The TSF shall enforce the ADEL access control SFP to restrict the
ability to modify the security attributes Registered Applets and Resident Packages to
the Java Card RE.

FMT_MSA.3/ADEL Static attribute initialisation

FMT_MSA.3.1/ADEL The TSF shall enforce the ADEL access contro | SFP to provide
restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/ADEL The TSF shall allow thefollowing role(s): none, to specify alternative
initial values to override the default values when an object or i nformation is created.

FMT_SMF.1/ADEL Specification of Management Functions

FMT_SMF.1.1/ADEL The TSF shall be capable of performing the following management
functions: modify the list of registered applets' AIDs .

FMT_SMR.1/ADEL Security roles

FMT_SMR.1.1/ADEL The TSF shall maintain the roles applet deletion manager .

FMT_SMR.1.2/ADEL The TSF shall be able to associate users with roles.

11 Sections §11.3.4.2, §11.3.4.3 and §11.3.4.4 for [JCRE3] versions 3.0.4 and 3.0.5. Sections §11.3.4.1, §11.3.4.2
and §11.3.4.3 for [JCRE] version 3.0.1.

78 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

FPT_FLS.1/ADEL Failure with preservation of secure state

FPT_FLS.1.1/ADEL The TSF shall preserve a secure state when the following types of failures

occur: the applet deletion manager fails to delete an applet as described in
[JCRE3], 8§11.3.4 .

Application Note.

I The TOE may provide additional feedbackinformation to the card manager in case of a
potential security violation (see FAU_ARP.1).

1 The applet instance deletion must be atomic. The "secure state" referred to in the
requirement must comply with Java Card specification ([JCRE3], §11.3.4.)

7.2.4 ODELG SECURITY FUNCTIONAL REQUIREMENTS

The following requirements concern the object deletion mechanism. This mechanism is
triggered by the applet that owns the deleted objects by invoking a specific APl method.

FDP_RIP.1/ODEL Subset residual information protection

FDP_RIP.1.1/ODEL The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following

objects: the objects owned by the context of an applet instance which triggered
the execution of the method

javacard.framework.JCSystem.requestObjectDeletion()

Application Note:

i Freed data resources resulting from the invocation of the method
javacard.framework.JCSystem.requestObjectDeletion() may be reused. Requirements
on de-allocation after the invocation of the method are described in [JCAPI3].

9 There is no conflict with FDP_ROL.1 here because of the bounds on the rollback
mechanism: the execution of requestObjectDeletion() is not in the scope of the rollba ck

because it must be performed in between APDU command processing, and therefore no
transaction can be in progress.

Java Card System i Closed Configuration Protection Profile

79
Version 3.0.5

FPT_FLS.1/ODEL Failure with preservation of secure state

FPT_FLS.1.1/ODEL The TSF shall preserve a secure state whe the following types of failures
occur: the object deletion functions fail to delete all the unreferenced objects
owned by the applet that requested the execution of the method .

Application Note.

The TOE may provide additional feedback information to the card manager in case of potential
security violation (see FAU_ARP.1).

7.3 SECURITY ASSURANCE R EQUIREMENTS

The Evaluation Assurance Level is EAL4 augmented with ALC_DVS.2 and AVA_VAN.5.

7.4 SECURITY REQUIREMENT S RATIONALE

7.4.1 OBJECTIVES
7.4.1.1 SECURITY OBJECTIVES FORTHE TOE

74.1.1.1 | DENTIFICATION

O.SID Subjects' identity is AlD-based (applets, packages), and is met by the following SFRs:
FIA_ATD.1/AID, FMT_MSA.1/JCRE, FMT_MSA.1/JCVM, FMT_MSA.1/ADEL,
FMT_MSA.3/ADEL, FMT_MSA.3/FIREWALL, FMT_MSA.3/JCVM, FMT_SMF.1/ADEL,
FMT_SMF.1/ADEL, MT_MTD.1/JCRE and FMT_MTD.3/JCRE.

Installation procedures ensure protection against forgery (the AID of an applet is under the
control of the TSFs) or re-use of identities (FIA_UID.2/AID, FIA_USB.1/AID).

7.4.1.1.2 EXECUTION

O.FIREWALL This objective is met by the FIREWALL access control policy
FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWAlnd the JCVM information flow control
policy (FDP_IFF.1/JCVM, FDP_IFC.1/JCVM) . The functional requirements of the class FMT
(FMT_MTD.1/JJCRE, FMT_MTD.30RE, FMT_SMR.1l/Installer, FMT_SMR.1, FMT_SMF.1,
FMT_SMR.1/ADEL, FMT_SMF.1/ADEL, FMT_MSA.2/FIREWALL JCVM,
FMT_MSA.3/FIREWALL, FMT_MSA.3/JJCVM, FMT_MSA.1/ADEL, FMT_MSA.3/ADEL,
FMT_MSA.1/JCRE, FMT_MSA.1/JCVM) also indirectly contribute to meet this objective.

O.GLOBAL_ARRAYS_CONFID Only arrays can be designated as global, and the only global
arrays required in the Java Card API are the APDU buffer the global byte array input
parameter (bArray) to an applet's install method and the global arrays created by the
JCSystem. make Gl ob aThAc clearany régéilememet tHese drrays is met by
(FDP_RIP.1/APDU FDP_RIP.1/GlobalArrayand FDP_RIP.1/bArray respectively). The JCVM

80 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

information flow control policy (FDP_IFF.1/JJCVM FDP_IFC.1/JCVM) prevents an application
from keeping a pointer to a shared buffer, which could be used to read its contents when
the buffer is being used by another application.

If the TOE provides JCRMI functionality, protection of the array parameters of remotely
invoked methods, which are global as well, is covered by the general initialization of method
parameters (FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS
FDP_RIP.1/ADEland FDP_RIP.1/TRANSIENT).

O.GLOBAL_ARRAYS_INTEG This objective is met by the JCVM information flow control policy
(FDP_IFF.1/JCVM, FDP_IFC.1/JCVM), which prevents an application from keeping a pointer
to the APDU buffer of the card, to the global byte array of the applet's install method or to
theglobalarrays cr eated by the JCSyst e mSunaapenilcoddal Ar r
be used to access and modify it when the buffer is being used by another application.

O.NATIVE This security objective is covered by FDP_ACF.1/FIREWALL: the only means to
execute native code is the invocation of a Java Card API method.

O.OPERATE The TOE is protected in various ways against applets' actions (FPT_TDC.1), the
FIREWALL access control policy FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL, and is
able to detect and block various failures or security violations during usual working
(FPT_FLS.1/ADEL, FPT_FLS.1, FPT_FLS.1/ODEL, FPT_FLS.1/Installer, FAU_ARP.1). Its
security-critical parts and procedures are also protected: safe recovery from failure is ensured
(FPT_RCV.3/Installer), applets’ installation may be cleanly aborted (FDP_ROL.1/FIREWALL),
communication with external users and their internal subjects is well-controlled
(FIA_ATD.1/AID, FIA _USB.1/AID) to prevent alteration of TSF data (also protected by
components of the FPT chss).

Almost every objective and/or functional requirement indirectly contributes to this one too.

Application note. Startup of the TOE (TSFtesting) can be covered by FPT_TST.1. This SFR
component is not mandatory in [JCRES3], but appears in most of security requirements
documents for masked applications. Testing could also occur randomly. Selttests may
become mandatory in order to comply with FIPS certification [FIPS 140-2].

O.REALLOCATION This security objective is satisfied by the following SFRs: FDP_RP.1/APDU,
FDP_RIP.1/GlobalArray, FDP_RIP.1/bArray, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FDP_RIP.1/TRANSIENT, FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS, which imposes that the
contents of the re -allocated block shall always be cleared before delivering the block.

O.RESOURCES The SFRs detects stack/memory overflows during execution of applications
(FAU_ARP.1, FPT_FLS.1/ADEL, FPT_FLS.1, FPT_FLS.1/ODEL, FPT_FLS.1/Installer). Failed
installations are not to create memory leaks (FDP_ROL.1/FIREWALL, FPT_RCV.3/Installer)
as well. Memory management is controlled by the SFRs (FMT_MTD.1/JCRE,

Java Card System i Closed Configuration Protection Profile
81

Version 3.0.5

FMT_MTD.3/JCRE, FMT_SMR.1/Installer, FMT_SMR.1, FMT_SMF.1 FMT_SMR.1/ADREH
FMT_SMF.1/ADEL).

Additionally, if the TOE provides JCRMI functionality, memory management is controlled by
the SFRs FMT_SMR.1/JCRMI, and FMT_SMF.1/JCRMI.

7.4.1.1.3 SERVICES

O.ALARM This security objective is met by FPT_FLS.1/Installer, FPT_FLS.1, FPT_FLS.1/ADEL,
FPT_FLS.1/ODEL which guarantee that a secure state is preserved by the TSF when failures
occur, and FAU_ARP.1 whichdefines TSF reaction upon detection of a potential security
violation.

O.CIPHER This security objective is directly covered by FCS_CKM.1, FCS_CKM.4 and
FCS _COP.1. The SFR FPR_UNO.1 contributes in covering this security objective and controls
the observation of the cryptographic operations which may be used to disclose the keys.

O.RNG This security objective is directly covered by FCS RNG.1 which ensures the
cryptographic quality of random number generation.

O.KEY-MNGT This relies on the same security functional requirements as O.CIPHER, plus
FDP_RIP.1 and FDP_SDI.2 as well. Precisely it is met by the following components:
FCS_CKM.1, FCS_CKM.4, FCS_COP.1, FPR_UNO.1, FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS,
FDP_RIP.1/APDU, FDP_RIP.1/GlobalArray FDP_RIP.1/bArray, FDP_RIP.1/ABORT,
FDP_RIP.1/KEYSFDP_RIP.1/ADEL and=-DP_RIP.1MTRANSIENT and FDPSDI.2.

O.PIN -MNGT This security objective is ensured by FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS,
FDP_RIP.1/APDU, FDP_RIP.1/GlobalArray FDP_RIP.1/bArray, FDP_RIP.JABORT,
FDP_RIP.1/KEYS, FDP_RIP.1/ADEL, FDP_RIP.1/TRANSIENT, FPR_UNO.1,
FDP_ROL.1/FIREWALL and FDP_SDIRATA security functional requirements. The TSFs
behind these are implemented by APl classes. The firewall security functions
FDP_ACC.2/FIREWALL and FDRCF.1/FIREWALL shall protect the access to private and
internal data of the objects.

O.TRANSACTION Directly met by FDP_ROL.1/FIREWALL, FDP_RIP.1/ABORimnore precisely,
by the element FDP_RIP.1.1/ABORT) FDP_RIP.1/ODEL, FDP_RIP.1/APDU,

82 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

FDP_RIP.1/GlobalArray =~ FDP_RIP.1/bArray, FDP_RIP.1/KEYS, FDP_RIP.1/ADEL,
FDP_RIP.1/TRANSIENT and FDP_RIP.1/OBJECTS.

7.4.1.14 OBJECT DELETION

O.OBJ-DELETION This security objective specifies that deletion of objects is secure. The
security objective is met by the security functional req uirements FDP_RIP.1/ODEL and
FPT_FLS.1/ODEL.

7.4.1.1.5 APPLET MANAGEMENT

O.DELETION This security objective specifies that applet deletion must be secure. The non-
introduction of security holes is ensured by the ADEL access control policy (FDP_ACC.2/ADEL,
FDP_ACF.1/ADEL). The integrity and confidentiality of data that does not belong to the
deleted applet is a by-product of this policy as well. Non-accessibility of deleted data is met
by FDP_RIP.1/ADEL and the TSFs are protected against possible failures othe deletion
procedures (FPT_FLS.1/ADEL, FPT_RCV.3/Installer). The security functional requirements of
the class FMT (FMT_MSA.1/ADEL, FMT_MSA.3/ADEL, FMT_SMR.1/ADEL) included in the
group ADELG also contribute to meet this objective.

O.INSTALL This security objective specifies that installation of applets must be secure. The
TSFs are protected against possible failures of the installer (FPT_FLS.1/Installer,
FPT_RCV.3/Installer).

Java Card System i Closed Configuration Protection Profile
83

Version 3.0.5

7.4.2 RATIONALE TABLES OF SECURITY OBJECTIVES AND

SFR's

FIA_ATD.1/AID, EIA_UID.2/AID,

EMT_MSA.1/JCRE EMT_MSA.1/ADE|

EMT_MSA.3/ADE]

EMT_MSA.3/FIREWALL

EMT_SMF.1/ADE] FMT_MTD.1/JCRE

EFMT_MTD.3/JCREFIA_USB.1/AID,

FMT_MSA.1/JCVMEMT_MSA.3/JJCVM

Section 7.4.1.1.1

O.FIREWALL

FDP_IFC.1/JCVMEDP_IFF.1/JCVM

FMT_ SMR.1/Installer

EMT_MSA.3/FIREWALLFMT_SMR.]

FMT_MSA.1/ADE] EMT_MSA.3/ADEL

FMT_SMR.1/ADE| FMT_MSA.1/JCRF,

FDP_ACC.2/FIREWALL

FDP_ACEFE.1/FIREWALL

EMT_SMF.1/ADE| FMT_SMEF.1

EMT_MSA.2/FIREWAL JCVM

FMT_MTD.1/JCREEMT_MTD.3/JCRE

FMT_MSA.1/JJCVMEMT_MSA.3/JCVM

Section7.4.1.1.2

O.GLOBAL_ARRAYS_(

FDP_IFC.1/JCVMEDP_IFE.1/JCVM

FDP_RIP.1/bArray FDP_RIP.1/APDU

FDP_RIP.1/GlobalArray

ONFID

FDP_RIP.1/ODEl FDP_RIP.1/OBJECTS

FDP_RIP.1/ABORTEDP_RIP.1/KEYS

FDP_RIP.1/ADELEDP_RIP.1/TRANSIENT

Section7.4.1.1.2

O.GLOBAL_ARRAYS |
NTEG

FDP_IFC.1/JCVMEDP_IFF.1/JJCVM

Section7.4.1.1.2

O.NATIVE | FDP_ACF.1/FIREWALL | Section7.4.1.1.2
FAU_ARP.1FDP_ROL.1/FIREWALL
FIA_ATD.1/AID, FPT_FLS.1/ADEL
FPT_FLS.1FPT_FLS.1/ODEL

0.OPERATE IS Tl Section 7.4.1.1.2

FPT_RCV.3/Installer

FDP_ACC.2/FIREWALL
FDP_ACF.1/FIREWALLFPT_TDC.1
FIA_USB.1/AID

O.REALLOCATION

FDP_RIP.1/ABORTFEDP_RIP.1/APDU
FDP_RIP.1/GlobalArray
FDP_RIP.1/bArray FDP_RIP.1/KEYS
FDP_RIP.1/TRANSIENT

FDP RIP.1/ADE|FDP RIP.1/ODEL
FDP_RIP.1/OBJECTS

Section7.4.1.1.2

84

Java Card System i Closed Co

nfiguration Protection Profile
Version 3.0.5

FAU_ARP.1FDP_ROL.1/FIREWALL
FMT_SMR.1/Installer EMT_SMR.1
FMT_SMR.1/ADEJEPT_FLS.1/Installer
O.RESOURCES FPT_FLS.1/ODEJFPT FLS.1 Section7.4.1.1.2
FPT_FLS.1/ADEJ FPT_RCV.3/Installey
EMT_SMF.1/ADE| FMT_SMF.1
FMT_MTD.1/JJCREEMT_MTD.3/JCRE

FPT_FLS.1/Installey FPT_FLS.1

O.ALARM FPT_FLS.1/ADELFPT_FLS.1/ODEL Section 7.4.1.1.3
FAU_ARP.1
FCS_CKM.1FCS_CKM.4FCS_COP.1 .
O.CIPHER EPR ONO 1 Section7.4.1.1.3
O.RNG | Ecs_RIG.1 | Section7.4.1.1.3

FCS CKM.1FCS CKM.4FCS COP.1
FPR _UNO.1FDP_RIP.1/ODEL
FDP_RIP.1/OBJECTS¥DP_RIP.1/APDU
O.KE¥MNGT FDP_RIP.1/GlobalArray Section7.4.1.1.3
FDP_RIP.1/bArray EDP_RIP.1/ABORT
FDP_RIP.1/KEYSFDP_SDI.ZDATA
FDP_RIP.1/ADELFEDP_RIP.1/TRANSIENT

FDP_RIP.1/ODE| FDP_RIP.1/OBJECTS
FDP_RIP.1/APDU
FDP_RIP.1/GlobalArray
FDP_RIP.1/bArray FDP_RIP.1/ABORT
FDP _RIP.1/KEYSFPR _UNO.1
O.PIN-MNGT FDP_RIP.1/ADEL, Section7.4.1.1.3
FDP_ RIP.1/TRANSIENT
FDP ROL.1/FIREWALL
FDP_SDI.ZDATA,

FDP ACC.2/FIREWALL
FDP_ACF.1/FIREWALL

FDP ROL.1/FIREWALL

FDP RIP.1/ABORTEDP RIP.1/ODEL
FDP_RIP.1/APDU
FDP_RIP.1/GlobalArray
FDP_RIP.1/bArray FDP_RIP.1/KEYS
FDP_RIP.1/ADEL
FDP_RIP.1/TRANSIENT
FDP_RIP.1/OBJECTS

O.TRANSACTION Section7.4.1.1.3

O.OBJDELETION || FDP_RIP.1/ODELFPT_FLS.1/ODEL || Section7.4.1.1.4

FDP_ACC.2/ADELFDP_ACF.1/ADEL
FDP_RIP.1/ADE| FPT_FLS.1/ADEL
FPT_RCV.3/Installer EMT_MSA.1/ADE|
FMT_MSA.3/ADE| EMT_SMR.1/ADEL

O.DELETION Section7.4.1.1.5

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

O.INSTALL | EPT_RCV.3/Installer FPT_FLS.1/Installer || Section7.4.1.1.5

Table 7 Security Objectives and SFRs - Coverage

| EDP_ACC.2/FIREWALL | O.FIREWAL| O.OPERATEQ.PINMNGT |
| EDP_ACF.1/FIREWALL | O.FIREWALL O.NATIVE O.OPERATEQ.PINMNGT |

O.FIREWALI O.GLOBAL_ARRAYS_ CONEFID
O.GLOBAL_ARRAYS_INTEG

O.FIREWALL O.GLOBAL_ARRAYS_ CONEFID
O.GLOBAL_ARRAYS_INTEG

O.GLOBAL_ARRAYS_CONFID.REALLOCATIONO.KE¥
MNGT, O.PIN-MNGT, O.TRANSACTION

FDP_IFC.1/JCVM

FDP_IFF.1/JCVM

FDP_RIP.1/OBJECTS

EMT_MSA.1/JCRE	0.SID, O.FIREWALL	
EMT_MSA.1/JCVM	0.SID, O.FIREWALL	
EMT_MSA.2/FIREWALL_JCVI	O.FIREWALL	
EMT_MSA3/FIREWALL		0.SID, O.FIREWALL
EMT_MSA.3/JCVM	0.SID, O.FIREWALL	
EMT_SMF.1	O.FIREWALL O.RESOURCES	
EMT_SMR.1	O.FIREWALL O.RESOURCES	
FCS_CKM.1	O.CIPHER O.KE¥MNGT	
ECS_CKM.4	0.CIPHER O KE¥MNGT	
Ecs_coP.1	0.CIPHER O KE¥MNGT	
ECS_RIG.1	o_RNG	

O.GLOBAL_ARRAYS_CONFEID.REALLOCATIONO.KE¥
MNGT O.PIN-MNGT, O.TRANSACTION

O.GLOBAL_ARRAYS_CONEID.REALLOCATIONO.KE¥
MNGT, O.PIN-MNGT, O.TRANSACTION

FDP_RIP.1/ABORT

FDP_RIP.1/APDU

O.GLOBAL_ARRAYS_CONEID.REALLOCATIONO.KE¥
MNGT, O.PIN-MNGT, O.TRANSACTION

FDP_RIP.1/bArray

O.GLOBAL_ARRAYS_CONFEID.REALLOCATIONO.KE¥
MNGT, O.PIN-MNGT, O.TRANSACTION

O.GLOBAL_ARRAYS_CONFID.REALLOCATIONO.KE¥
MNGT, O.PINMNGT, O.TRANSACTION

FDP_RIP.1/GlobalArray

FDP_RIP.1/KEYS

86 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

FDP_RIP.1/TRANSIENT

O.GLOBAL_ARRAYS_CONFEID.REALLOCATIONO.KE¥

MNGT, O.PINMNGT, O.TRANSACTION

FDP_ROL.1/FIREWALL

O.OPERATEO.RESOURCES.PIN-MNGT,

O.TRANSACTION

| EPT

FLS.1/Installer

H O.OPERATEO.RESOURCES.ALARM O.INSTALL

FAU_ARP.1	0.OPERATEQ.RESOURCED.ALARM	
EDP_SDI.ZDATA	O.KE¥MNGT, O.PINMNGT	
EPR_UNO.1	0.CIPHER O KE¥MNGT, O.PINMNGT	
EPT_FLS.1	0.OPERATEO.RESOURCESD.ALARM	
FPT_TDC.1	0.OPERATE	
FIA_ATD.1J/AID	0.SID, 0.OPERATE	
FIA_UID.2/AID	o.sID	
FIA_USB.1/AID	0.SID, 0.0PERATE	
EMT_MTD.1/JCRE	0.SID, O.FIREWAL	O.RESOURCES
EMT_MTD.3/JCRE	0.SID, O.FIREWAL	O.RESOURCES
EMT_SMR.1/Installer	O.FIREWALL O.RESOURCES	

|

|

|

|

| EPT_RCV.3/Installer | 0.OPERATEQ.RESOURCESD.DELETION O.INSTALL
| EDP_ACC.2/ADEL | O.DELETION
| EDP_ACF.1/ADEL | O.DELETION
e puuce | SSIONL S SRR s cTa 0 e
EMT_MSA.1/ADEL	0.SID, O.FIREWALL O.DELETION	
EMT_MSA.3/ADEL	0.SID, O.FIREWALL O.DELETION	
EMT_SMF.1/ADEL	0.SID, O.FIREWAL	O.RESOURCES
EMT_SMR.1/ADEL	O.FIREWAL	O.RESOURCESD.DELETION
EPT_FLS.1/ADEL	0.OPERATEO.RESOURCESD ALARM O.DELETION	
0.GLOBAL_ARRAYS_CONFID.REALLOCATIONO.KEY
FDP_RIP.1/ODEL MNGT, O.PIN-MNGT, O.TRANSACTIONO.OBJ
DELETION
FPT_FLS.1/ODEL | 0.OPERATEQ.RESOURCES.ALARM O.OBJDELETION]

Table 8 SFRs and Security Objectives

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

87

7.4.3 DEPENDENCIES

7.4.3.1 SFRs DEPENDENCIES

CC Dependencies Satisfied Dependencies

| FDP_ACC.2/[FIREWALL | (FDP_ACF.1) | FDP_ACF.1/FIREWALL
(FDP_ACC.1) and FDP_ACC.2/FIREWALL
Ll Al I LLALL (FMT_MSA.3) FMT_MSA.3/FIREWALL
| EDP_IFC.1/JCVM | (FDP_IFF.1) | EDP_IFF.1/JCcVM |
(FDP_IFC.1) and FDP_IFC.1/JCVM
L LA (FMT_MSA.3) FMT_MSA.3/JCVM
| EDP_RIP.1/OBJECTS | No Dependencies I |
(FDP_ACC.1 or
FDP_IFC.1) and FDP_ACC.2/FIREWALL
[MT_MSA LJCRE (FMT_SMF.1) and FMT_SMR.1
(FMT_SMR.1)
l(:FDDPPT?g%la% FDP_ACC.2/FIREWALL
FMT_MSA.1/JCVM (FMT. SMF.1) and FDP_IFC.1/JCVMFMT_SMF.1
(FMT_SMR.1) R _ShIRT
(FDP_ACC.1 or FDP_ACC.2/FIREWALL
FDP_IFC.1) and FDP_IFC.1/JCVM
EMT_MSA2/EIREWALL JCVI e\ msa.1) and FMT_MSA.1/JCRE
(FMT_SMR.1) FMT_MSA.1/JCVMEMT_SMR.1
(FMT_MSA.1) and FMT_MSA.1/JCRE
L (FMT_SMR.1) FMT_MSA.1/JCVMEMT_SMR.1
FMT_MSA.3/JCVM E:zm—gﬁgg and FMT_MSA.1/JCVMFMT_SMR.1
\ FMT_SMF.1 H No Dependencies H \
| EMT_SMR.1 | (FIA_uiD.1) | FIA_UID.2/AID |
(FCS_CKM.2 or
FCS_CKM.1 FCS_COP.1) and FCS_COP.1IFCS_CKM.4
(FCS_CKM.4)
(FCS_CKM.1 or
FCS_CKM.4 FDP_ITC.1 or FCS_CKM.1
FDP_ITC.2)
(FCS_CKM.1 or
FDP_ITC.1 or
FCS_COP.1 EBEITE 2} and FCS_CKM.1FCS_CKM.4
(FCS_CKM.4)
FCS_RNG.1 H No Dependencies H

88

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

| EDP_RIP.1/ABORT | No Dependencies | |

| EDP_RIP.1/APDU || No Dependencies I |

‘ FDP_RIP.1/bArray H No Dependencies H ‘

\ FDP_RIP.1/GlobalArray H No Dependencies H \

| EDP_RIP.1/KEYS | No Dependencies I |
FDP_RIP.1J/TRANSIENT No Dependencies

(FDP_ACC.1 or

FDP_ACC.2/FIREWALL

Ll Dol il dbwabl FDP_IFC.1) FDP_IFC.1/JCVM
| FAU_ARP.1 | (FAU_SAA.1) | |
| EDP_SDI.ZDATA | No Dependencies I |
\ FPR_UNO.1 H No Dependencies H \
‘ FPT_FLS.1 H No Dependencies H ‘
‘ FPT_TDC.1 H No Dependencies H ‘
EIA_ATD.1/AID	No Dependencies I	
EIA_UID.2/AID		No Dependencies I
FIA_USB.1/AID	(FIA_ATD.1)	FIA_ATD.1/AID

FMT_MTD.1/JCRE Elim:gmg?) and FMT_SMF.] FMT_SMR.1
| EMT_MTD.3/JCRE | (FMT_MTD.1) | EMT_MTD.1/JCRE |
| EMT_SMR.1/Installer | (FIA_UID.1) I |
\ FPT_FLS.1/Installer H No Dependencies H ‘
| EPT_RCV.3/Installer | (AGD_OPE.1) | AGD_OPE.1 |
| FDP_ACC.2/ADEL | (FDP_ACF.1) | FEDP_ACF.1/ADEL |

e sceups. | CopAcCla | e sccanon
| EDP_RIP.1/ADEL | No Dependencies I |

rusawps | DRFCm | EOEACCHAOE

' (FMT_SMF.1) and EMT SMR'.l/ADELL
(FMT_SMR.1)

EMT_MSAJ/ADEL FMTSMRD) || EMT SMR LADEL
EMT_SMF.1/ADEL	No Dependencies I		
EMT_SMR.1/ADEL	(FIA_uID.1)		
EPT_FLS.1/ADEL	No Dependencies		
EDP_RIP.1/ODEL		No Dependencies	

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

89

FPT_FLS.1/ODEL | No Dependencies I

Table 9 SFRs Dependencies

7.4.3.1.1 RATIONALE FOR THE EXCLUSION O F DEPENDENCIES

The dependency FIA_UID.1 of FMT_SMR.1/Installer is discarded. This PP does not
require the identification of the "installer" since it can be considered as part of the TSF.

The dependency FIA_UID.1 of FMT_SMR.1/ADEL is dis carded. This PP does not require
the identification of the "deletion manager" since it can be considered as part of the TSF.

The dependency FMT_SMF.1 of FMT_MSA.1/JCRE is discarded. The dependency
between FMT_MSA.1/JCRE and FMT_SMF.1 is not satisfied becae no management
functions are required for the Java Card RE.

The dependency FAU_SAA.1 of FAU_ARP.1 is discarded. The dependency of FAU_ARP.1
on FAU_SAA.1 assumes that a "potential security violation" generates an audit event. On the
contrary, the events listed in FAU_ARP.1 are selcontained (arithmetic exception, ill-formed
bytecodes, access failure) and ask for a straightforward reaction of the TSFs on their
occurrence at runtime. The JCVM or other components of the TOE detect these events during
their usual working order. Thus, there is no mandatory audit recording in this PP.

7.4.3.2 SARS DEPENDENCIES

ADV_ARC.1		(ADV_FSP.1) and (ADV_TDS.1)	ADV_FSP.4ADV_TDS.3
ADV_FSP.4		(ADV_TDS.1)	ADV_TDS .3
ADV_IMP.1		(ADV_TDS.3) and (ALC_TAT.1)	ADV_TDS.3 ALC TAT.1
ADV_TDS.3		(ADV_FSP.4)	ADV_FsP.4
AGD_OPE.1		(ADV_FSP.1)	ADV_FSP.4

|

‘ AGD_PRE.1 H No Dependencies H

(ALC_CMS.1) and (ALC_DVS.1) and || ALC_CMS.4ALC_DVS.?
(ALC_LCD.1) ALC_LCD.1

‘ ALC_CMS.4 H No Dependencies H |
‘ ALC_DEL.1 H No Dependencies H |
‘ ALC_DVS.2 H No Dependencies H |

ALC_CMC.4

90 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

| ALC_LCD.1 H No Dependencies “ |

[ALC_TAT1][(ADV_IMP.1) [ADV_IMP.1 |
ASE COL1 | (ASE_ECD.1)and (ASEINT.1)and || ASE_ECD.1ASE INT.1
- (ASE_REQ.1) ASE_REQ.2

| ASE_ECD.1 || No Dependencies |
| ASE_INT.1 H No Dependencies ||

| ASE_OBJ.2 || (ASE_SPD.1) | ASE_SPD.1
| ASE_REQ.2 || (ASE_ECD.1) and (ASE_OBJ.2) | ASE_ECD.1ASE_OBJ.2

‘ ASE_SPD.1 H No Dependencies H
(ADV_FSP.1) and (ASE_INT.1) and ADV_FSP.4ASE_INT.]

ASE ISS.1 || (ASE REQ.1) ASE_REQ.2

| ATE_COV.2 || (ADV_FSP.2) and (ATE_FUN.1) | ADV_FSP4ATE_FUN.1 |
ATE DPT1 || (ADV_ARC.1) and (ADV_TDS.2) and || ADV_ARC.] ADV_TDS.3
A== || (ATE_FUN.1) ATE_FUN.1

| ATE_FUN.1 || (ATE_cOV.1) | ATE_cov.2 |

(ADV_FSP.2) and (AGD_OPE.1)and || ADV_FSP.4AGD_OPE.]
ATE_IND.2 || (AGD_PRE.1) and (ATE_COV.1)and || AGD_PRE.1ATE_COV.2
(ATE_FUN.1) ATE_FUN.1

(ADV_ARC.1) and(ADV_FSP.4) and ADV_ARC.]1 ADV_FSP.4
(ADV_IMP.1) and (ADV_TDS.3) and ADV_IMP.1 ADV_TDS.3
(AGD_OPE.1) and (AGD_PRE.1) and || AGD_OPE.]1AGD_PRE.1
(ATE_DPT.1) ATE_DPT.1

AVA_VAN.5

Table 10 SARs Dependencies

7.4.4 RATIONALE FOR THE SECURITY ASSURANCE REQUIREMENTS

EAL4 is required for this type of TOE and product since it is intended to defend against
sophisticated attacks. This evaluation assurance level allows a developer to gain maximum
assurance from positive security engineering based on good practices. EAL4 represents the
highest practical level of assurance expeded for a commercial grade product. In order to provide
a meaningful level of assurance that the TOE and its embedding product provide an adequate
level of defense against such attacks: the evaluators should have access to the low level design
and source code. The lowest for which such access is required is EALA4.

7.45 ALC _DVS.2 SUFFICIENCY OF SECURI TY MEASURES

Development security is concerned with physical, procedural, personnel and other technical
measures that may be used in the development environment to protect the TOE and the
embedding product. The standard ALC_DVS.1 requirement mandated by EAL4 is not enough.
Due to the nature of the TOE and embedding product, it is necessary to justify the sufficiency

Java Card System i Closed Configuration Protection Profile
91

Version 3.0.5

of these procedures to protect their confidentiality and integrity. ALC_DVS.2 has no
dependencies.

7.4.6 AVA VAN.5 ADVANCED METHODICAL V ULNERABILITY ANALYSI S

The TOE is intended to operate in hostile environments. AVA_VAN.5 "Advanced methodical
vulnerability analysis" is considered as the expected level for Java Cad technology-based
products hosting sensitive applications, in particular in payment and identity areas. AVA_VAN.5
has dependencies on ADV_ARC.1, ADV_FSP.1, ADV_TDS.3, ADV_IMP.1, AGD_PRE.1 and
AGD_OPE.1. All of them are satisfied by EAL4.

92 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

APPENDIX

CLOSED CONFIGURATION

1: JAVA CARD SYSTEM 2.1.1

d

This Appendix provides guidance for editing security targets for products compliant with Java

Card version 2.1.1.

The Java Card System2.1.1 - Closed Configuration corresponds to a platform that implements
all the functionalities described in Java Card specifications, version 2.1.1. This configuration
does not provide functionalities for Logical Channels, RMI, Object deletion, Applet deletion or
the External Memory. Therefore, the groups of security require ments RMIG, ODELGADELGand
EMG that are defined in this PP do not apply to a TOE compliant with Java Card specifications
version 2.1.1. Moreover, the group CoreG_LC must be replaced by the group CoreG introduced

below.

The following table shows the relationship between the security functional requirements groups
for the Closed?2.2.x and 3 Classic Edition Configurationand for the Closed?2.1.1 Configuration.

\ Core (CaeG) H X H \
Core with Logical X
Channels (CoreG_LC)

‘ Installer (/nstG) H X H X ‘

X (if the TOE provides JCRMI

RMI (RMIG) functionality)
Object deletion X

(ODELG)

Applet deletion X

(ADELG)

\ Secure carrier (CarG)

|

External memory
(EMG)

X (Closed2.2.2 optional feature)

Table A1 -1: Closed 2.1.1 vs. Closed 2.2.x and 3 Classic Edition

The group Core (CoreG)focuses on the main security policy of the Java Card System, known as
the firewall. CoreG is the counterpart of CoreG_LC applicable to a Java Card System v2.1.1, that
is, without logical channels. All the requirements from CoreG_LC belong to CoreG without any

modification, except the following ones:

1 FDP_ACF.1/FIREWALL: There is no security attribute « Active Applets » attached to

S.JCVM and the ruleR.JAVA.4 becomes

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

« R.JAVA.4 S.PACKAGHNay perform OP.INVK_INTERFACEipon O.JAVAOBJECT whose
Sharing attribute has the value ASI O0 only |
Shareabk interface. »

1 FDP_ROL.1.2:There is no « uninstall » method in Java Card 2.1.1 plaforms. The
requirement becomes:

« The TSF shall permit operations to be rolled back within the scope of a select(),
deselect(), process() or install() call, notwithstandi ng the restrictions given in [JCRE21],
within the bounds of the Commit Capacity and those described in [JCAPI21]. »

As for the security elements in this PP (threats, objectives and assumptions) that are related to
the SFRs in the groups RMIG, ODELGADELG and EMG two cases arise:

1 they must be removed along with their coverage rationales provided they are not linked
to the SFRs in the remaining groups CoreGor InstG,

1 otherwise they must be kept, but the coverage rationales must be reworked to avoid
referring to logical channels properties.

94 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

APPENDIX 2: JAVA CARD SYSTEM o CLOSED
CONFIGURATION OPTIONAL FEATURES

1. OVERVIEW

This Appendix introduces the security elements specific to the optional features in Java Card
specifications. This concerns the biometric templates management, the JCRMI, the extended
memory, the Sensitive Result and the Sensitive Array features described hereafter:

1. The Biometric templates feature if integrated into the TOE shall be securely managed.
This includes. (1) Atomic update of biometric reference templates and try counter,
(2) No rollback on the biometric-checking function, (3) Keeping the reference template
(once initialized) secret (for instance, no clear-biometric-reading function), (4) Enhanced
protection of bi ometric templ/ at eds secur i
confidentiality and integrity.

2. JCRMIlprovides a mechanism for a client application running on the CAD platform to
invoke a method on a remote object on the card. The CAD issues commands to the card,
which in turn dispatches them to the appro priate object. The applet owner of those
objects controls the access to exported objects and the JCRE ensurescoherence and
synchronization of the remote object with its on -card representative.

3. The Extended Memory feature is an APkbased mechanism to access the external
memory outside the addressable Java Card VM spacelhe Sensitive Result feature isan
APIl-based mechanism which allows to double-check the value returned by sensitive
methods.

4. The SensitiveArrays Classprovides methods for creating and handling integrity -sensitive
array objects.

5. SensitiveResult Class provides methods for asserting resuls of sensitive functions.

What follows are security elements related to these optional fe atures introduced in Java Card
specifications. Therefore, it is the responsibility of the Security Target editor to include the se
security elements if the feature is supported.

Application note:

For instance, the ST writer shall indicate whether JCRMI is implemented in the TOE and whether
it is activated or not. If the TOE provides JCRMI functionality, the full range of SFRs applies.
Otherwise, the ST writer shall ignore JCRMI dedicated threats, objectives and requirements.
This applies to all the other optional features presented above.

Java Card System i Closed Configuration Protection Profile
95

Version 3.0.5

2. BIOMETRIC TEMPLATES

SECURITY PROBLEM DEFINITION & SECURITY OBJECTIVES

There is one additional asset:

D.BIO
Any biometric template.
To be protected from unauthorized disclosure and modification.

Application note:
This asset is similar to D.PIN asset. This means that all the attacks that threaten the PIN code
shall threaten the Biometric template and therefore the same Security Objectives and SFRS

apply.
There is one additional security objective:
0O.BIO -MNGT

The TOE shall provide a means to securely manage biometric templates. This concerns the
optional packages javacardx.biometry or javacardx.biometryltoN of the Java Card platform

These objectives cover the following threats:

| 0.BIO-MNGT | T.CONFIDAPPLIDATA T.INTEGAPPLIDATA |

Table A2 -1: Security Objectives and Threats i Coverage

SECURITY REQUIREMENTS RATIONALE

O.BIO -MNGT This objective is ensured by FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS,
FDP_RIP.1/APDU, FDP_RIP.1/bArray, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS, FPR_UNO.1,
FDP_ROL.1/FIREWALL and FDP_SRIDATA security functional requirements. The applets
that manage biometric templates rely on the security functions that implement these SFRs.

The firewall security functions (FDP_ACC.2/FIREWALL, FDP_ACF.1/FIREWALL) shall protect
the access to private and internal data of the template s. Note that the objective applies only

to configurations including the javacardx.biometry or javacardx.biometryltoN packages
defined in [JCAPI3].

The following table shows the relationship between SFRs and the security objective:

96 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

FDP_RIP.1/ODE| FDP_RIP.1/OBJECTS
FDP_RIP.1/APDUFDP_RIP.1/bArray Appendix 2
O.BIO-MNGT EDP_RIP.1/ABORTEDP_RIP.1/KEYS FPR_UNO.1 _Qp—sectiOHZ
FDP_ROL.1/FIREWALLFDP_SDI.ZDATA, , =

FDP_ACC.2/FIREWALIFDP_ACF.1/FIREWALL

Table A2 -2: Security Objectives and SFRs - Coverage

3. JCRMI

SECURITY PROBLEM DEFINITION & SECURITY OBJECTIVE

The following security threat is introduced:

T.EXE-CODE-REMOTE

The attacker performs an unauthorized remote execution of a method from the CAD. See
#.EXE-APPLICODE for details.

Directly threatened asset(s): D.APP_CODE.
Application Note:

This threat concerns versions 2.2.x and 3 Classic Edition of the Java Card RMI, which allow
external users (that is, other than on -card applets) to trigger the execution of code belonging
to an on-card applet. On the contrary, T.EXE-CODE.1 is restricted to the applets under the
TSF.

This threat applies only if the TOE provides JCRMI functionality.
The following security objective covers the threat above:

O.REMOTE

The TOE shall provide restricted remote access from the CAD to the services implemented
by the applets on the card. This particularly concerns the Java Card RMI services introduced
in version 2.2.x of the Java Card platform and that became optional in version 3 Classic
Edition.

Application Note:
This objective applies only if the TOE provides JCRMI functionality.

Java Card System i Closed Configuration Protection Profile
97

Version 3.0.5

SECURITY OBJECTIVE RATIONALE

T.EXE-CODE-REMOTE If the TOE provides JCRMI functionality, the O.REMOTE security
objective contributes to prevent the invocation of a method that is not supposed to be
accessible from outside the card.

This objective covers the following threat:

| T.EXECODEREMOTE | 0.REMOTE |

Table A2 -3: Security Objectives and Threats i Coverage

SECURITY FUNCTIONAL REQUIREMENTS

This group of SFRs specifiesthe policies that control the access to the remote objects and the
flow of information that takes place when the RMI service is used. The rules relate mainly to
the lifetime of the remote references. Information concerning remote object references can be
sent out of the card only if the corresponding remote object has been designated as exportable.
Array parameters of remote method invocations must be allocated on the card as global arrays.
Therefore, the storage of references to those arrays must be restricted as well. The JCRMI
policy embodies both an access control and an information flow control policy.

Objects (prefixed with an "O") are described in the following table:

‘ O.REMOTE_MTHd‘ A method of a remote interface ‘

A remote object is an instance of a class that implements one (or
O.REMOTE_OBJ || more) remote interfaces. The remote interface can extend, directly
or indirectly, the interface java.rmi.Remote ([JCAPI 3])..

These are instances of the class javacardx.rmi.RMIService. They are

O-RMI_SERVICE the objects that actually process the RMI services.

A remote object reference. It provides information concerning: (i)
the identification of a remote object and (ii) the Implementa tion

SHFCIN class of the object or the interfaces implemented by the class of the
object. This is the object's information to which the CAD can access.
Table A2 -4: Security Functional Requirements - Objects
98 Java Card System i Closed Configuration Protection Profile

Version 3.0.5

Information (prefixed with an "I") is described in the following table:

Remote object reference descriptors which provide information concerning:
(i) the identification of the remote object and (ii) the implementation class
of the object or the interfaces implemented by the class of the object. The
descriptor is the only object's information to which the CAD can access.

[.RORD

Table A2 -5: Security Functional Requirements - Information

Security attributes linked to these subjects, objects and information are described in the
following table with their values:

‘ Class H Identifies the implementation class of the remote object. ‘

The Identifier of a remote object or method is a number that uniquely

Identifier identifies the remote object or method, respectively.

‘ Exportedinfo H Boolean (indicates whether the remote object is exportable or not). ‘

An object is Remote if it is an instance of a class that directly or
Remote indirectly implements the interface java.rmi.Remote. It applies only if
the TOE provides JCRMI functionality.

The set of remote object references that have been sent to the CAD

REfIEe during the applet selection session. This attribute is implementation
References
dependent.
Table A2 -6: Security Functional Requirements - Security attributes

(*) Transient objects of type CLEAR_ON_RESEBehave like persistent objects in that they can be
accessedonly when the Currently Active Context is the object's context.

This operation retrieves the initial remote object
reference of a RMI based applet. This reference
is the seed which the CAD client application
needs to begin remote method invocations.

OP.GET_ROR(O.APPLET,...)

This operation requests a remote method

OP.INVOKE(O.RMI_SERVICE....) invocation on the remote object

Send a remote object reference descriptor to the

OP.RET_RORD(S.JCRE,S.CAD,I.ROR CAD.

Table A2 -7: Security Functional Requirements - Operations

Java Card System i Closed Configuration Protection Profile
99

Version 3.0.5

FDP_ACC.2/JCRMI Complete access control

FDP_ACC.2.1/JJCRMI The TSF shall enforce the JCRMI access control SFP on S.CAD,
S.JCRE, O.APPLET, O.REMOTE_OBJ, O.REMOTE_MTHD, O.ROR, O.RMI_SERVICE
and all operations among subjects and objects covered by the SFP.

Refinement:

The operations involved in this policy are:
0 OP.GET_ROR,
o OP.INVOKE.

FDP_ACC.2.2/JJCRMI The TSF shall ensure that all operations between any subject controlled
by the TSF and any object controlled by the TSF are covered by an access control SFP.

FDP_ACF.1/J CRMI Security attributes based access control

FDP_ACF.1.1/JJCRMI The TSF shall enforce the JCRMI access control SFP to objects
based on the following:

SubjectObject [[Awibues
\ S.JCRE H Selected Applet Context \
‘ O.REMOTE_OBJ H Owner, Class, Identifier, Exportedinfo ‘
| 0O.REMOTE_MTHD | Identifier |
‘ O.RMI_SERVICE H Owner, Returned References ‘

Table A2 -8: FDP_ACF.1/JJCMRI access control SFP

FDP_ACF.1.2/JJCRMI The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed:

0 R.JAVA.18: S.CAD may perform OP.GET_ROR upon O.APPLET only if
O.APPLET is the currently selected applet, and there exists an
O.RMI_SERVICE with a registered initial reference to an
O.REMOTE_OBJ that is owned by O.APPLET.

0 R.JAVA19: S.JCREmay perform OP.INVOKE upon O.RMI_SERVICE,
O.ROR and O.REMOTE_MTHD only if O.ROR is valid (as defined in
[JCRE3], 88.5) and it belongs to the Returned References of
O.RMI_SERVICE, and if the Identifier of O.REMOTE_MTHD matches
one of the remote methods in the Class of the O.REMOTE_OBJ to
which O.ROR makes reference .

100 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

FDP_ACF.1.3/JCRMI The TSF shall explicitly authorise access of subjects to objects based on
the following additional rules: none .

FDP_ACF.1.4/JJCRMI The TSF shall explicitly deny access ofsubjects to objects based on the
following additional rules:

any subject but S.JCREto O.REMOTE_OBJ and O.REMOTE_MTHD for the purpose
of performing a remote method invocation .

Application Note:

FDP_ACF.1.2/JCRMI:

1 The validity of a remote object reference is specified as a lifetime characterization. The
security attributes involved in the rules for determining valid remote object references
are the Returned References of the O.RMI_SERVICE and the Active Applets (see
FMT_REV.1.1/JJCRMI and FMT_REV.1.2/JCRMI). The precise mechanism by which a
remote method is invoked on a remote object is defined in detail in ((JCRE 3], 88.5.2 and
[JCAPR]).

1 Note that the owner of an O.RMI_SERVICE is the applet instance that created the object.
The attribute Returned References lists the remote object references that have been
sent to the S.CAD during the applet selection session. This attribute is implementation
dependent.

FDP_IFC.1/JCRMI Subset information flow control

FDP_IFC.1.1/JCRMI The TSF shall enforce the JCRMI information flow control SFP on
S.JCRE, S.CAD, I.RORD and OP.RET_RORD(S.JCRE,S.CAD,I.RORD) .

Application Note:

FDP_IFC.1.1/JCRMI:

1 Array parameters of remote method invocations must be allocated on the card as global
arrays objects. References to global arrays cannot be stored in class variables, instance
variables or array components. The control of the flow of that kind of information has
already been specified in FDP_IFC.1.1/JCVM.

1 Aremote object reference descriptor is sent from the card to the CAD either as the result
of a successful applet selection command ([JCRE], §8.4.1), and in this case it describes,
if any, the initial remote object reference of the selected applet; or as the result of a
remote method invocation ([JCRE3],88.3.5.1).

Java Card System i Closed Configuration Protection Profile
101
Version 3.0.5

FDP_IFF.1/JCRMI Simple security attributes

FDP_IFF.1.1/JCRMI The TSF shall enforce the JCRMI information flow control SFP
based on the following types of subject and information securit y attributes:

‘ I.RORD H Exportedinfo ‘

Table A2 -9: FDP_ IFF.1.1 / JCRMI information flow control SFP

FDP_IFF.1.2/JCRMI The TSF shall permit an information flow between a controlled subject
and controlled information via a controlled operation if the following rules hold:

OP.RET_RORD(S.JCRE, S.CAD, I.LRORD) is permitted only if the attribute
Exportedinfo of LRORD has the value "true" ([JCRE 3], 88.5) .

FDP_IFF.1.3/JCRMI The TSF shall enforce the [assignment: additional information
flow control SFPrules] .

FDP_IFF.1.4/JCRMI The TSF shall explicitly authorise an information flow based on the
following rules: [assignment: rules, based on security attributes, that explicitly
authorise information flows] .

FDP_IFF.1.5/JCRMI The TSF shall explicitly deny an information flow based on the following
rules: [assignment: rules, based on security attributes, that explicity deny
information flows] .

Application Note:
The Exportedinfo attribute of I.RORD indicates whether the O.REMOTE_OBJ which [.RORD

identifies is exported or not (as indicated by the security attribute Exportedinfo of the
O.REMOTE_OBJ).

FMT_MSA.1/EXPORT Management of security attributes

FMT_MSA.1.1/EXPORT The TSF shall enforce the JCRMI access control SFP to restrict
the ability to modify the security attributes: Exportedinfo of O.REMOTE_OBJ to its
owner applet .

Application Note:
The Exported status of a remote object can be modified by invoking its methods export() and

unexport(), and only the owner of the object may perform the invocation without raising a
SecurityException (javacard.framework.service.CardRemoteObject). However, even if the

102 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

owner of the object may provoke the change of the security attribute value, the modification
itself can be performed by the Java Card RE.

FMT_MSA.1/REM_REFS Management of security attributes

FMT_MSA.1.1/REM_REFS The TSF shall enforce the JCRMI access control SFP to restrict
the ability to modify the security attributes Returned References of O.RMI_SERVICE
to its owner applet .

FMT_MSA.3/JCRMI Static attribute initialisation

FMT_MSA.3.1/JCRMI The TSF shall enforce the JCRMI access control SFP and the
JCRMI information flow control SFP to provide restrictive default values for security
attributes that are used to enforce the SFP.

FMT_MSA.3.2/JCRMI The TSF shall allow the following role(s): none, to specify
alternative initial values to override the default values when an object or information is
created.

Application Note:
FMT_MSA.3.1/JCRMI:

1 Remote objects' security attributes are created and initialized at the creation of the
object, and except for the Exportedinfo attribute, the values of the attributes are not
longer modifiable. The default value of the Exported attribute is true. There is one
default value for the Selected Applet Context that is the default applet identifier's
context, and one default value for the active context, that is "Java Card RE".

FMT_MSA.3.2/JCRMI:
1 The intent is to have none of the identified roles to have privileges with regards to the

default values of the security attributes. It should be noticed that creation of obje cts is
an operation controlled by the FIREWALL access control SFP.

Java Card System i Closed Configuration Protection Profile
103

Version 3.0.5

FMT_REV.1/JCRMI Revocation

FMT_REV.1.1/JJCRMI The TSF shall restrict the ability to revoke the Returned References
associated with the object O.RMI_SERVICE under the control of the TSF to the the Java
Card RE.

FMT_REV.1.2/JJCRMI The TSF shall enforce the rules that determine the lifetime of
remote object references .

Application Note.

The rules are described in [JCRE], 88.5

FMT_SMF.1/JCRMI Specification of Management Functions

FMT_SMF.1.1/JCRMI The TSF shall be capable of performing the following management
functions:
o modify the security attribute Exportedinfo of O.REMOTE_OBJ,

o modify the security attribute Returned References of
O.RMI_SERVIC E.

FMT_SMR.1/JCRMI Security roles

FMT_SMR.1.1/JCRMI The TSF shall maintain the roles applet .
FMT_SMR.1.2/JCRMI The TSF shall be able to associate users with roles.
Application Note:

Applets own remote interface objects and may choose to allow or forbid their exportation, which
is managed through a security attribute.

SECURITY REQUIREMENTS RATIONALE

In addition to the SFRs covering already the security objectives listed below, if the TOE supports
the JCRMI functionality, the additional SFRscontributes in covering these security objectives as
follows:

O.SID This objective is also met by the following SFRs: AMT_MSA.3/JCRMI, FMT_SMF.1/JCRMI
Lastly, installation procedures ensure protection against forgery (the AID of an applet is under
the control of the TSFs) or re-use of identities (FIA_UID.2/AID, FIA_USB.1/AID).

104 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

O.FIREWALL This objective is also met by the following by the JCRMI access control policy
(FDP_ACC.2/JCRMI, FDP_ACF.1/JJCRMI). The functional requirements of the clasFMT
(FMT_SMR.1/JJCRMI, FMT_MSA.1/EXPORT, FMT_MSA.1/REM_REFS, FMT_SMF.1/JCRMI,
FMT_MSA.3/JCRMI, FMT_REV.1/JCRMI) also indirectly contribute to meet this objective.

O.GLOBAL_ARRAYS_CONFID This objective is also met by the following SFRs: protection of
the array parameters of remotely invoked methods, which are global as well, is covered by the
general initialization of method parameters (FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS,
FDP_RIP.1/ABORT, FDP_RIP.1/KEY&hd FDP_RIP.1/TRANSIENT).

O.RESOURCES Memory management is controlled by the TSF (FMT_SMR.1/JCRMI, and
FMT_SMF.1/JCRNI

O.REMOTE The access to the TOE's internal data and the flow of information from the card to
the CAD required by the JCRMI service is under control of the JCRMI access control policy
(FDP_A.2/JCRMI, FDP_ACF.1/JCRMI) and the JCRMI information flow control policy
(FDP_IFC.1/JCRMI, FDP_IFF.1/JCRMI). The security functional requirements of the class FMT
(FMT_MSA.1/EXPORT, FMT_MSA.1/REM_REFS, FMT_MSA.3/JCRMI, FMT_REV.1/JCRMI and
FMT_SMR.1/JCRMIljncluded in the group RMIG also contribute to meet this objective.

RATIONALE TABLES OF SECURITY OBJECTIVES AND SFRS

FIA_ATD.1/AID, FIA_UID.2/AID, FMT_MSA.1/JCRE
FMT_MSA.3/JCRMIEMT_MSA.1/REM_REES
FMT_MSA.1/EXPORTEMT MSA.1/ADEL Aoendix 2
0.SID FMT_MSA.3/ADEL FMT MSA .3/FIREWALL Appendix 2
FMT_SMF.1/ADELFMT_SMF.1/JCRM| sl
FMT_MTD.1/JCREFMT MTD.3/JCREFIA_USB.1/AID
FMT_MSA.1/JJCVMFMT_MSA.3/JCVM

FDP_IFC.1/JCVMEDP_IFF.1/JCVM
EMT_MSA.3/FIREWALLFMT_SMR.1 EMT_MSA.1/ADE|
FMT_MSA.3/ADE| EMT_SMR.1/ADE]
FMT_MSA.1/EXPORTEMT_MSA.1/REM_REES
EMT_MSA.3/JCRMIEMT_REV.1/JCRMI Aopendix 2
O.FIREWALL FMT_SMR.1/JCRMIEMT_MSA.1/JCRE _Qp—sectionB
FDP_ACC.2/JCRMIFDP_ACEF.1/JCRMI =
FDP_ACC.2/FIREWALIFDP_ACF.1/FIREWALL
FMT_SMF.1/ADE] EMT_SMF.1/JJ&MI, EMT_SMF.1
FMT_MSA.2/FIREWALL_JCVNEMT_MTD.1/JCRE
FMT_MTD.3/JCREFMT_MSA.1/JJCVMEMT_MSA.3/CVM

FAU_ARP.1FDP_ROL.1/FIREWALL Appendix 2
FMT_SMR.1/Installeyf EMT_SMR.1 FMT_SMR.1/ADEL section 3

O.RESOURCES

Java Card System i Closed Configuration Protection Profile
105

Version 3.0.5

EMT_SMR.1/JCRMIEPT_FLS.1/Installey

FPT_FLS.1/ODE! FPT_FLS.1FPT_FLS.1/ADEL

FPT_RCV.3/Installer EMT_SMF.1/ADE|

EMT_SMFE.1/JCRMIEMT_SME.1 EMT_MTD.1/JCRE

EMT_MTD.3/JCRE

O.REMOTE

FDP_ACC.2/JCRMIFDP_ACE.1/JCRMIEDP_IFC.1/JCRMI

FDP_IFF.1/JCRMIEMT_MSA.1/EXPORT Appendix 2
FMT_MSA.1/REM_REE$FMT_MSA.3/JCRMI sedion 3

FMT_REV.1/JCRMIEMT_SMR.1/JCRMI

Table A2 -10: Security Objectives and SFRs - Coverage

FDP_ACC.2/JCRMI	O.FIREWALL O.REMOTE	
FDP_ACF.1/JCRMI	O.FIREWAL	O.REMOTE
FDP_IFC.1/JCRMI	O.REMOTE	
EDP_IFF.1/JCRMI	0.REMOTE	
EMT_MSA.1/EXPORT	0.SID, O.FIREWAL	O.REMOTE
EMT_MSA.1/REM_REFS	0.SID, O.FIREWALL O.REMOTE	
EMT_MSA.3/JCRMI	0.SID, O.FIREWALL O.REMOTE	
EMT_REV.1/JCRMI	O.FIREWALL O.REMOTE	
EMT_SMF.1/JCRMI	0.SID, O.FIREWALL O.RESOURCES	
FMT_SMR.1/JCRMI 8:;'552’)\’%‘*0'%5%%55

Table A2 -11: SFRs and Security Objectives

| EDP_ACC.2/JCRMI || (FDP_ACF.1) | EDP_ACF.1/JCRMI |
(FDP_ACC.1) and FDP_ACC.2/JCRMI

e e (FMT_MSA.3) FMT_MSA.3/JCRMI

| EDP_IFC.1/JCRMI || (FDP_IFF.1) | EDP_IFF.1/JCRMI |
(FDP_IFC.1) and FDP_IFC.1/JCRM|

Lob TTLACRE (FMT_MSA.3) FMT_MSA.3/JCRMI
(FDP_ACC.1 or FDP_IFC.1), | FDP_ACC.2/JCRMI

FMT_MSA.1/EXPORT || (FMT_SMF.1) and FMT_SMF.1/JCRMI
(FMT_SMR.1) FMT_SMR.1/JCRMI

106

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

(FDP_ACC.1 or FDP_IFC.1) || EDP_ACC.2/JCRMI

FMT_MSA.1/REM_REF{| and (FMT_SMF.1) and FMT_SMF.1/JCRMI
(FMT_SMR.1) FMT_SMR.1/JCRMI
s | QTUSAOST B ue e s
EMT_REV.1JJCRMI		(FMT_SMR.1)	EMT_SMR.1/JCRMI
EMT_SMF.1/JCRMI		No dependencies I	
FMT_SMR.1JJCRMI		(FIA_UID.1)	

Table A2 -12: SFRs dependencies

RATIONALE FOR THE EXC LUSION OF DEPENDENCIES

The dependency FIA_UID.1 of FMT_SMR.1/JJCRMI is discarded. This PP does not
require the identification of the "applet” since it can be considered as part of the TSF.

4. EXTENDED MEMORY

SECURITY OBJECTIVE
One new security objective is introduced:

O.EXT-MEM

The TOE shall provide controlled access means to the external memory and ensure that the
external memory does not address Java Card System memory (containing User Data and TSF
Data).

This objective covers the following threats:

T.CONFIDJCSCODE T.CONFIBAPPLIDATA
O.EXTFMEM T.CONFIDJCSDATA T.INTEGAPPLICODE T.INTEG
JCSCODE T.INTEGJCSDATA

Table A2 -13: Security Objectives and Threats i Coverage

Java Card System i Closed Configuration Protection Profile
107

Version 3.0.5

file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok43
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok18
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok19
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok20
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok22
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok23
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok23
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok25

SECURITY FUNCTIONAL REQUIREMENTS

Thi group of SFRscontains the following security requirements for the management of the
external memory, introduced in the version 2.2.2 of the Java Card System (cf. [JCAPI3], optional
package javacardx.external).

The External Memory access policy relies on the following additional objects, operations and
security attributes.

Any External Memory Instance

created from the MemoryAccess
OEAT_MEMIINSTANCE Interface of the Java Card API
[JCAPIS.
OP.CREATE_EXT MEM_INSTANCE Creation of an instance of the

MemaoryAccessinterface.

OP.READ_EXT_MEM(O.EXT_MEM_INSTANCE, .
Reading the external memory.

address)
OP.WRITE_EXT_MEM(O.EXT_MEM_INSTANCE, ”
Writing the external memory.
address)
‘ Address space H Accessiblememory portion.

Table A2 -14: External Memory access policy Object/Operation/Attribute

FDP_ACC.1/EXT_MEM Subset access control

FDP_ACC.1.1/EXT_MEM The TSF shall enforce theEXTERNAL MEMORY access control
SFP on subject S.APPLET, object O.EXT_MEM_INSTANCE, and operations
OP.CREATE_EXT_MEM_INSTANCE, OP.READ_EXT_MEM and
OP.WRITE_EXT_MEM.

FDP_ACF.1/EXT_MEM Security attribute based access control

FDP_ACF.1.1/EXT_MEM The TSF shall enforce the EXTERNAL MEMORY access control
SFP to objects based on the following:

| 0.EXT_MEM_INSTANCE | Address space. |

Table A2 -15: FDP_ACF.1.1/EXT_MEM EXTERNAL MEMORY access control SFP

108 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

FDP_ACF.1.2/EXT_MEM The TSF shall enforce the following rules to determine if an
operation among controlled subjects and controlled objects is allowed:

1 R.JAVA.20: Any subject S.APPLET that performs OP.CREATE_EXT_MEM_INSTANCE
obtains an object O.EXT_MEM_INSTANCE that addregs a memory space different from
that of the Java Card System.

T R.JAVA.21: Any subject S.APPLET may perform OP.READ _EXT _MEM
(O.EXT_MEM_INSTANCE, address) provided the address belongs to the space of the
O.EXT_MEM_INSTANCE.

1 R.JAVA.22: Any subject S.APPLET ma perform OP.WRITE_EXT _MEM
(O.EXT_MEM_INSTANCE, address) provided the address belongs to the space of the
O.EXT_MEM_INSTANCE.

FDP_ACF.1.3/EXT_MEM The TSF shall explicitly authorise access of subjects to objects based
on the following additional rules: [assignment: rules, based on security attributes, that
explicitly authorise access of subjects to objects] .

FDP_ACF.1.4/EXT_MEM The TSF shall explicitly deny access of subjects to objects based on
the following additional rules: [assignment: rules, based on security attributes, that
explicity deny access of subjects to objects] .

Application note:
The actual mechanism for creating an instance of external memory is implementation-
dependent. This rule only states that the accessible address space must not interfere with that

of the Java Card System.

The creation and the access to an external memory instance fall in the scope of the Firewall
rules.

FMT_MSA.1/EXT_MEM Management of security attributes

FMT_MSA.1.1/EXT_MEM The TSF shall enforce theEXTERNAL MEMORY access control
SFP to restrict the ability to set up the security attributes address space to the Java Card
RE.

Java Card System i Closed Configuration Protection Profile
109

Version 3.0.5

FMT_MSA.3/EXT_MEM Static attribute initialisation

FMT_MSA.3.1/EXT_MEM The TSF shall enforce the EXTERNAL MEMORY access control
SFP to provide no default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/EXT_MEM The TSF shall allow the Java Card RE to specify alternative initial
values to override the default values when an object or information is created.

Application note:

Upon creation of an external memory instance, the Java Card RE gets the address space value
for the newly created object. This is implementation-dependent.

FMT_SMF.1/EXT _MEM Specification of Management Functions

FMT_SMF.1.1/EXT_MEM The TSF shall be capable of performing the following management
functions: set up the address space security attribute

FMT_SMR.1/ EXT_MEM Security roles

FMT_SMR.1.1/EXT_MEM The TSF shall maintain the roles Java Card RE .

FMT_SMR.1.2/EXT_MEM The TSF shall be able to associate users with roles.

SECURITY REQUIREMENTS RATIONALE

O.SID Subjects' identity is AID-based (applets, packages), and is met by the following SFRs:
FIA_ATD.1/AID, FMT_MSA.1/JCRE, FMT_MSA.1/JCVM, FMT_MSA.1/REM_REFS,
FMT_MSA.1/EXPORT, FMT_MSA.1/ADEL, FMT_MSA.3/ADEL, FMT_MSA.3/FIREWALL,
FMT_MSA.3/JCVM, FMT_MTD.1/JCRE, FMT_MTD.3/JCRE, FMT_SMF.1/EXT_MEM,
FMT_MSAL/EXT_MEM and FMT_MSA.3/EXT_MEM.

Lastly, installation procedures ensure protection against forgery (the AID of an applet is
under the control of the TSFs) or re-use of identities (FIA_UID.2/AID, FIA_USB.1/AID).

O.RESOURCES The TSFs detects stack/memory owerflows during execution of applications
(FAU_ARP.1,FPT_FLS.1/ADEL,FPT_FLS.1, FPT_FLS.1/ODEIFPT_FLS.1/Installe). Failed
installations are not to create memory leaks (FDP_ROL.1/FIREWALLFPT_RCV.3/Installe)
as well. Memory management is controlled by the TSF (FMT_MTD.1/JCRE,
FMT_MTD.3/JCRE, FMT_SMR.1/Installer, FMT_SMR.1, FMT_SMF,1 FMT_SMR.1/ADEL,
FMT_SMF.1/ADELFMT_SMF.1/EXT_MEMnd FMT_SMR.1/EXT_MEM

O.FIREWALL This objective is met by the FIREWALL acess control policy
FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL, the JCVM information flow control policy

110 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

(FDP_IFF.1/3CVM, FDP_IFC.1/JCVM). The functional requirements of the class FMT
(FMT_MTD.1/JJCRE, FMT_MTD.3/JJCRE, FMT_SMR.1, FMT_SMF.EMT_SMR.1/ADEL,
FMT_SMF.1/ADEL, FMT_SMF.1/EXT_MEM, FMT_MSA.1/EXT_MEM, FMT_MSA.3/EXT_MEM,
FMT_SMR.1/EXT_MEM, FMT_MSA.2/FIREWALL_JCVM, FMT_MSA.3/FIREWALL,
FMT_MSA.3/JCVM, FMT_MSA.1/ADEL, FMT_MSA.3/ADEL, FMT_MSA.1/JCRE,
FMT_MSA.1/JCVM) also indirectly contribute to meet this obective.

O.EXT-MEM The Java Card System memory is protected against applet's attempts of
unauthorized access through the external memory facilities by the EXTERNAL MEMORY
access control policy (FDP_ACC.1/EXT_MEM, FDP_ACF.1/EXT_MEM), which first controlg th
accessible address space, then controls the effective read and write operations. External
memory management is controlled by the TSF (FMT_SMF.1L/EXT_MEM).

The following tables show the relationship between SFRs and objectives and the SFR
dependencies.

0.5 EMT SME.L/EXT MEMEMT MSA.I/EXT MEM Appendix 2
221U EMT MSA.3/EXT MEM section 4
O.RESOURCES || EMT SMF.1/EXT MEMEMT SMR.1/EXT MEM, %
O FIREWALL EMT SME.L/EXT MEMEMT MSA.I/EXT MEM Appendix 2
L-HIREWAL EMT MSA.3/EXT MEMEMT SMR.I/EXT MEM, section 4
0 EXEMEM FDP_ACC.1/EXT_MEMEDP_ACF.1/EXT_MEM Appendix 2
2.EALMEN EMT SME.1J/EXT MEM section 4

Table A2-15: Security Objectives and SFRs - Coverage

Security Functional Requirements	Security Objectives	
FDP_ACC.1/EXT_MEM	O.EXEMEM	
FDP_ACF.1/EXT_MEM	O.EXEMEM	
EMT_MSA.1/EXT_MEM	0.SID, O.FIREWALL	
EMT_MSA.3/EXT_MEM	0.SID, O.FIREWALL	
EMT_SMF.1/EXT_MEM	0.SID, 0.RESOURCESD.FIREWAL	O.EXEMEM
EMT_SMR.1/EXT_MEM,	0.RESOURCESO.FIREWALL	

Table A2-16: SFRs and Security Objectives

Java Card System i Closed Configuration Protection Profile
111

Version 3.0.5

file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok38
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok72
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok70
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok71
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok40
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok72
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok41
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok72
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok70
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok71
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok43
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok68
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok69
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok72
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok68
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok43
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok69
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok43
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok70
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok38
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok41
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok71
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok38
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok41
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok72
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok38
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok40
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok41
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok43
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok40
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok41

| FDP_ACC.1/EXT_MEM || (FDP_ACF.1) | FEDP_ACF.1/EXT_MEM |

(FDP_ACC.1) and FDP_ACC.1/EXT_MEM
(FMT_MSA.3) FMT_MSA.3/EXT_MEM

(FDP_ACC.1 or FDP_IFC.1)
FMT_MSA.L/EXT_MEM|| and (FMT_SMF.1) and

FDP_ACE.1/EXT_MEM

FDP_ACC.1/EXT_MEM
EMT_SME.1/EXT_MEM

(FMT_SMR.1)
(FMT_MSA.1) and FMT_MSA.L/EXT_MEM
FMT_MSA/EXT_MEM|| e\t~ sMR 1) FMT_SMR.1/EXT_MEM,

| EMT_SMF.1/EXT_MEM|| No dependencies | |
| EMT_SMR.I/EXT_MEM)|| (FIA_UID.1) | |

Table A2-17. SFRs dependencies

RATIONALE FOR THE EXCLUSION OF DEPENDENCIES

The dependency FIA_UID.1 of FMT_SMR.1/EXT_MEM is discarded. This PP does not
require the identification of the "Java Card RE" since it can be considered as part of the TSF.

5. SENSITIVE ARRAY

#INTEG-APPLIDATAPHYS Integrity -sensitive application data must be protected against
unauthorized modification by physical attacks.

T.PHYSICAL

The attacker discloses or modifies the design of the TOE, its sensitive data or application
code by physical (opposed to logical) tampering means. This threat includes IC failure
analysis, electrical probing, unexpected tearing, and DPA. That also includes the modification
of the runtime execution of Java Card System or SCP software through alteration of the
intended execution order of (set of) instructions through physical tampering techniques.

This threatens all the identified assets.

This threat refers to the point (7) of the security aspect #.SCP, and all aspects related to
confidentiality and integrity of code and data.

Application note:

If sensitive array is supported by the TOE, this threat covers the following sub -threat exploiting
specifically the listed assets below:

1 The attacker performs a physical manipulation to alter (part of) an application's
integrity -sensitive data. See #.INTEG APPLIDATAPHYS for details.

Directly threatened asset(s): D.APP_I_DATA, D.PIN, and D.APP_KEYs.

112 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok68
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok69
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok69
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok68
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok71
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok70
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok68
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok72
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok71
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok70
file:///C:/Documents%20and%20Settings/External_Memory_Package/finalDoc.doc%23tok72

SECURITY OBJECTIVE

O.SENSITIVE_ARRAYS_|I NTEG

The TOE shall ensure that only the currently selected applications may have a write access
to the integrity -sensitive array object (javacard.framework.SensitiveArray9 created by that
application. Any unauthorized modification through physical attacks to that integrity -sensitive
array must be detected by the TOE and notified to the application.

These objectives cover the following threats:

O.SENSITIVE_ARRAYSNITEG T.PHYSICAL

Table A2-18: Security Objectives and Threats i Coverage

SECURITY OBJECTIVE RATIONALE

T.PHYSICAL If the sensitive array is supported by the TOE, this threat is partially covered by
the security objective O.SENSITIVE_ARRAYS_INTEG which requires the TOE to detect and
notify the application if any unauthorized modification of the integrity -sensitive array object
through physical attacks occurred.

SECURITY FUNCTIONAL REQUIREMENTS

FDP_SDI.2 /ARRAY | ntegrity Sensitive_Array

FDP_SDI.2.1 /ARRAY The TSF shall monitor user data stored in containers controlled by the
TSF forintegrity errors on all objects, based on the following attributes: user data stored
in arrays created by the makelntegritySensitiveAr ray() method of the
javacard.framework.SensitiveArrays class

FDP_SDI.2.2 /ARRAY Upon detection of a data integrity error, the TSF shall throw an
exception .

Application Note:

This requirement applies in particular to the arrays created by the makelntegritySensitiveArray()
method of the javacard.framework.SensitiveArrays class (if supported).

Java Card System i Closed Configuration Protection Profile
113

Version 3.0.5

These objectives are covered by the following SFRs:

O_SENSITIVE_ARRAYS_INTEG FDP_SDI2/ARRAY

Table A2-19: Security Objectives and SFRs 7 Coverage

SECURITY REQUIREMENTS RATIONALE

O.SENSITIVE_ARRAYS INTEG This security objective is covered directly by the SFR
FDP_SDI.ZARRAYwhich ensures that integrity errors related to the user data stored in sensitive
arrays are detected by the TOE.

| EDP_SDI2/ARRAY || No dependencies | |

Table A2-20: SFRs dependencies

6. SENSITIVE RESULT

SECURITY PROBLEM DEFINITION

#INTEG-APPLIDATAPHYS Integrity -sensitive application data must be protected against
unauthorized modification by physical attacks.

T.PHYSICAL

The attacker discloses or modifies the design of the TOE, its sensitive data or application
code by physical (opposed to logical) tampering means. This threat includes IC failure
analysis, electrical probing, unexpected tearing, and DPA. That also includes the modification
of the runtime execution of Java Card System or SCP software through alteration of the
intended execution order of (set of) instructions through physical tampering techniques.

This threatens all the identified assets.

This threat refers to the point (7) of the sec urity aspect #.SCP, and all aspects related to
confidentiality and integrity of code and data.

Application note:

If sensitive result is supported by the TOE, this threat covers the following sub -threat exploiting
specifically the listed assets below:

1 The attacker performs a physical manipulation to alter (part of) an application's
integrity -sensitive data. See #.INTEG-APPLIDATAPHYS for detalils.

Directly threatened asset(s): D.APP_I_DATA, D.PIN, and D.APP_KEYSs.

114 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

SECURITY OBJECTIVE

O.SENSITIVE_RESULTS_ INTEG

The TOE shall ensure that the sensitive results (javacardx.security.SensitiveResult of
sensitive operations executed by applications through the Java Card API are protected in
integrity specifically against physical attacks.

These objectives coverthe following threats:

O.SENSITIVE_RESULTENTEG T.PHYSICAL

Table A2-21: Security Objectives and Threats i Coverage

SECURITY OBJECTIVE RATIONALE

T.PHYSICAL If the sensitive result is supported by the TOE, this threat is partially covered by
the security objective O.SENSITIVE_RESULTS_INTEG whicgmnsures that sensitive results are
protected against unauthorized modification by physical attacks.

SECURITY FUNCTIONAL REQUIREMENTS

FDP_SDI.2/ RESULT Integrity_Sensitive_Result

FDP_SDI.2.1 /RESULT The TSF shall monitor user data stored in containers controlled by the
TSF for integrity errors on all objects, based on the following attributes sensitive API
result st ored in the javacardx.security.SensitiveResult class

FDP_SDI.2.2 /RESULT Upon detection of a data integrity error, the TSF shall throw an
exception .

Application Note:

This requirement applies in particular to the results stored by the
javacardx.security.SensitiveResult class (if supported).

These objectives are covered by the following SFRs:

O.SENSITIVE_RESULTESNTEG FDP_SDI.2/RESULT

Table A2-22: Security Objectives and SFRs i Coverage

Java Card System i Closed Configuration Protection Profile
115

Version 3.0.5

SECURITY REQUIREMENTS RATIONALE

O.SENSITIVE_ RESULTS_INTEG This security objective is covered directly by the SFR
FDP_SDI.2 Integrity_Senstive_Result which ensures that integrity errors related to the senstive
API result are detected by the TOE.

| EDP_SDI2/RESULT || No dependencies | |

Table A2-23: SFRs dependencies

116 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

APPENDIX 3: A UNIFIED VIEW OF
CONFIGURATIONS

This section provides an alkembracing presentation of the security environment, security
objectives and functional requirements of the JCSconfigurations. The tables below do not only
make explicit the contents proper to each configuration but also reflect the differences between
the configurations.

Assets are common to all configurations. Those corresponding to User dataare: D.APP_CODE,
D.APP_C _DATA, D.APP_I|_DATA, D.PIN and D.APP_KEYs. D.BIO is also user data in
version 2.2.2 and version 3 Classic Edition of the Java Card platform. Those corresponding to
TSF dataare: D.JCS_CODE, D.JCS_DATA, D.SEC_DATA, D.API_DATA, and D.CRYPTO.

The conf i gsumptiand accmispiayedis Table A3-1.

_-__
| ANO-LOAD | x| |
| ANODELETION || X | || |
| AAPPLET I I X I X |
| A.DELETION I | I X |
| AVERIFICATION || X | X I X |

Table A3-1: Assumptions by configuration

Java Card System i Closed Configuration Protection Profile
117

Version 3.0.5

file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok51%23tok51
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok50%23tok50
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok54%23tok54

The threats to the assets against which specific protection is required within the configurations
or their environments are displayed in Table A3-2. The post-issuance installation of applets
introduces one threat (T.INSTALL), and two more (T.INTEG-APPLICODE.LOAD T.INTE&APPL}
DATA.LOAD)since bytecode verification is performed off -card.

| T.PHYSICAL X X X |
T.CONFIBJCSCODE		X X X				
T.CONFIDAPPLIDATA		X		X		X
T.CONFIBJCSDATA I x	X	X				
T.INTEGAPPLICODE I x	X	X				
T.INTEGJCSCODE I x	X I X					
TINTEGAPPLIDATA	x	X I X				
T.INTEGJCSDATA I x	X I X					
T.SID.1 I x	X	X				
T.SID.2 I x	X I X					
T EXECODE.1 I x	X I X					
T.EXECODE.2 I x	X I X					
T.NATIVE	x	X I X				
T.RESOURCES I x	X I X					

T.INTEGAPPL} X X

CODE.LOAD

T.INTEGAPPL} X X

DATA.LOAD
| T.INSTALL I x| X | X |

T.EXECODEREMOTE X (Ope”fjéfjec;p“o”a'
| T.DELETION I I I X |
| T.OBIDELETION | x| X I X |

Table A3-2: Threats by ¢ onfiguration

118 Java Card System i Closed Configuration Protection Profile
Version 3.0.5

file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok45%23tok45
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok26%23tok26
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok27%23tok27
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok28%23tok28
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok30%23tok30
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok31%23tok31
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok32%23tok32
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok33%23tok33
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok35%23tok35
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok36%23tok36
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok38%23tok38
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok39%23tok39
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok40%23tok40
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok42%23tok42

Table A3-3 lists the security objectives addressed by each of these TOEs.

| 0.SID I X | x| X |
[0.OPERATE | X L x X |
| O.RESOURCES I X | x| X |
| O.FIREWALL I X I x| X |
[O.NATIVE | X o x X |
O.REALLOCATION I X L x	X			
O.GLOBAL_ARRAYS_CONFID		X I x	X	
O.GLOBAL_ARRAYS_INTEG		X	x	X
O.ALARM I X I x	X			
O.TRANSACTION I X	x	X		
0.CIPHER I X	x	X		
L O.RNG I X L x	X			
[O.PINMNGT I X [x X				
[O.KE¥YMNGT	X x	X		
O.INSTALL I X	x	X		
[0.LOAD I L x	X			
O.DELETION I X I I X				
0.OBIDELETION I X I I X				

O REMOTE X _(Closed 2.2.2 X_ (Open 2.2.2

optional feature) optional feature)

O BIO-MNGT X _(Closed 222 X_ (Open 2.2.2

optional feature) optional feature)

O EXEMEM X (Closed 222 X_ (Open 2.2.2

optional feature) optional feature)

0.SENSITIVE_ARRAYS_INTEG || X (Closed 3.0.5 A (Opena.05

optional feature) optional feature)

O.SENSITIVE_RESULTSNTEG || X (Closed 3.05 X (Open 3.0.5

optional feature) optional feature)

Table A3-3: TOE Security objectives by ¢

onfiguration

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

119

file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok58%23tok58
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok60%23tok60
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok61%23tok61
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok62%23tok62
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok63%23tok63
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok64%23tok64
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok65%23tok65
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok66%23tok66
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok68%23tok68
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok69%23tok69
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok70%23tok70
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok71%23tok71
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok72%23tok72

Table A3-4 displays the security objectives to be achieved by the environment associated to
each TOE configuration.

OE.SCP.RECOVERY	x	X X	
OE.SCP.SUPPORT I x	X I X		
OE.SCP.IC I x	X	X	
OE.NGDELETION	x		
OENO-LOAD	x		
OE.VERIFICATION I x	X I X		
OE.CODEEVIDENCE	x	X I X	
OE.APPLET		X	X
OE.CARDMANAGEMENT I x	X I X		

Table A3-4: Security o bjectives for the environment by ¢ onfiguration

Table A3-5 states the relationship between the SFRs,the groups of to which they belong, and
the JCSconfigurations defined in this document. Optional features are shown in brackets.

FAU_ARP.1	coreG Ld	X		coreG]	X X		
FCS_CKM.1	coreG Ld	X		coreG]	X X		
FCS _CKM.4	coreG Ld] X		coreG		X		X
FCS_COP.1	coreG Ld	X		coreG]		X I X	
FDP_ACC.2/FIREWALL	coreG Ld	x		coreG]	X I X		
FDP_ACF.1/FIREWALL	coreG Ld	X		coreG]	X I X		
FDP_IFC.1/JCVM		coreG Ld	X		coreG]	X I X	
FDP_IFF.1/JCVM	coreG Ldl X	coreG	x	X			
FDP_RIP.1/ABORT	coreG Ld	X		coreG		X I X	
FDP_RIP.1/APDU	coreG td] x	coreG] x	X				
FDP_RIP.1/bArray	coreG Ld	X		coreG		X I X	
FDP_RIP.1/KEYS	coreG Ld	X		coreG]	X I X		
FDP_RIP.1/TRANSIENT	coreG Ld	X		coreG]	X I X		
FDP_RIP.1/OBJECTS	coreG Ld	X		coreG]	X I X		

120 Java Card System i Closed Configuration Protection Profile

Version 3.0.5

file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok75%23tok75
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok76%23tok76
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok77%23tok77
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok80%23tok80
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok81%23tok81
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok79%23tok79
file:///C:/Closed%20Config%20-NEW-/Final%20Document/finalDoc.doc%23tok78%23tok78
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok171%23tok171
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok160%23tok160
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok163%23tok163
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok164%23tok164
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok149%23tok149
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok150%23tok150
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok151%23tok151
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok152%23tok152
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok167%23tok167
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok165%23tok165
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok166%23tok166
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok168%23tok168
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok153%23tok153
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok153%23tok153

FDP_ROL.1/FIREWALL	coreG Ld] X	coreG	X	X			
FDP_SDI.ZDATA	coreG Ld	X		coreG]		X I X	
FIA_ ATD.1/AID	coreG Ld	X	coreG		x	X	
FIA_UID.2/AID	coreG Ld	X		coreG]	X I X		
FIA_USB.1/AID		coreG Ld	X		coreG]	X I X	
FMT_MSA.1/JCRE		coreG Ld	X		coreG]	X I X	
FMT_MSA.1/JCVM		coreG Ld	X		coreG]	X I X	
FMT_MSA.2/FIREWALL _JCVI	CoreG Ld	X		coreG]		X I X	
FMT_MSA.3/JCVM	coreG Ld	X		coreG]	X I X		
FMT_MSA.3/FIREWALL	coreG Ld	X		coreG]	X I X		
FMT_MTD.1/JCRE	coreG Ld	X		coreG]	X I X		
FMT_MTD.3/JCRE		coreG Ld	X		coreG]		X I X
FMT_SMR.1	coreG Ld	X		coreG]		X I X	
FMT_SMF.1	coreG Ld	X	coreGg		x	X	
FPR_UNO.1	coreG Ld	X		coreG]	X I X		
FPT FLS.1	coreG Ld	X		coreG]	X I X		
FPT_TDC.1	coreG Ld	X		coreG]	X I X		
FDP_ITC.2/Installer	instc			I X I X			
FMT_SMR.1/Installer	mstc		x		X I X		
FPT_FLS.1/Installer	mstc		x	I X I X			
FPT_RCV.3/Installer	mstc		x		X I X		
FDP_ACC.2/ADEL	ADELG		Xx	I X I X			
FDP_ACF.1/ADEL	ApELG		x	I X I X			
FMT_MSA.1/ADEL	ApELG		X	I X I X			
FMT_MSA.3/ADEL	ADELG		Xx		X I X		
FMT_SMR.1/ADEL	ADELG		Xx	I X I X			
FMT_SMF.1/ADEL	ADELG		Xx		X I X		
FDP_RIP.1/ADEL	ADELG		x	I X I X			
FPT_FLS.1/ADEL	Aperc		x	I X I X			
FDP_ACC.2/JCRMI	rmic		(X)	x	(X)		
FDP_ACF.1/JCRMI	rmic		(X))	I x	(X)		
FDP_IFC.1/JCRMI	rmic		(X)	I)	(X)		
FDP_IFF.1/JCRMI	rmic		(x)	I)	(X)		
FMT_MSA.1/EXPORT	rmic		(X))	I x	(X)		
FMT MSA.L/REM REFS		rmic		(xX)	I x	(X)	
FMT_MSA.3/JCRMI	rmic		(X))	(X)		
FMT_REV.1/JCRMI	rvic		X		I)	(X)	
FMT_SMR.1/JCRMI	rvic		X)	(X)	
FMT_SMF.1/JCRMI	rmic		(X		I)	(X)	

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

121

file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok169%23tok169
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok172%23tok172
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok179%23tok179
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok180%23tok180
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok181%23tok181
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok154%23tok154
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok177%23tok177
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok178%23tok178
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok175%23tok175
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok173%23tok173
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok183%23tok183
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok185%23tok185
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok186%23tok186
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok189%23tok189
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok190%23tok190
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok191%23tok191
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok192%23tok192
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok193%23tok193
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok194%23tok194
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok196%23tok196
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok200%23tok200
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok201%23tok201
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok202%23tok202
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok203%23tok203
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok207%23tok207
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok208%23tok208
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok209%23tok209
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok209%23tok209

FDP_RIP.1/ODEL	opeLG	x	I X I X			
FPT_FLS.1/ODEL	obELG	X	I X I X			
FCO_NRO.2/CM	carc		I x	X I X		
FDP_IFC.2/CM	carc	I x	X I X			
FDP_IFF.1/CM	carG		I x	X I X		
FDP_UIT.1/CM	carG		I x	X I X		
FMT_MSA.1/CM	carG		I x	X I X		
FMT_MSA.3/CM	carc		x	X I X		
FMT_SMR.1/CM	carc	I x	X I X			
FIA_UID.1/CM	carc	I x	X I X			
FTP_ITC.1/CM	carG		I x	X I X		
FMT_SMF.1/CM	carG		I x	X I X		
FDP_ACC.1/EXT_MEM	Emc		(X)	x	(X)	
FDP_ACF.1/EXT _MEM	emc		x	I)	(X)	
FMT_MSA.1/EXT_MEM	emc		X	I)	(X)	
FMT_MSA.3/EXT_MEM	emc		x	I)	(X)	
FMT_SMF.1/EXT_MEM	emc		x)	(X)	
FMT_SMR1/EXT_MEM	emc		X		I)	(X)
FDP_SDI2/ARRAY - I	(X)					
FDP_SDI.2/RESULT I - I x		I (X)				
Table A3-5: Secur ity Functional Requirements by ¢ onfigurations

Finally, Table A3-6 summarizes the roles associated with each configuration:

Java Card System
Closed Configuration

Java Card RE, Java Card VM

2.1.1 Configuration

Java Card System- Open

Java Card RE, Java Card VM, Installer

Configuration

Java Card System- Open

specified)

Java Card RE, Java Card VM, Installer, applet deletion
manager, applets (RMIG), role for CarG functionalities (non

Table A3-6: Configurations and r

oles

122

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok219%23tok219
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok220%23tok220
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok222%23tok222
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok224%23tok224
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok225%23tok225
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok226%23tok226
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok227%23tok227
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok228%23tok228
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok229%23tok229
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok223%23tok223
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok231%23tok231
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok230%23tok230
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok234%23tok234
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok235%23tok235
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok236%23tok236
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok237%23tok237
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok238%23tok238
file:///C:/Old%20Standard%202.2%20Config%20(Global)/Generated%20Document/finalDoc.doc%23tok238%23tok238

APPENDIX 4: SUPPORTED CRYPTOGR APHIC

ALGORITHMS

introduced
in JavaCard
version

Javacardx.crypto.Cipher

Description

ALG_DES_CBC_NOPAD

<=2.1

Cipher algoritm ALG_DES CBC_NOPAD provi
acipher using DES in CBC moderipte DES in
outer CBC mode, and does not pad input data.

ALG_DES_CBC_IS09797_M]

<=2.1

Cipher algorithm ALG_DES_CBC_IS09797 M
provides a cipher using DES in CBC mode or tr
DES in outer CBC mode, and pads input data
according to the 1ISO 9797 methoddheme.

ALG_DES_CBC_IS09797_M:

<=2.1

Cipher algorithm ALG_DES_CBC_IS09797_M:
provides a cipher using DES in CBC mode or tr
DES in outer CBC mode, and pads input data
according to the ISO 9797 method 2 (ISO 7816
EMV'96) scheme.

ALG_DES_CBC_PKCS5

<=2.1

Cipher algorithm ALG_DES_CBC_PKCS5 prov
cipher using DES in CBC mode or triple DES in
outer CBC mode, and pads input data accordin
the PKCS#5 scheme.

ALG_DES_ECB_NOPAD

<=2.1

Cipher algorithm ALG_DES_ECB_NOPAD prov
a cipher using DESHCB mode, and does not pg
input data.

ALG_DES_ECB_1S09797 M1

<=2.1

Cipher algorithm ALG_DES_ECB_IS0O9797_M:!
provides a cipher using DES in ECB mode, and
pads input data according to the ISO 9797 mett
1 scheme.

ALG_DES_ECB_ISO9797_M?

<=2.1

Cipher algothm ALG_DES_ECB_IS09797_M2
provides a cipher using DES in ECB mode, and
pads input data according to the ISO 9797 mett
2 (1ISO 7814@, EMV'96) scheme.

ALG_DES_ECB_PKCS5

<=2.1

Cipher algorithm ALG_DES ECB_PKCSS5 prov
cipher using DES in ECB mode, gauds input
data according to the PKCS#5 scheme.

ALG_RSA 1S014888 <=2.1

Deprecated

ALG_RSA_PKCS1

<=2.1

Cipher algorithm ALG_RSA_PKCS1 provides &
cipher using RSA, and pads input data accordir
to the PKCS#1 (v1.5) scheme.

ALG_RSA_IS09796 <=2.1

Deprecated

ALG_RSA_NOPAD

211

Cipher algorithm ALG_RSA_NOPAD provides &
cipher using RSA and does not pad input data.

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

123

ALG_AES_BLOCK_128_CBC
PAD

Cipher algorithm
ALG_AES_BLOCK_128 CBC_NOPADprovides a
cipher using AES with block size 128 in CBC m

2.2.0 and does not pad input data.
ALG_AES_BLOCK_ 128 ECB| Cipher algorithm
PAD ALG_AES_BLOCK 128 ECB_NOPAD provide
cipher using AES with block size 128 in ECB m
2.2.0 and does not pad inpulata.
ALG_RSA PKCS1_OAEP Cipher algorithm ALG_RSA_PKCS1_OAEP prg
a cipher using RSA, and pads input data accord
2.2.0 to the PKCSH#DAEP scheme (IEEE 1-2680).
ALG_KOREAN_SEED ECB | Cipher algorithm
AD ALG_KOREAN_SEED_ECB_NOPAD peovides
cipher using the Korean SEED algorithm specif
in the Korean SEED Algorithm specification
provided by KISA, Korea Information Security
222 Agency in ECB mode and does not pad input d
ALG_KOREAN_SEED CBC | Cipher algorithm
AD ALG_KOREAN_SEED_GB®AD provides a
cipher using the Korean SEED algorithm specif
in the Korean SEED Algorithm specification
provided by KISA, Korea Information Security
222 Agency in CBC mode and does not pad input d
ALG_AES_BLOCK_192 CBC]
PAD 3.0.1 Deprecated
ALG_AES_BLOCK_192 ECB|
PAD 3.0.1 Deprecated
ALG_AES_BLOCK_256_CBC]
PAD 3.0.1 Deprecated
ALG_AES_BLOCK 256 ECB|
PAD 3.0.1 Deprecated
ALG_AES_CBC_IS09797_ M1 Cipher algorithm ALG_AES_CBC_IS09797 M
provides a cipher using AES with block sizeini2¢
CBC mode, and pads input data according to th
3.0.1 ISO 9797 method 1 scheme.
ALG_AES_CBC _1S09797_MZ Cipher algorithm ALG_AES_CBC_IS09797_M
provides a cipher using AES with block size 12¢
CBC mode, and pads input data according to th
3.0.1 ISO 979Tnethod 2 (ISO 7818, EMV'96) scheme
ALG_AES CBC_PKCS5 Cipher algorithm ALG_AES_CBC_PKCS5 prov
cipher using AES with block size 128 in CBC m
and pads input data according to the PKCS#5
3.0.1 scheme.
ALG_AES_ECB_1S09797_M1 Cipheralgorithm ALG_AES_ECB_1S09797_M1
provides a cipher using AES with block size 12¢
ECB mode, and pads input data according to th
3.0.1 ISO 9797 method 1 scheme.

124

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

ALG_AES_ECB_[S09797_M?

3.0.1

Cipher algorithm ALG_AES ECB_ISO9797 M?
provides a cipher using AE8mblock size 128 in
ECB mode, and pads input data according to th
ISO 9797 method 2 (ISO 7846EMV'96) scheme

ALG_AES_ECB_PKCS5

3.0.1

Cipher algorithm ALG_AES ECB_PKCSS5 prov
cipher using AES with block size 128 in ECB m
and pads input dataccording to the PKCS#5
scheme.

ALG_AES CTR
3.0.5

Cipher algorithm ALG_AES_CTR provides a cif
using AES in counter (CTR) mode.

javacardx.crypto.AEADCipher

ALG_AES_CCM

3.0.5

Cipher algorithm ALG_AES CCM provides a Ci
using AES in Counter witBEGMAC mode as
specified in RFC 3610.

ALG_AES_GCM

3.0.5

Cipher algorithm ALG_AES GCM provides a ci
using AES in Galois/Counter Mode as specified
NIST SP 8&88D, November 2007.

javacard.security.Signature introduced

in JavaCard
version

ALG_DES_MAC4_NOPAD

<=2.1

Signature algorithrALG_DES_MAC4_NOPAD
generates a byte MAC (most significant 4 bytes
of encrypted block) using DES in CBC mode or
triple DES in outer CBC mode.

ALG_DES_MAC8_NOPAD

<=2.1

Signature algorithm ALG_DES MAC8 NOPAD
generates an &yte MAC using DES in CBC mo
or triple DES in outer CBC mode.

ALG_DES_MAC4_ISO9797_N

<=2.1

Signature algorithm

ALG_DES MAC4_IS09797_M1 generatesyted
MAC (most significant 4 bytes of encrypted blog
using DES in CBC mode or tripES in outer CBC
mode.

ALG_DES_MACS8_ISO9797 N

<=2.1

Signature algorithm
ALG_DES MACS8 1S09797 M1 generates an
byte MAC using DES in CBC mode or triple DE
outer CBC mode.

ALG_DES_MAC4_ISO9797_N

<=2.1

Signature algorithm
ALG_DES MAC4 IS09797 gdRerates a byte
MAC (most significant 4 bytes of encrypted blog
using DES in CBC mode or triple DES in outer
mode.

ALG_DES_MACS8_ISO9797_N

<=2.1

Signature algorithm

ALG_DES_MACS8 |S0O9797_M2 generates an
byte MAC using DES in CBC mode or tB8 in
outer CBC mode.

ALG_DES_MAC4_PKCS5

<=2.1

Signature algorithm ALG_DES MAC4_PKCS5
generates a byte MAC (most significant 4 bytes

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

125

of encrypted block) using DES in CBC mode or
triple DES in outer CBC mode.

ALG_DES_MAC8_PKCS5

<=2.1

Signature algoritm ALG_DES_MAC8_PKCS5

generates an ®yte MAC using DES in CBC mo
or triple DES in outer CBC mode.

ALG_RSA_SHA_ISO9796

<=2.1

Signature algorithm ALG_RSA_SHA_1S0O9796
generates a 2dyte SHA digest, pads the digest
according to the 1ISO 9796scheme aspecified
in EMV '96 and EMV 2000, and encrypts it usin
RSA.

ALG_RSA_SHA_PKCS1

<=2.1

Signature algorithm ALG_RSA_SHA PKCS1
generates a 2dyte SHA digest, pads the digest
according to the PKCS#1 (v1.5) scheme, and
encrypts it using RSA.

ALG_RSA_MD5_PKCS1

<=2.1

Signature algorithm ALG_RSA MD5 PKCS1
generates a 1&yte MD5 digest, pads the digest
according to the PKCS#1 (v1.5) scheme, and
encrypts it using RSA.

ALG_RSA_RIPEMD160_ISO9

<=2.1

Signature algorithm

ALG_RSA RIPEMD160_ISO9@&86rgtes a 20
byte RIPE MI260 digest, pads the digest
according to the 1ISO 9796 scheme, and encryp
using RSA.

ALG_RSA_RIPEMD160_PKC;

<=2.1

Signature algorithm ALG_RSA RIPEMD160_P
generates a 2dyte RIPE M260 digest, pads the
digest accordingo the PKCS#1 (v1.5) scheme, ¢
encrypts it using RSA.

ALG_DSA_SHA

<=2.1

Signature algorithmALG_DSA_SHAgenerates a

20-byte SHA digest and signs/verifies the digest
using DSA.

ALG_RSA_SHA RFC2409

<=2.1

Signature algorithm ALG_RSA_SHA_ RFC2409
generates a 2dyte SHA digest, pads the digest
according to the RFC2409 scheme, and encryp
using RSA.

ALG_RSA_MD5_RFC2409

<=2.1

Signature algorithm ALG_RSA MD5_ RFC2409
generates a 1&yte MD5 digest, pads the digest
according to the RFC2409 scherard encrypts it
using RSA.

ALG_ECDSA_SHA

2.2.0

Signature algorithmALG_ECDSA_SHA generates

a 20byte SHA digest and signs/verifies the dige
using ECDSA.

ALG_AES_MAC_128 NOPAD

2.2.0

Signature algorithm ALG_AES_MAC_128_ NOF
generates a 1byte MAC usind\ES with blocksiz
128 in CBC mode and does not pad input data.

ALG_DES_MAC4_1S09797_1
2 _ALG3

2.2.0

Signature algorithm
ALG_DES_MAC4 1S09797_1_M2_ALG3 gene
a 4byte MAC using triple DES with &«&y DES3

126

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

key according to ISO97947MAC algorithm 8vith
method 2 (also EMV'96, EMV'2000), where inpt
data is padded using method 2 and the data is
processed as described in MAC Algorithm 3 of
ISO 97971 specification.

ALG_DES_MACS8_IS09797 1
2 ALG3

2.2.0

Signature algorithm
ALG_DES_MACS8_1S09797_1 MZ53 generates
an 8byte MAC using triple DES with «&y DES3
key according to ISO97947/MAC algorithm 3 with
method 2 (also EMV'96, EMV'2000), where inpt
data is padded using method 2 and the data is
processed as described in MAC Algorithm 3 of
ISO9797-1 specification.

ALG_RSA_SHA_PKCS1_PSS

2.2.0

Signature algorithm ALG_RSA_SHA PKCS1_F
generates a 2dyte SHAL digest, pads it
according to the PKCS#5S scheme (IEEE 136
2000), and encrypts it using RSA.

ALG_RSA_MD5_PKCS1 PSS

2.2.0

Signaturealgorithm ALG_RSA_MD5_PKCS1 P
generates a 1éyte MD5 digest, pads it accordin
to the PKCS#BSS scheme (IEEE 1-:2680), and
encrypts it using RSA.

ALG_RSA_RIPEMD160_PKC;
PSS

2.2.0

Signature algorithm

ALG_RSA RIPEMD160_PKCS1_PSS generats
byte RPE MDB160 digest, pads it according to the
PKCS#PSS scheme (IEEE 1:2680), and
encrypts it using RSA.

ALG_HMAC_SHA1

2.2.2

HMAC message authentication algorithm
ALG_HMAC_SHAI1 This algorithm generates a
HMAC following the steps found in RFC: 2104
using SHA1 as the hashing algorithm.

ALG_HMAC_SHA_256

2.2.2

HMAC message authentication algorithm
ALG_HMAC_SHA 256 This algorithm generate
HMAC following the steps found in RFC: 2104
using SHA&R56 as the hashing algorithm.

ALG_HMAC_SHA_384

2.2.2

HMACmessage authentication algorithm
ALG_HMAC_SHA 384 This algorithm generate
HMAC following the steps found in RFC: 2104
using SH#84 as the hashing algorithm.

ALG_HMAC_SHA 512

2.2.2

HMAC message authentication algorithm
ALG_HMAC_SHA 512 This algorigfemerates an
HMAC following the steps found in RFC: 2104
using SHA12 as the hashing algorithm.

ALG_HMAC_MD5

2.2.2

HMAC message authentication algorithm
ALG_HMAC_MD?5 This algorithm generates an
HMAC following the steps found in RFC: 2104
using MD5 as thbhashing algorithm.

ALG_HMAC_RIPEMD160

2.2.2

HMAC message authentication algorithm
ALG_HMAC_RIPEMD160 This algorithm gener

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

127

an HMAC following the steps found in RFC: 21(
using RIPEMD160 as the hashing algorithm.

ALG_RSA_SHA_ISO9796_MF

2.2.2

SignaturealgorithmALG_RSA SHA_1SO9796 N
generates 2thyte SHAL digest, pads it according
to the ISO979& specification and encrypts usin
RSA.

ALG_RSA_RIPEMD160_ISO9
_MR

2.2.2

Signature
algorithmALG_RSA_RIPEMD160_ISO9796_Mt
generates 2thyte RIPE M260 digest, pads it
according to the ISO979% specification and
encrypts using RSA.

ALG_ECDSA_SHA 256

3.0.1

Signature algorithm ALG_ECDSA_SHA_256
generates a 3byte SHA256 digest and
signs/verifies the digest using ECDSA with the
curve defined in the ECKey pateters- such as
the P256 curve specified in the Digital Signaturt
Standards specification[NIST FIPS PUR].86

ALG_ECDSA_SHA 384

3.0.1

Signature algorithm ALG_ECDSA_SHA 384
generates a 4&yte SHA384 digest and
signs/verifies the digest using ECDREth the
curve defined in the ECKey parametessich as
the R384 curve specified in the Digital Signatur¢
Standards specification[NIST FIPS PUR]1.86

ALG_AES_MAC_192_NOPAL

3.0.1

Deprecated

ALG_AES_MAC_256_NOPAL

3.0.1

Deprecated

ALG_ECDSA_SHA 224

3.0.1

Signature algorithm ALG_ECDSA_SHA 224
generates a 2®&yte SHA224 digest and
signs/verifies the digest using ECDSA with the
curve defined in the ECKey parametessich as
the R224 curve specified in the Digital Signatur¢
Standards specification[NIS-IPS PUB 1-2¢.

ALG_ECDSA_SHA 512

3.0.1

Signature algorithm ALG_ECDSA SHA 512
generates a 6byte SHA12 digest and
signs/verifies the digest using ECDSA with the
curve defined in the ECKey parametessich as
the R521 curve specified in the Digitalgnature
Standards specification[NIST FIPS PUR].86

ALG_RSA_SHA_224 PKCS1

3.0.1

Signature algorithm ALG_RSA SHA 224 PKC
generates a 2®&yte SHA digest, pads the digest
according to the PKCS#1 (v1.5) scheme, and
encrypts it using RSA.

ALG_RSA_SHA&® PKCS1

3.0.1

Signature algorithm ALG_RSA_ SHA 256 _PKC
generates a 3byte SHA digest, pads the digest
according to the PKCS#1 (v1.5) scheme, and
encrypts it using RSA.

ALG_RSA_SHA_384 PKCS1

3.0.1

Signature algorithm ALG_RSA_SHA_384_ PKC
generates a 4®yte SHA digest, pads the digest

128

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

according to the PKCS#1 (v1.5) scheme, and
encrypts it using RSA.

ALG_RSA_SHA 512 _PKCS1

3.0.1

Signature algorithm ALG_RSA SHA 512 PKC
generates a 64byte SHA digespads the digest
according to the PKCS#1 (v1.5) scheme, and
encrypts it using RSA.

ALG_RSA_SHA_224 PKCS1]

3.0.1

Signature algorithm
ALG_RSA_SHA 224 PKCS1_PSS generates
byte SHA224 digest, pads it according to the
PKCS#PSS scheme (IEEE 1:2680), and
encrypts it using RSA.

ALG_RSA_SHA_256_PKCS1]

3.0.1

Signature algorithm
ALG_RSA_SHA 256 _PKCS1_PSS generates
byte SHA256 digest, pads it according to the
PKCS#PSS scheme (IEEE 1:2680), and
encrypts it using RSA.

ALG_RSA_SHA_384 PKCS1]

3.0.1

Signature algorithm
ALG_RSA_SHA 384 PKCS1_PSS generates
byte SHA384 digest, pads it according to the
PKCS#PSS scheme (IEEE 1-2680), and
encrypts it using RSA.

ALG_RSA_SHA_512_PKCS1,

3.0.1

Signature algorithm
ALG_RSA SHA 512 PKCS1 PSS generates ¢
byte SHA512 digest, pads it according to the
PKCS#PSS scheme (IEEE 1:2680), and
encrypts it using RSA.

ALG_DES_MAC4_IS09797_1
1_ALG3

3.0.4

Signature algorithm

ALG_DES MAC4_IS09797_1 _M1_ALG3 geneg
a 4byte MAC using triple DES with &y DES3
key according to ISO97947MAC algorithm 3 with
method 1, where input data is padded using
method 1 and the data is processed as describg
in MAC Algorithm 3 of the ISO 9727
specification.

ALG_DES_MACS8_IS09797_1
1_ALG3

3.0.4

Signature algorithm
ALG_DES_MACS8_IS09797_1_M1_ALG3 gene
an 8byte MAC using triple DES with &«&y DES3
key according to ISO97947MAC algorithm 3 with
method 1, where input data is padded using
method 1 and the dta is processed as describec
in MAC Algorithm 3 of the ISO 9797
specification.

ALG_AES_CMAC_128

3.0.5

Signature algorithm ALG_AES_CMAC_128
generates a 1byte Ciphetbased MAC (CMAC)
using AES with blocksize 128 in CBC mode wit
1ISO9797_M2 paddinglseme.

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

129

ALG_KOREAN_SEED_MAC_

AD 3.05 ==
ALG_SEED | Signature algorithm
MAC_NOPA| ALG_KOREAN_SEED_MAC_NOPAD generate
D222 anl6byte MAC using Korean SEED in CBC mo
SIG_CIPHER_DES_MAC4 Cipher algorithm SIG_CIPHER_DES_MAC4
generates a dyte MAC(most significant 4 bytes
of encrypted block) using DES in CBC mode or
3.04 triple DES in outer CBC mode.
SIG_CIPHER_DES_BIAC Cipher algorithm SIG_CIPHER_DES8MAC
generates a 8-byte MAC (most significaltbytes
of encrypted block) using DES in CBC nuode
3.04 triple DES in outer CBC mode.
SIG_CIPHER_RSA Cipher algorithnSIG_CIPHER_RBges the RSA
3.04 cipher.
SIG_CIPHEBSA Cipher algorithn51G_CIPHER_D8ges the DSA
3.04 cipher.
SIG_CIPHERCI3A Cipher algorithn81G_CIPHER_ECDSSAs the
3.04 ECDSA cipher.
SIG_CIPHERCI3A PLAIN Cipher algorithn5IG_CIPHER_ECDSA _ uses tH
3.05 ECDSA cipher.
SIG_CIPHERES MAC128 Cipheralgorithm SIG_CIPHER_AES_MAC128
generates a 1&yte MAC using AES with block
3.0.4 size 128 in CBC mode.
SIG_CIPHERES CMAC128 Cipher algorithnS51G_CIPHER_AES_CMAC128
generates a 1byte Ciphetbased MAC (CMAC)
3.05 using AES with block size 128 in CBC mode.
SIG_CIPHERMAC Cipher algorithnSIG_CIPHER _HMgéherates an
HMAC following the steps found in RECO4
3.04 using the specified hashing algorithm.
SIG_CIPHER_KOREAN_SEE Cipher
AC algorithmSIG_CIPHER_KOREAN_SEED_MACQC
generates a 1&yte MAC using Korean SEED in
3.0.4 CBC mode.
: . .| introduced
Jsa;vacard.secunty.MessageD|g« in Ja}vaCar q
version
ALG_SHA <=2.1 Message Digest algorithm SHA
ALG_MD5 <=2.1 Message Digest algorithm MD5.
ALG_RIPEMD160 <=2.1 Message Digest algorithm RIPE {U&D.
ALG_SHA 256 222 Message Digest algorithm Si2B6.
ALG_SHA 384 2.2.2 Message Digest algorithm Si384.
ALG_SHA 512 222 Message Digest algorithm S15A2.
ALG_SHA 224 3.0.1 Message Digest algorithm Si224.
ALG_SHA3 224 3.0.5 Message Digest algorithm SHA24.
ALG_SHA3 256 3.0.5 Message Digest algorithm SH236.

130

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

ALG_SHA3 384 3.0.5 Message Digestlgorithm SHA384.
ALG_SHA3 512 3.0.5 Message Digest algorithm SHBB2.
introduced
javacard.security.RandomDatg in JavaCard
version
ALG_PSEUDO_RANDOM <=2.1 Deprecated As of release 3.0.5.
ALG_SECURE_RANDOM <=2.1 Deprecated As of release 3.0.5.
ALG_FAST 3.0.5 Utility random number generation algorithm.
This algorithm creates random numbers suitabl
ALG_KEYGENERATION 3.0.5 to be used for key and nonce generation.
Deterministic Random Bit Generator (DRBG)
ALG_PRESEEDED_DRBG | 3.0.5 algorithm.
True Random Number Generation (TRNG)
ALG_TRNG 3.0.5 algorithm.
introduced
javacard.security.KeyBuilder | in JavaCard
version
Key object which implements interface type
TYPE_DES_TRANSIENT_RE| <=2.1 DESKey with CLEAR_ON_RESET transient ke
Key object which implements interface type
TYPE_DES_TRANSIENT_DE DESKey with CLEAR_ON_DESELECT transient
CT <=2.1 data.
TYPE_DES LENGTH_DES | <=2.1
TYPE_DES LENGTH_DES3] <=2.1
TYPE_DES LENGTH_DES3 | <=2.1
Key object which implements interface type
TYPE_AES_TRANSIENT_RE] 2.2.0 AESKey with CLEAR_ON_RESET transient ke)
Key object which implements interface type
TYPE_AES_TRANSIENT_DE; AESKey with CLEAR_ON_DESELECT transien
CT 2.2.0 data.
TYPE_AES LENGTH_AES 17 2.2.0
TYPE_AES LENGTH_AES_ 19 2.2.0
TYPE_AES LENGTH_AES 24 2.2.0
TYPE_RSA_PUBLIC
LENGTH_RSA 512 <=2.1
TYPE_RSA_PUBLIC
LENGTH_RSA 736 2.2.0
TYPE_RSA_PUBLIC
LENGTH_RSA 768 2.2.0
TYPE_RSA PUBLIC
LENGTH_RSA 896 2.2.0
TYPE_RSA PUBLIC
LENGTH_RSA 1024 <=2.1

Java Card System i Closed Configuration Protection Profile

Version 3.0.5

131

TYPE_RSA_PUBLIC

LENGTH_RSA 1280 2.2.0
TYPE_RSA_PUBLIC

LENGTH_RSA 1536 2.2.0
TYPE_RSA_PUBLIC

LENGTH_RSA 1984 2.2.0
TYPE_RSA_PUBLIC

LENGTH_RSA 2048 <=2.1
TYPE_RSA_PUBLIC

LENGTH_RSA 3072 3.05
TYPE_RSA_PUBLIC
LENGTH_RSA_4096 3.0.1
TYPE_RSA_PRIVATE
LENGTH_RSA 512 <=2.1
TYPE_RSA_PRIVATE
LENGTH_RSA 736 2.2.0
TYPE_RSA_PRIVATE
LENGTH_RSA 768 2.2.0
TYPE_RSA_PRIVATE
LENGTH_RSA_896 2.2.0
TYPE_RSA_PRIVATE
LENGTH_RSA_1024 <=2.1
TYPE_RSA_PRIVATE
LENGTH_RSA_1280 2.2.0
TYPE_RSA_PRIVATE
LENGTH_RSA_1536 2.2.0
TYPE_RSA_PRIVATE
LENGTH_RSA_1984 2.2.0
TYPE_RSA_PRIVATE
LENGTH_RSA_ 2048 <=2.1
TYPE_RSA_PRIVATE
LENGTH_RSA 3072 3.0.5
TYPE_RSA_PRIVATE
LENGTH_RSA_4096 3.0.1
TYPE_RSA_PRIVATE_TRAN|

T _RESET 3.0.1
TYPE_RSA_PRIVATE_TRAN|

T _DESELECT 3.0.1
TYPE_RSA_CRT_PRIVATE
LENGTH_RSA 512 <=2.1
TYPE_RSA_CRT_PRIVATE
LENGTH_RSA 736 2.2.0
TYPE_RSA_CRT_PRIVATE
LENGTH_RSA 768 2.2.0
TYPE_RSA_CRT_PRIVATE
LENGTH_RSA 896 2.2.0

132

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

TYPE_RSA_CRT_PRIVATE
LENGTH_RSA 1024 <=2.1
TYPE_RSA_CRT_PRIVATE
LENGTH_RSA 1280 2.2.0
TYPE_RSA_CRT_PRIVATE
LENGTH_RSA 1536 2.2.0
TYPE_RSA_CRT_PRIVATE
LENGTH_RSA 1984 2.2.0
TYPE_RSA_CRT_PRIVATE
LENGTH_RSA 2048 <=2.1
TYPE_RSA_CRT_PRIVATE
LENGTH_RSA 3072 3.0.5
TYPE_RSA_CRT_PRIVATE
LENGTH_RSA_4096 3.0.1
TYPE_RSA_CRT_PRIVATE._]
SIENT_RESET 3.0.1
TYPE_RSA_CRT_PRIVATE._]
SIENT_DESELECT 3.0.1
TYPE_DSA_PRIVATE
LENGTH_DSA 512 <=2.1
TYPE_DSA_PRIVATE
LENGTH_DSA_768 <=2.1
TYPE_DSA_PRIVATE
LENGTH_DSA_1024 <=2.1
TYPE_DSA_PRIVATE_TRAN|

T _RESET 3.0.1
TYPE_DSA_PRIVATE_TRAN|

T _DESELECT 3.0.1
TYPE_DSA_PUBLIC

LENGTH_DSA 512 <=2.1
TYPE_DSA_PUBLIC
LENGTH_DSA_768 <=2.1
TYPE_DSA_PUBLIC
LENGTH_DSA_1024 <=2.1
TYPE_EC_F2M_PRIVATE
LENGTH_EC_F2M_113 2.2.0
TYPE_EC_F2M_PRIVATE
LENGTH_EC_F2M_131 2.2.0
TYPE_EC_F2M_PRIVATE
LENGTH_EC_F2M_163 2.2.0
TYPE_EC_F2M_PRIVATE
LENGTH_EC_F2M_193 2.2.0
TYPE_EC_F2M_PRIVATE_TH
IENT_RESET 3.0.1
TYPE_EC_F2M_PRIVATE_TH
IENT_DESELECT 3.0.1

Java Card System i Closed Configuration Protection Profile
133

Version 3.0.5

TYPE_EC_FP_PRIVATE

LENGTH_EC_FP_112 2.2.0
TYPE_EC_FP_PRIVATE
LENGTH_EC_FP_128 2.2.0
TYPE_EC_FP_PRIVATE
LENGTH_EC_FP_160 2.2.0
TYPE_EC_FP_PRIVATE
LENGTH_EC_FP_192 2.2.0
TYPE_EC_FP_PRIVATE
LENGTH_EC_FP_224 3.0.1
TYPE_EC_FP_PRIVATE
LENGTH_EC_FP_256 3.0.1
TYPE_EC_FP_PRIVATE
LENGTH_EC_FP_ 384 3.0.1
TYPE_EC_FP_PRIVATE
LENGTH_EC_FP_521 3.04
TYPE_EC_FP_PRIVATE_TR/
NT_RESET 3.0.1
TYPE_EC_FP_PRIVATE_TR/
NT_DESELECT 3.0.1
TYPE_KOREAN_SEED_TRA]
NT_RESET 2.2.2
TYPE_KOREAN_SEED_TRA]
NT_DESELECT 2.2.2
TYPE_KOREAN_SEED
LENGTH_KOREAN_SEED_ 17 2.2.2
TYPE_HMAC_TRANSIENT_R

T 2.2.2
TYPE_HMAC_TRANSIENT D
LECT 2.2.2
TYPE_HMAC
LENGTH_HMAC_SHA 1 BL(

_64 2.2.2
TYPE_HMAC
LENGTH_HMAC_SHA 256 B
CK_64 2.2.2
TYPE_HMAC
LENGTH_HMAC_SHA 384 B
CK_64 2.2.2
TYPE_HMAC
LENGTH_HMAC_SHA 512 B
CK_64 2.2.2
TYPE_DH_PRIVATE_TRANS Key object which implements the interface type
_DESELECT 3.0.5 DHPrivateKey for Déperations, .
TYPE_DH_PRIVATE_TRANS Key object which implements the interface type
_RESET 3.0.5 DHPrivateKey for DH operations.

134

Java Card System i Closed Configuration Protection Profile
Version 3.0.5

