
 WORKING DRAFT

Supporting Document
Mandatory Technical Document

USB Portable Storage Device

October 2018

Version 0.7

CCDB-<Reference from CCDB, in the
form 'YYYY-MM-nnn'>

DRAFT References

Document Purpose and Overview

This document serves as a template Supporting Document (SD) for use by international
Technical Communities (iTCs). SDs are complementary to collaborative Protection Profiles
(cPPs) and define the evaluation activities (EAs) required to satisfy the Security Functional
Requirements (SFRs) in the cPP.
The intent of this SD template is to provide iTCs with a method for developing SDs that address
the CEM work units. International Technical Communities are expected to tailor this template
to appropriately address the technology type in question.

Sections of this document contain notes in <brackets and italics> for the SD author to take
into consideration when developing the SD and should be removed by the iTC prior to
finalizing the SD.
Similarly, some sections of this template are populated with examples to illustrate the structure
of the section. They are expected to be replaced by the specific EAs deemed necessary by the
iTC.

Document Purpose and OverviewRequired Supplementary Information
 WORKING DRAFT

Foreword

This is a supporting document, intended to complement the Common Criteria version 3 and
the associated Common Evaluation Methodology for Information Technology Security
Evaluation.

Supporting documents may be “Guidance Documents”, that highlight specific approaches and
application of the standard to areas where no mutual recognition of its application is required,
and as such, are not of normative nature, or “Mandatory Technical Documents”, whose
application is mandatory for evaluations whose scope is covered by that of the supporting
document. The usage of the latter class is not only mandatory, but certificates issued as a result
of their application are recognized under the CCRA.

This supporting document has been developed by the USB iTC and is designed to be used to
support the evaluations of products against the cPPs identified in section 1.1.

Technical Editor:

USB iTC
Document history:

V0.7, 25 October 2018 (updating evaluation activities for crypto SFRs)
V0.5, 1 April 2016 (updating template, adding information about the AVA)

V0.4, 17 December 2015 (updating template, addressing review comments on v0.2)
V0.3, August 2015 (interim updates – not released)

V0.2, July 2015 (Initial draft for comment)
General Purpose:

USB Portable Storage Devices are ubiquitous data storage solutions used in a variety of
capacities and form factors. As portable devices, their primary functionality is to encrypt and
protect data-at-rest stored on the device.
In order to ensure comparable, transparent, and repeatable evaluation of the implemented
cryptographic mechanisms, methods have to be described that may consist of agreed evaluation
approaches, e.g. how to prove that the claimed encryption of user data is really done by the
TOE or how to prove that the user data is only stored in an encrypted form (and not additionally
in clear text), but also the definitions of possibly necessary special test tools and their manuals.

Field of special use:
USB Portable Storage Device

Acknowledgements:
This Supporting Document was developed by the USB international Technical Community
with representatives from industry, Government agencies, Common Criteria Test Laboratories,
and members of academia <check: do we have any academia?>.

DRAFT References

Contents	
Document Purpose and Overview 2	
Contents 4	
1	 Introduction 7	

1.1	 Technology Area and Scope of Supporting Document 7	
1.2	 Structure of the Document 7	
1.3	 Terminology 8	

1.3.1	 Glossary 8	
1.3.2	 Acronyms 9	

2	 Evaluation Activities for SFRs 10	
2.1	 Cryptographic Support (FCS) 11	

2.1.1	 Introduction 11	
2.1.2	 Cryptographic Key Generation (FCS_CKM.1) 12	
2.1.3	 Cryptographic Key Access (FCS_CKM.3) 12	
2.1.4	 Cryptographic Key Destruction (FCS_CKM.4) 16	
2.1.5	 Cryptographic Key Derivation (FCS_CKM_EXT.5) 20	
2.1.6	 Cryptographic Operation (FCS_COP.1) 25	
2.1.7	 Cryptographic Key Chaining (FCS_KYC_EXT.1) 33	
2.1.8	 Cryptographic Salt Generation (FCS_SLT_EXT.1) 34	
2.1.9	 Random Bit Generation (FCS_RBG_EXT) 34	

2.2	 User Data Protection (FDP) 36	
2.2.1	 Protection of User Data on Device (FDP_UDD_EXT) 36	
2.2.2	 Protection of System Data on Device (FDP_SDD_EXT) 38	

2.3	 Identification and Authentication (FIA) 39	
2.3.1	 Authentication Failures (FIA_AFL) 39	
2.3.2	 Passphrase support (FIA_PPS) 40	

2.4	 Protection of the TSF (FPT) 41	
2.4.1	 Fail secure (FPT_FLS) 41	
2.4.2	 Protection of Keys and Keying Material (FPT_KYP_EXT) 42	
2.4.3	 TSF self test (FPT_TST) 42	
2.4.4	 Submask Validation (FPT_VAL_EXT) 43	

2.5	 TOE Access (FTA) 44	
2.5.1	 TOE access authorisation (FTA_USB) 44	

2.6	 Security Management (FMT) 45	
2.6.1	 Specification of Management Functions (FMT_SMF) 45	

Document Purpose and OverviewRequired Supplementary Information
 WORKING DRAFT

3	 Evaluation Activities for Optional Requirements 46	
3.1	 Protection of the TSF (FPT) 46	

3.1.1	 Trusted Update (FPT_TUD_EXT) 46	
3.1.2	 Trusted Update Rollback (FPT_TUR_EXT) 48	

4	 Evaluation Activities for Selection-Based Requirements 49	
4.1	 Cryptographic Support (FCS) 49	

4.1.1	 Cryptographic Key Generation (FCS_CKM.1) 49	
4.1.2	 Cryptographic Key Access (FCS_CKM.3) 51	
4.1.3	 Cryptographic Key Derivation (FCS_CKM_EXT.5) 51	
4.1.4	 Cryptographic operation (FCS_COP.1) 51	
4.1.5	 Random Bit Generation (FCS_RBG_EXT) 58	

4.2	 Identification and Authentication (FIA) 60	
4.2.1	 Passphrase support (FIA_PPS_EXT) 60	
4.2.2	 User authentication (FIA_UAU) 61	

4.3	 Security Management (FMT) 61	
4.3.1	 Specification of Management Functions (FMT_SMF) 61	

5	 Evaluation Activities for SARs 63	
5.1	 ASE: Security Target Evaluation 63	
5.2	 ADV: Development 63	

5.2.1	 Basic Functional Specification (ADV_FSP.1) 63	
5.3	 AGD: Guidance Documents 66	

5.3.1	 Operational User Guidance (AGD_OPE.1) 66	
5.3.2	 Preparative Procedures (AGD_PRE.1) 67	

5.4	 ALC: Life-cycle Support 68	
5.4.1	 Labelling of the TOE (ALC_CMC.1) 68	
5.4.2	 TOE CM coverage (ALC_CMS.1) 68	

5.5	 ATE: Tests 68	
5.5.1	 Independent Testing – Conformance (ATE_IND.1) 68	

5.6	 AVA: Vulnerability Assessment 68	
5.6.1	 Vulnerability Survey (AVA_VAN.1) 69	

6	 Required Supplementary Information 73	
7	 References 74	
A.	 Vulnerability Analysis 76	

A.1	 Sources of vulnerability information 76	
A.1.1	 Type 1 Hypotheses—Public-Vulnerability-based 76	
A.1.2	 Type 2 Hypotheses—iTC-Sourced 78	

DRAFT References

A.1.3	 Type 3 Hypotheses—Evaluation-Team-Generated 80	
A.1.4	 Type 4 Hypotheses—Tool-Generated 81	
A.2	 Process for Evaluator Vulnerability Analysis 81	
A.3	 Reporting 83	

B.	 Equivalency Considerations 85	
B.1	 Introduction 85	
B.2	 Evaluator guidance for determining equivalence 86	
B.2.1	 Strategy 86	
B.3	 Test presentation/Truth in advertising 86	

C.	 Public Vulnerability Sources 87	

List of figures

No table of figures entries found.

List of tables

Table 1: SHA Properties .. 52	
Table 2: SigVer2 Test Lengths .. 56	

Table 3: Mapping of ADV_FSP.1 CEM Work Units to Evaluation Activities 65	
Table 4: Mapping of AVA_VAN.1 CEM Work Units to Evaluation Activities 72	

IntroductionRequired Supplementary Information
 WORKING DRAFT

1 Introduction

1.1 Technology Area and Scope of Supporting Document

1 This Supporting Document (SD) is mandatory for evaluations of products that
claim conformance to any of the following cPP(s):

Collaborative Protection Profile for USB Portable Storage Devices –
[Month, Year]

2 The purpose of the collaborative Protection Profile (cPP) for USB Portable
Storage Devices is to provide a minimal set of security requirements that
provide protection against a set of defined threats. The specific form factor of a
USB Portable Storage Device is not defined, however devices that use a USB
interface to store data on another form of storage (such as an external optical
drive writing to a CD or DVD) or more complex device (such as a tablet or
smartphone) are outside the scope of the cPP.

3 A USB Portable Storage Device is dedicated to storing user data, and protecting
that data using specified cryptographic protocols. System data, such as device
driver software or configuration data is considered separate from user data and
may reside on the device in an unencrypted state.

4 Although Evaluation Activities (EAs) are defined mainly for the evaluators to
follow, in general they will also help developers prepare for evaluation by
identifying specific requirements for their Target of Evaluation (TOE). The
specific requirements in EAs may in some cases clarify the meaning of Security
Functional Requirements (SFRs), and may identify particular requirements for
the content of Security Targets (especially the TOE Summary Specification),
user guidance documentation, and possibly required supplementary information
(e.g. for entropy analysis or cryptographic key management architecture).

1.2 Structure of the Document

5 Evaluation Activities can be defined for both SFRs and Security Assurance
Requirements (SARs). These are defined in separate sections of this SD. The
EAs associated with the SFRs are considered to be interpretations of applying
the appropriate SAR activity. For instance, activities associated with testing are
representative of what is required by ATE_IND.1.

6 If any Evaluation Activity cannot be successfully completed in an evaluation
then the overall verdict for the evaluation is a ‘fail’. In rare cases, there may be
acceptable reasons why an Evaluation Activity may be modified or deemed not
applicable for a particular TOE, but this must be agreed with the Certification
Body for the evaluation.

DRAFT References

7 In general, if all EAs (for both SFRs and SARs) are successfully completed in
an evaluation then it would be expected that the overall verdict for the
evaluation is a ‘pass’.

8 In some cases, the Common Evaluation Methodology (CEM) work units have
been interpreted to require the evaluator to perform specific EAs. In these
instances, EAs will be specified in Section 2 (), Section 5 (), and possibly
Section 3 (Evaluation Activities for Optional Requirements) and Section 4
(Evaluation Activities for Selection-Based Requirements). In cases where there
are no CEM interpretations, the CEM activities are to be used to determine if
SARs are satisfied and references to the CEM work units are identified as being
the sole EAs to be performed.

9 Finally, there are cases where EAs have rephrased CEM work units to provide
clarity on what is required. The EAs are reworded for clarity and interpret the
CEM work units such that they will result in more objective and repeatable
actions by the evaluator. In these cases, the EA supplements the CEM work unit.
These EAs will be specified in Section 5 ().

1.3 Terminology

1.3.1 Glossary

10 For definitions of standard CC terminology, see [CC] part 1.

Term Meaning

Assurance Grounds for confidence that a TOE meets the SFRs [CC1].

Data Encryption Key (DEK) A key used to encrypt data-at-rest.

Error State The device has failed a self-test and could not reset

Key Chaining The method of using multiple layers of encryption keys to protect data.
A top layer key encrypts a lower layer key which encrypts the data;
this method can have any number of layers.

Key Encryption Key (KEK) A key used to encrypt other keys, such as DEKs or storage that
contains keys.

Keying Material A data item that is used in combination with other data in order to
derive a cryptographic key (e.g. a passphrase, seed, or each of the
values used in an xor combination).

Passphrase Authorisation Factor A type of authorisation factor requiring the user to provide a secret set
of characters to gain access.

Powered-Off State The device has been shutdown.

Required Supplementary
Information

Information that is not necessarily included in the Security Target or
operational guidance, and that may not necessarily be public.
Examples of such information could be entropy analysis, or
description of a cryptographic key management architecture used in
(or in support of) the TOE. The requirement for any such
supplementary information will be identified in the relevant cPP (see
description in Section 6).

IntroductionRequired Supplementary Information
 WORKING DRAFT

Term Meaning

Submask A submask is a bit string that is provided as an input to a cryptographic
function or cryptographic primitive acting as one part of a chain of
cryptographic functions that calculates a cryptographic key as the end
result of the chain. Examples of submasks include: master keys,
intermediate keys, wrapping keys, secret bit strings used for
authentication or authorisation, and conditioned passphrases.

Target of Evaluation A set of software, firmware and/or hardware possibly accompanied by
guidance. [CC1]

TOE Security Functionality (TSF) A set consisting of all hardware, software, and firmware of the TOE
that must be relied upon for the correct enforcement of the SFRs.
[CC1]

TSF Data Data for the operation of the TSF upon which the enforcement of the
requirements relies.

1.3.2 Acronyms

Acronym Meaning
AES Advanced Encryption Standard
AF Authorisation factor
CA Certificate Authority
CBC Cipher Block Chaining
CCM Counter with CBC-Message Authentication Code
cPP Collaborative protection Profile
DEK Data Encryption Key
DSA Digital Signature Algorithm
ECDSA Elliptic Curve Digital Signature Algorithm
FIPS Federal Information Processing Standards
GCM Galois Counter Mode
HMAC Keyed-Hash Message Authentication Code
IEEE Institute of Electrical and Electronics Engineers
KDF Key Derivation Function
KEK Key Encryption Key
KMDSD Key Management and Data Storage Description
NIST National Institute of Standards and Technology
MBR Master Boot Record
PBKDF Passphrase-Based Key Derivation Function
PP Protection Profile
RBG Random Bit Generator
RSA Rivest Shamir Adleman Algorithm
SHA Secure Hash Algorithm
SFR Security Functional Requirement
ST Security Target
TOE Target of Evaluation
TSF TOE Security Functionality
TSS TOE Summary Specification
XTS XEX (XOR Encrypt XOR) Tweakable Block Cipher with Ciphertext Stealing

DRAFT References

2 Evaluation Activities for SFRs

11 The EAs presented in this section capture the actions the evaluator performs to
address technology specific aspects covering specific SARs (e.g.., ASE_TSS.1,
ADV_FSP.1, AGD_OPE.1, and ATE_IND.1) – this is in addition to the CEM
work units that are performed in Section 5 ().

12 Regarding design descriptions (designated by the subsections labelled TSS, as
well as any required supplementary material that may be treated as proprietary),
the evaluator must ensure there is specific information that satisfies the EA. For
findings regarding the TSS section, the evaluator’s verdicts will be associated
with the CEM work unit ASE_TSS.1-1. Evaluator verdicts associated with the
supplementary evidence will also be associated with ASE_TSS.1-1, since the
requirement to provide such evidence is specified in ASE in the cPP.

13 For ensuring the guidance documentation provides sufficient information for
the administrators/users as it pertains to SFRs, the evaluator’s verdicts will be
associated with CEM work units ADV_FSP.1-7, AGD_OPE.1-4, and
AGD_OPE.1-5.

14 Finally, the subsection labelled Tests is where the iTC has determined that
testing of the product in the context of the associated SFR is necessary. While
the evaluator is expected to develop tests, there may be instances where it is
more practical for the developer to construct tests, or where the developer may
have existing tests. Therefore, it is acceptable for the evaluator to witness
developer-generated tests in lieu of executing the tests. In this case, the
evaluator must ensure the developer’s tests are executing both in the manner
declared by the developer and as mandated by the EA. The CEM work units
that are associated with the EAs specified in this section are: ATE_IND.1-3,
ATE_IND.1-4, ATE_IND.1-5, ATE_IND.1-6, and ATE_IND.1-7.

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

2.1 Cryptographic Support (FCS)

2.1.1 Introduction

15 This section defines the Evaluation Activities associated with the cryptographic
requirements included in the collaborative Protection Profile for Portable
Storage Devices. This document defines three types of Evaluation Activities
(EAs) – TOE Summary Specification (TSS), Guidance Documentation, and
Tests and is designed to be used in conjunction with the “cPP for Portable
Storage Devices Cryptographic SFR Instantiation”. The security requirement
naming convention is consistent between these documents ensuring a clear one
to one correspondence between the security requirements and evaluation
activities.

2.1.1.1 Application of the Evaluation Activity document

16 In the cryptographic SFRs, several operations need to be performed (mainly
selections and assignments). As a result, the EAs may define separate actions
for different selected or assigned values in SFRs. The evaluator shall neither
carry out EAs related to SFRs that are not claimed in the Security Target nor
EAs related to specific selected or assigned values that are not claimed in the
Security Target.

17 In addition, EAs do not necessarily have to be executed independently from
each other. A description in a guidance documentation or one test case, for
example, can cover multiple EAs at a time, no matter whether the EAs are
related to the same or different SFRs.

2.1.1.2 Evaluation Activity Notes applicable to all SFRs

18 When an SFR (the ‘dependent SFR’) identifies other cryptographic SFRs that it
depends on, then the evaluator shall confirm that the ST includes those other
SFRs, with relevant selections as appropriate for the dependent SFR, and that
the TSS identifies that those SFRs are used for the implementation of the
dependent SFR. For example, where key derivation functions in
FCS_CKM_EXT.5 include selections for pseudorandom functions using
HMAC and AES then the evaluator would check that the ST includes
FCS_COP.1 iterations for the relevant HMAC and AES operations, including
corresponding key lengths and modes. The evaluator would also check that the
TSS specifies that these FCS_COP.1 implementations are used in the
implementation of the relevant aspects of FCS_CKM_EXT.51.

1 The developer is thereby confirming the use of the evaluated cryptographic functionality for the dependent SFR.
In many cases this will be a trivial confirmation, however in some cases multiple implementations of the primitive
cryptographic operation may be available in the product and it is then important to establish that only the evaluated
primitive is used for the dependent SFR.

DRAFT References

2.1.2 Cryptographic Key Generation (FCS_CKM.1)

2.1.2.1 FCS_CKM.1/DEK Cryptographic key generation (DEK)

19 The following EAs apply for Identifier: DEK1.

2.1.2.1.1 TSS

20 The evaluator shall examine the TSS to verify that it describes how the TOE
obtains a DEK through direct generation from a random bit generator as
specified in FCS_RBG_EXT.1. The evaluator shall review the TSS to verify
that it describes how the functionality described by FCS_RBG_EXT.1 is
invoked.

2.1.2.1.2 Guidance Documentation

21 The evaluator shall verify that the AGD guidance instructs the administrator
how to configure the TOE to use the selected key name(s) for all uses identified
in the ST.

2.1.2.1.3 Key Management Description (KMD)

22 The evaluator shall confirm that the KMD describes:

• The RBG interface and how it is used in the key generation

• If the TOE uses the generated key in a key chain/hierarchy then the KMD
shall describe how the key is used as part of the key chain/hierarchy.

2.1.2.1.4 Tests

23 For each selected key size, the evaluator shall configure the DEK generation
capability. The evaluator shall use the description of the RBG interface to verify
that the TOE requests and receives an amount of RBG output greater than or
equal to the requested key size.

2.1.3 Cryptographic Key Access (FCS_CKM.3)

2.1.3.1 FCS_CKM.3/DEK Cryptographic key access (Key Wrapping)

2.1.3.1.1 TSS

24 The evaluator shall check that the TSS includes a description of the key wrap
function(s) and shall check that this uses a key wrap algorithm and key sizes
according to the specification selected in the ST out of the table as provided in
the cPP table.

2.1.3.1.2 Guidance Documentation

25 The evaluator checks the AGD documents to confirm that the instructions for
establishing the evaluated configuration use only those key wrap function(s)
selected in the ST. If multiple key access modes are supported, the evaluator

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

shall examine the guidance documentation to determine that the method of
choosing a specific mode/key size by the end user is described.

2.1.3.1.3 KMD

26 The evaluator shall examine the KMD to ensure that it describes when the key
wrapping occurs, that the KMD description is consistent with the description in
the TSS, and that for all keys that are wrapped the TOE uses a method as
described in the cPP table. No uncertainty should be left over which is the
wrapping key and the key to be wrapped and where the wrapping key potentially
comes from i.e. is derived from.

27 If “KW3: AES-GCM” or “KW4: AES-CCM” is used the evaluator shall
examine the KMD to ensure that it describes how the IV is generated and that
the same IV is never reused to encrypt different plaintext pairs under the same
key. Moreover in the case of GCM, he must ensure that, at each invocation of
GCM, the length of the plaintext is at most (2^32)-2 blocks.

2.1.3.1.4 Tests

28 The	following tests are conditional based upon the selections made in the SFR.
The evaluator shall perform the following tests or witness respective tests
executed by the developer if technically possible, otherwise an analysis of the
implementation representation has to be performed.

29 Preconditions for testing:

• Specification	of	wrapping	keys	as	input	parameter	to	the	function	to	be	
tested	

• Specification	of	further	required	input	parameters	if	required	
• Specification	of	keys	to	be	wrapped	(plaintext,	as	function’s	argument)	
• Direct	access	to	wrapped	key	(ciphertext),	e.g.	in	the	non-volatile	

memory	

30 KW2: AES-KW [SP 800-38F, sec. 6.2]

31 The tests below are derived from “The Key Wrap Validation System (KWVS),
Updated: June 20, 2014” from the National Institute of Standards and
Technology.

32 The evaluator shall test the authenticated-encryption functionality of AES-KW
for each combination of the following input parameters:

• Supported key lengths selected in the ST (e.g. 128 bits, 256 bits)

• Five plaintext lengths:

o Two lengths that are non-zero multiples of 128 bits (two
semi-block lengths)

DRAFT References

o Two lengths that are odd multiples of the semi-block length
(64 bits)

o The largest supported plaintext length less than or equal to
4096 bits

33 For each set of the above parameters the evaluator shall generate a set of 100
key and plaintext pairs and obtain the ciphertext that results from AES-KW
authenticated encryption. To determine correctness, the evaluator shall compare
the results with those obtained from the AES-KW authenticated-encryption
function of a known good implementation.

34 The evaluator shall test the authenticated-decryption functionality of AES-KW
using the same test as for authenticated-encryption, replacing plaintext values
with ciphertext values and AES-KW authenticated-encryption (KW-AE) with
AES-KW authenticated-decryption (KW-AD). For the authenticated-
decryption test, 20 out of the 100 trials per plaintext length must have ciphertext
values that are not authentic; that is, they fail authentication.

35 Additionally, the evaluator shall perform the following negative test:

• Test 1 (invalid plaintext length):

Determine the valid plaintext lengths of the implementation from the TOE
specification. Verify that the implementation of KW-AE in the TOE rejects
plaintexts of invalid length by testing plaintext of the following lengths: 1)
plaintext length greater than 64 semi- blocks, 2) plaintext bit-length not
divisible by 64, 3) plaintext with length 0, and 4) plaintext with one semi-
block.
• Test 2 (invalid ciphertext length):

Determine the valid ciphertext lengths of the implementation from the TOE
specification. Verify that the implementation of KW-AD in the TOE rejects
ciphertexts of invalid length by testing ciphertext of the following lengths:
1) ciphertext with length greater than 65 semi-blocks, 2) ciphertext with bit-
length not divisible by 64, 3) ciphertext with length 0, 4) ciphertext with
length of one semi-block, and 5) ciphertext with length of two semi- blocks.

• Test 3 (invalid ICV1):

Test that the implementation detects invalid ICV1 values by encrypting any
plaintext value eight times using a different value for ICV1 each time as
follows: Start with a base ICV1 of 0xA6A6A6A6A6A6A6A6. For each of
the eight tests change a different byte to a different value, so that each of the
eight bytes is changed once. Verify that the implementation of KW-AD in
the TOE outputs FAIL for each test.

36 KW1: AES-KWP [SP 800-38F, sec. 6.3]

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

37 The tests below are derived from “The Key Wrap Validation System (KWVS),
Updated: June 20, 2014” from the National Institute of Standards and
Technology.

38 The evaluator shall test the authenticated-encryption functionality of AES-KWP
(KWP-AE) using the same test as for AES-KW authenticated-encryption with
the following change in the file plaintext lengths:

• Four lengths that are multiples of 8 bits

• The largest supported length less than or equal to 4096 bits

39 The	evaluator	shall	test	the authenticated-decryption (KWP-AD) functionality
of AES-KWP using the same test as for AES-KWP authenticated-encryption,
replacing plaintext values with ciphertext values and AES-KWP authenticated-
encryption with AES-KWP authenticated-decryption. For the Authenticated
Decryption test, 20 out of the 100 trials per plaintext length have ciphertext
values that fail authentication.

40 Additionally, the evaluator shall perform the following negative test:

• Test 1 (invalid plaintext length):

Determine the valid plaintext lengths of the implementation from the TOE
specification. Verify that the implementation of KW-AE in the TOE rejects
plaintexts of invalid length by testing plaintext of the following lengths: 1)
plaintext with length greater than 64 semi-blocks, 2) plaintext with bit-
length not divisible by 8, and 3) plaintext with length 0.

• Test 2 (invalid ciphertext length):

Determine the valid ciphertext lengths of the implementation from the TOE
specification. Verify that the implementation of KWP-AD in the TOE
rejects ciphertexts of invalid length by testing ciphertext of the following
lengths: 1) ciphertext with length greater than 65 semi-blocks, 2) ciphertext
with bit-length not divisible by 64, 3) ciphertext with length 0, and 4)
ciphertext with length of one semi-block.
• Test 3 (invalid ICV2):

Test that the implementation detects invalid ICV2 values by encrypting any
plaintext value four times using a different value for ICV2 each time as
follows: Start with a base ICV2 of 0xA65959A6. For each of the four tests
change a different byte of ICV2 to a different value, so that each of the four
bytes is changed once. Verify that the implementation of KWP-AD in the
TOE outputs FAIL for each test.

• Test 4 (invalid padding length):

Generate one ciphertext using algorithm KWP-AE with substring
[len(P)/8]32 of S replaced by each of the following 32-bit values, where

DRAFT References

len(P) is the length of P in bits and []32 denotes the representation of an
integer in 32 bits:

o [0]32	
o [len(P)/8-8]32	
o [len(P)/8-8]32	
o [513]32	

Verify that the implementation of KWP-AD in the TOE outputs FAIL on
those inputs.

• Test 5 (invalid padding bits):

If the implementation supports plaintext of length not a multiple of 64-bits,
then

for each PAD length [1..7]

for each byte in PAD

set a zero PAD value;

replace current byte by a non-zero value and use the resulting
plaintext as input to algorithm KWP-AE to generate ciphertexts;

verify that the implementation of KWP-AD in the TOE outputs
FAIL on this input.

41 KW3: AES-GCM [ISO 19772, clause 11]

42 Refer to [cPP FCS_COP.1/UDE] for the required AES-GCM testing. Each
distinct AES-GCM implementation shall be tested separately.

43 KW4: AES-CCM [ISO 19772, clause 8]

44 Refer to [cPP FCS_COP.1/UDE] for the required AES-CCM testing. Each
distinct AES-CCM implementation shall be tested separately.

2.1.4 Cryptographic Key Destruction (FCS_CKM.4)

2.1.4.1 FCS_CKM.4 Cryptographic key destruction

2.1.4.1.1 TSS

45 The evaluator examines the TSS to ensure it lists all relevant keys and keying
material (describing the source of the data, all memory types in which the data
is stored (covering storage both during and outside of a session, and both
plaintext and non-plaintext forms of the data)), all relevant destruction
situations (including the point in time at which the destruction occurs; e.g.
factory reset or device wipe function, change of authorisation data, change of
DEK, completion of use of an intermediate key) and the destruction method
used in each case. The evaluator confirms that the description of the data and

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

storage locations is consistent with the functions carried out by the TOE (e.g.
that all keys in the key chain are accounted for2). This evaluation activity may
be combined with those dealing with protection of keys and keying material in
FPT_KYP_EXT.1.

46 The evaluator shall check that the TSS identifies any configurations or
circumstances that may not conform to the key destruction requirement (see
further discussion in the Operational Guidance section below). Note that
reference may be made to the Guidance Documentation for description of the
detail of such cases where destruction may be prevented or delayed.

47 Where the ST specifies the use of “a value that does not contain any sensitive
data” to overwrite keys, the evaluator examines the TSS to ensure that it
describes how that pattern is obtained and used, and that this justifies the claim
that the pattern does not contain any sensitive data.

2.1.4.1.2 Guidance Documentation

48 The evaluator shall check that the guidance documentation for the TOE requires
users to ensure that the TOE remains under the user’s control while a session is
active.

49 A TOE may be subject to situations that could prevent or delay data destruction
in some cases. The evaluator shall check that the guidance documentation
identifies configurations or circumstances that may not strictly conform to the
key destruction requirement, and that this description is consistent with the
relevant parts of the TSS (and KMD). The evaluator shall check that the
guidance documentation provides guidance on situations where key destruction
may be delayed at the physical layer, identifying any additional mitigation
actions for the user (e.g. there might be some operation the user can invoke, or
the user might be advised to retain control of the device for some particular time
to maximise the probability that garbage collection will have occurred).

50 For example, when the TOE does not have full access to the physical memory,
it is possible that the storage may be implementing wear-levelling and garbage
collection. This may result in additional copies of the data that are logically
inaccessible but persist physically. Where available, the TOE might then
describe use of the TRIM command3 and garbage collection to destroy these
persistent copies upon their deletion (this would be explained in TSS and
guidance documentation).

2 Where keys are stored encrypted or wrapped under another key then this may need to be explained in order to
allow the evaluator to confirm the consistency of the description of keys with the TOE functions.
3 Where TRIM is used then the TSS and/or guidance documentation is also expected to describe how the keys are
stored such that they are not inaccessible to TRIM (e.g. they would need not to be contained in a file less than 982
bytes which would be completely contained in the master file table).

DRAFT References

2.1.4.1.3 KMD

51 The KMD identifies and describes the interface(s) that are used to service
commands to read/write memory. The evaluator examines the interface
description for each different media type to ensure that the interface supports
the selection(s) made by the ST Author.

52 The evaluator examines the KMD to ensure that all keys and keying material
identified in the TSS and KMD have been accounted for.

53 Note that where selections include ‘destruction of reference to the key directly
followed by a request for garbage collection’ (for volatile memory) then the
KMD is examined by the evaluator to ensure that it explains the nature of the
destruction of the reference, the request for garbage collection, and of the
garbage collection process itself.

2.1.4.1.4 Tests

54 Note: The following tests require the developer to provide access to a test
platform that provides the evaluator with interfaces that are typically not found
on factory products. The developer must describe the architecture of the test
platform and give a rationale that it accurately exposes the TOE state without
interfering with its intended operations.

55 [**USB iTC: to integrate the paragraph above and make it consistent with
any other description of the test platform: the aim is to describe this in one
place for all USB cPP SFRs]

56 Test 1: Applied to each key or keying material held as plaintext in volatile
memory and subject to destruction by overwrite by the TOE (whether or not the
plaintext value is subsequently encrypted for storage in volatile or non-volatile
memory).

57 The evaluator shall:

1. Record the value of the key or keying material.
2. Cause the TOE to dump the entire memory of the TOE into a binary

file.  

3. Search the content of the binary file created in Step #2 to locate all
instances of the known key value from Step #1. (Note that the
primary purpose of Step #3 is to demonstrate that appropriate search
commands are being used for Step #8 and #9)

4. Cause the TOE to perform normal cryptographic processing with the
key from Step #1.  

5. Cause the TOE to destroy the key.  

6. Cause the TOE to stop the execution but not exit.  

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

7. Cause the TOE to dump the entire memory of the TOE into a binary
file.  

8. Search the content of the binary file created in Step #7 for instances
of the known key value from Step #1.

9. [**USB	iTC	to decide whether to add an additional search for key
fragments (based on the specific types of risk for the TOE
type/deployment environments) and, if so, the relevant length/types
of fragment to search for - e.g. fragment sizes might be based on
implementation-level key storage structures. Example text follows
- to be deleted or modified by the iTC] Break the key value from
Step #1 into an evaluator-chosen set of fragments and perform a
search using each fragment. (Note that the evaluator shall first
confirm with the developer how the key is normally stored, in order
to choose fragment sizes that are the same or smaller than any
fragmentation of the data that may be implemented by the TOE. The
endianness or byte-order should also be taken into account in the
search.) 	

58 Steps #1-8 ensure that the complete key does not exist anywhere in volatile
memory. If a copy is found, then the test fails.

59 [**USB iTC to delete or modify this paragraph to make it consistent with the
decision on Step 9 above] Step #9 ensures that partial key fragments do not
remain in memory. If a fragment is found, there is a chance that it is not within
the context of a key (e.g., some random bits that happen to match). If this is the
case the test should be repeated with a different key in Step #1. If a fragment is
also found in this repeated run then the test fails and the reason for the collision
must be analysed and explained by the developer.

60 Test 2: Applied to each key or keying material held in non-volatile memory and
subject to destruction by overwrite by the TOE.

61 The evaluator shall:

1. Record the value of the key or keying material.

2. Cause the TOE to perform normal cryptographic processing with the
key from Step #1.  

3. Search the non-volatile memory in which the key was stored for
instances of the known key value from Step #1. (Note that the
primary purpose of Step #3 is to demonstrate that appropriate search
commands are being used for Step #5 and #6)

4. Cause the TOE to clear the key.  

5. Search the non-volatile memory in which the key was stored for
instances of the known key value from Step #1. If a copy is found,
then the test fails.

DRAFT References

6. [**As	with	Step	9	of	Test	1:	USB	 iTC	 to decide whether to add an
additional search for key fragments (based on the specific types of
risk for the TOE type/deployment environments) and, if so, the
relevant length/types of fragment to search for - e.g. fragment sizes
might be based on implementation-level key storage structures.
Example text follows - to be deleted or modified by the iTC] Break
the key value from Step #1 into an evaluator-chosen set of fragments
and perform a search using each fragment. (Note that the evaluator
shall first confirm with the developer how the key is normally stored,
in order to choose fragment sizes that are the same or smaller than
any fragmentation of the data that may be implemented by the TOE.
The endianness or byte-order should also be taken into account in
the search.) 	

62 [**USB iTC to delete or modify this paragraph to make it consistent with the
decision on Step 6 above] Step #6 ensures that partial key fragments do not
remain in non-volatile memory. If a fragment is found, there is a chance that it
is not within the context of a key (e.g., some random bits that happen to match).
If this is the case the test should be repeated with a different key in Step #1. If
a fragment is also found in this repeated run then the test fails and the reason for
the collision must be analysed and explained by the developer.

63 Test 3: Applied to each key or keying material held in non-volatile memory and
subject to destruction by overwrite by the TOE.

1. Record the storage location (logical address) of the key or keying
material.

2. Cause the TOE to perform normal cryptographic processing with the
key from Step #1.  

3. Cause the TOE to clear the key. Record the value to be used for the
overwrite of the key.

4. Examine the storage location from Step #1 to ensure the appropriate
pattern (recorded in Step #3) is utilised.

64 The test succeeds if correct pattern is found in the memory location. If the
pattern is not found then the test fails.

2.1.5 Cryptographic Key Derivation (FCS_CKM_EXT.5)

2.1.5.1 FCS_CKM_EXT.5/KEK Cryptographic key derivation (Cryptographic
Authorisation Data Conditioning)

65 In order to use a NIST SP 800-108 conformant method of key derivation, the
TOE must also implement algorithms to generate the key derivation key and
KDF. The permitted methods are as follows:

• Generation of key derivation key: NIST SP 800-56A key agreement
scheme or NIST SP 800-90A DRBG

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

• Underlying algorithm of KDF: HMAC or CMAC

2.1.5.1.1 TSS

66 The evaluator shall check that the TSS includes a description of the key
derivation function(s) and shall check that this uses a key derivation algorithm
and key size(s) according to the specification selected in the ST out of the table
as provided in the cPP table per row.

2.1.5.1.2 Guidance Documentation

67 If a selection of key derivation functions (KDF) or parameters are supported,
the evaluator shall examine the guidance documentation to determine that the
method of choosing a specific mode/derivation function/parameter by the end
user is described.

2.1.5.1.3 KMD

68 The evaluator shall examine the KMD to ensure that:

69 The KMD describes the complete key derivation chain and the description must
be consistent with the description in the TSS. For all key derivations the TOE
must use a method as described in the cPP table. No uncertainty should be left
over about how a key is derived from another in the chain.

70 The length of the key derivation key is defined by the PRF. The evaluator should
check whether the key derivation key length is consistent with the length
provided by the selected PRF.

71 If	a	key	is used as an input to several KDFs, each invocation must use a distinct
context string. If the output of a KDF execution is used for multiple
cryptographic keys, those keys must be disjoint segments of the output.

72 If the TOE implements Password-Based Key Derivation (KeyDrv4) then the
KMD shall describe how the TOE obtains a salt from the RBG to use in the
PBKDF.

2.1.5.1.4 Tests

73 The evaluator shall perform the following tests or witness respective tests
executed by the developer if technically possible, otherwise an analysis of the
implementation representation has to be performed.

74 Preconditions for testing:

• Specification	of	input	parameter	to	the	key	derivation	function	to	be	
tested	

• Specification	of	further	required	input	parameters	
• Access	to	derived	key(s)	

	

DRAFT References

75 The	 below	 tests	 are	 derived from Key Derivation using Pseudorandom
Functions (SP 800-108) Validation System (KBKDFVS), Updated 4 January
2016, Section 6.2, from the National Institute of Standards and Technology.

76 The evaluator shall perform one or more of the following tests to verify the
correctness of the key derivation function, depending on the mode(s) that are
supported:

77 KeyDrv1: Counter Mode Tests:

78 The evaluator shall determine the following characteristics of the key derivation
function:

• One	or	more	pseudorandom	functions	(PRFs)	that	are	included	in	the	'key	
derivation	algorithm'	selection	in	the	SFR,	and	their	output	lengths	in	bits	
(h)	

• One	or	more	of	the	values	{8,	16,	24,	32}	that	equal	the	length	of	the	binary	
representation	of	the	counter	(r),	and	the	location	of	the	counter	relative	
to	the	fixed	input	data:	before,	after,	or	in	the	middle.	If	the	counter	is	in	
the	middle	then	the	lengths	of	data	before	and	after	the	counter	must	be	
determined	

• The	‘key	size’	selections	in	the	SFR,	i.e.	the	lengths	(in	bits)	of	the	derived	
keying	material	(L)	

79 For each supported combination of PRF, counter location, value of r, and value
of L, the evaluator shall generate 20 pseudorandom key derivation key values
(KI).

80 For	each	value	of	KI, the evaluator shall supply this data to the TOE in order to
produce the keying material output KO. The evaluator shall verify that the
resulting output matches the results from submitting the same inputs to a
known-good implementation of the key derivation function, having the same
characteristics.

81 KeyDrv2: Feedback Mode Tests:

82 The evaluator shall determine the following characteristics of the key derivation
function:

• One	or	more	pseudorandom	functions	(PRFs)	that	are	included	in	the	'key	
derivation	algorithm'	selection	in	the	SFR,	and	their	output	lengths	in	bits	
(h)	

• If	the	implementation	includes	a	counter	then	one	or	more	of	the	values	
{8,	16,	24,	32}	 that	equal	 the	 length	of	 the	binary	representation	of	 the	
counter	(r),	and	the	location	of	the	counter	relative	to	the	fixed	input	data:	
before,	 after,	 or	 in	 the	middle.	 If	 the	 counter	 is	 in	 the	middle	 then	 the	
lengths	of	data	before	and	after	the	counter	must	be	determined	

• The	‘key	size’	selections	in	the	SFR,	i.e.	the	lengths	(in	bits)	of	the	derived	
keying	material	(L)	

• The	supported	IV	lengths	

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

83 For each supported combination of PRF, counter location (if a counter is used),
value of r (if a counter is used), value of L, and IV length, the evaluator shall
generate 20 pseudorandom key derivation key values (KI).

84 For each value of KI, the evaluator shall supply this data to the TOE in order to
produce the keying material output KO. The evaluator shall verify that the
resulting output matches the results from submitting the same inputs to a
known-good implementation of the key derivation function, having the same
characteristics.

85 KeyDrv3: Double Pipeline Iteration Mode Tests:

86 The evaluator shall determine the following characteristics of the key derivation
function:

• One	or	more	pseudorandom	functions	(PRFs)	that	are	included	in	the	'key	
derivation	algorithm'	selection	in	the	SFR,	and	their	output	lengths	in	bits	
(h)	

• If	the	implementation	includes	a	counter	then	one	or	more	of	the	values	
{8,	16,	24,	32}	 that	equal	 the	 length	of	 the	binary	representation	of	 the	
counter	(r),	and	the	location	of	the	counter	relative	to	the	fixed	input	data:	
before,	 after,	 or	 in	 the	middle.	 If	 the	 counter	 is	 in	 the	middle	 then	 the	
lengths	of	data	before	and	after	the	counter	must	be	determined	

• The	‘key	size’	selections	in	the	SFR,	i.e.	the	lengths	(in	bits)	of	the	derived	
keying	material	(L)	

87 For each supported combination of PRF, counter location (if a counter is used),
value of r (if a counter is used), and value of L, the evaluator shall generate 20
pseudorandom key derivation key values (KI).

88 For each value of KI, the evaluator shall supply this data to the TOE in order to
produce the keying material output KO. The evaluator shall verify that the
resulting output matches the results from submitting the same inputs to a
known-good implementation of the key derivation function, having the same
characteristics.

89 KeyDrv4: Password-based Key Derivation

90 For each combination of algorithm and output key size the evaluator shall
supply 10 passphrases as input and obtain the 10 outputs from the PBKDF
performed by the TOE, along with the salt(s) used by the TOE. These 10
passphrases shall be different and shall be conformant to the passphrase
conditions defined in FIA_SOS.1 and FIA_PPS_EXT.1. The resulting output
shall be compared to the results from an independent implementation of the
PBKDF for the same salt and passphrase inputs.

91 [**USB iTC: The above tests only within the required passphrase range. The
test activities for the associated FIA SFRs should include testing that verifies
behaviour both below and above the required range.]

DRAFT References

92 KeyDrv5: Intermediate Keys Method

93 If the selected algorithm is a hash then the testing of the hash primitive is the
only required Evaluation Activity. If the selected algorithm is XOR then no
separate primitive testing is necessary (the testing is covered by Evaluation
Activities for FCS_KYC_EXT.1).

94 CMAC-AES Tests

95 These tests are intended to be equivalent to those described in the NIST
document, “The CMAC Validation System (CMACVS)”, updated 23 August
2011, found at http://csrc.nist.gov/groups/STM/cavp/documents/mac/CMACVS.pdf.

96 It is not recommended that evaluators use values obtained from static sources
such as http://csrc.nist.gov/groups/STM/cavp/documents/mac/cmactestvectors.zip or
use values not generated expressly to exercise the CMAC-AES implementation.

97 The evaluator shall test the generation-encryption and decryption-verification
functionality of CMAC-AES for the following input parameters:

• Keys:	All	supported	and	selected	key	sizes	(e.g.,	128,	256	bits).	
• Message	Length:	Two	values	that	are	divisible	by	the	block	size	of	16	

bytes,	two	values	that	are	not	divisible	by	the	block	size,	a	length	of	0	(if	
supported),	and	the	maximum	length	supported	or	2^16,	whichever	is	
smaller.	

• CMAC	Length:	The	minimum	length	(1	byte),	the	middle	length	(8	
bytes),	and	the	maximum	length	(16	bytes).	

98 The testing for CMAC consists of two tests:

99 CMAC Generation Test

100 For each supported key size, message length, and MAC length, the evaluator
shall supply eight key-message combinations to obtain the resulting MACs. The
evaluator shall compare the resulting MACs with the result of providing the
same inputs to a known-good implementation.

101 CMAC Verification Process Test

102 For each supported key size, message length, and MAC length, the evaluator
shall supply 20 key-message-MAC combinations and determine whether the
MAC passes the verification process. The evaluator shall compare the results
with the results of providing the same inputs to a known-good implementation.

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

2.1.6 Cryptographic Operation (FCS_COP.1)

2.1.6.1 FCS_COP.1/UDE Cryptographic operation (AES User Data
Encryption/ Decryption)

2.1.6.1.1 TSS

103 The evaluator shall check that the TSS includes a description of encryption
function(s) used for user data encryption. The evaluator should check that this
description of the selected encryption function includes the key sizes and modes
of operations as specified in the table above per row.

104 The evaluator shall check that the TSS describes the means by which
the TOE satisfies constraints on algorithm parameters included in the
selections made for ‘cryptographic algorithm’ and ‘list of standard’.

105

2.1.6.1.2 Guidance Documentation

106 If multiple encryption modes are supported, the evaluator examines the
guidance documentation to determine that the method of choosing a specific
mode/key size by the end user is described.

2.1.6.1.3 KMD

107 The evaluator shall examine the KMD to ensure that the points at which user
data encryption and decryption occurs are described, and that the complete data
path for user data encryption is described. The evaluator checks that this
description is consistent with the relevant parts of the TSS.

108 Assessment of the complete data path for user data encryption includes
confirming that the KMD describes the data flow from the device’s host
interface to the device’s non-volatile memory storing the data, and gives
information enabling the user data datapath to be distinguished from those
situations in which data bypasses the data encryption engine (e.g. read-write
operations to an unencrypted Master Boot Record area). The documentation of
the data path should be detailed enough that the evaluator will thoroughly
understand the parts of the TOE that the data passes through (e.g. different
memory types, processors and co-processors), its encryption state (i.e.
encrypted or unencrypted) in each part, and any places where the data is stored.
For example, any caching or buffering of the data should be identified and
distinguished from the final destination in non-volatile memory (the latter
represents the location from which the host will expect to retrieve the data in
future).

109 If XTS-ATE is used as the user data encryption algorithm then the evaluator
shall check that the full length keys are created by methods that ensure that the
two halves are different and independent.

DRAFT References

2.1.6.1.4 Test

110 [**Negative tests and constraint tests to be added]

111 The following tests are conditional based upon the selections made in the SFR.
The evaluator shall perform the following test or witness respective tests
executed by the developer if technically possible, otherwise an analysis of the
implementation representation has to be performed.

112 Preconditions for testing:

• Specification	of	keys	as	input	parameter	to	the	function	to	be	tested	
• Specification	of	required	input	parameters	such	as	modes	
• Specification	of	user	data	(plaintext)	
• Tapping	of	encrypted	user	data	(ciphertext)	directly	in	the	non-volatile	

memory	

113 UDE1: AES-CBC Tests

114 For the AES-CBC tests described below, the plaintext, ciphertext, and IV values
shall consist of 128-bit blocks. To determine correctness, the evaluator shall
compare the resulting values to those obtained by submitting the same inputs to
a known-good implementation.

115 These	 tests	are intended to be equivalent to those described in NIST's AES
Algorithm Validation Suite (AESAVS)
(http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf). It is not
recommended that evaluators use values obtained from static sources such as
the example NIST's AES Known Answer Test Values from the AESAVS
document, or use values not generated expressly to exercise the AES-CBC
implementation.

116 AES-CBC Known Answer Tests

117 KAT-1 (GFSBox): To test the encrypt functionality of AES-CBC, the evaluator
shall supply a set of five different plaintext values for each selected key size and
obtain the ciphertext value that results from AES-CBC encryption of the given
plaintext using a key value of all zeros and an IV of all zeros.

118 To test the decrypt functionality of AES-CBC, the evaluator shall supply a set
of five different ciphertext values for each selected key size and obtain the
plaintext value that results from AES-CBC decryption of the given ciphertext
using a key value of all zeros and an IV of all zeros.

119 KAT-2 (KeySBox): To test the encrypt functionality of AES-CBC, the
evaluator shall supply a set of five different key values for each selected key
size and obtain the ciphertext value that results from AES-CBC encryption of
an all-zeros plaintext using the given key value and an IV of all zeros.

120 To test the decrypt functionality of AES-CBC, the evaluator shall supply a set
of five different key values for each selected key size and obtain the plaintext

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

that results from AES-CBC decryption of an all-zeros ciphertext using the given
key and an IV of all zeros.

121 KAT-3 (Variable Key): To test the encrypt functionality of AES-CBC, the
evaluator shall supply a set of keys for each selected key size (as described
below) and obtain the ciphertext value that results from AES encryption of an
all-zeros plaintext using each key and an IV of all zeros.

122 Key i in each set shall have the leftmost i bits set to ones and the remaining bits
to zeros, for values of i from 1 to the key size. The keys and corresponding
ciphertext are listed in AESAVS, Appendix E.

123 To test the decrypt functionality of AES-CBC, the evaluator shall use the same
keys as above to decrypt the ciphertext results from above. Each decryption
should result in an all-zeros plaintext.

124 KAT-4 (Variable Text): To test the encrypt functionality of AES-CBC, for each
selected key size, the evaluator shall supply a set of 128-bit plaintext values (as
described below) and obtain the ciphertext values that result from AES-CBC
encryption of each plaintext value using a key of each size and IV consisting of
all zeros.

125 Plaintext value i shall have the leftmost i bits set to ones and the remaining bits
to zeros, for values of i from 1 to 128. The plaintext values are listed in
AESAVS, Appendix D.

126 To test the decrypt functionality of AES-CBC, for each selected key size, use
the plaintext values from above as ciphertext input, and AES-CBC decrypt each
ciphertext value using key of each size consisting of all zeros and an IV of all
zeros.

127 AES-CBC Multi-Block Message Tests

128 The evaluator shall test the encrypt functionality by encrypting nine i-block
messages for each selected key size, for 2 <= i <=10. For each test, the evaluator
shall supply a key, an IV, and a plaintext message of length i blocks, and encrypt
the message using AES-CBC. The resulting ciphertext values shall be compared
to the results of encrypting the plaintext messages using a known good
implementation.

129 The evaluator shall test the decrypt functionality by decrypting nine i-block
messages for each selected key size, for 2 <= i <=10. For each test, the evaluator
shall supply a key, an IV, and a ciphertext message of length i blocks, and
decrypt the message using AES-CBC. The resulting plaintext values shall be
compared to the results of decrypting the ciphertext messages using a known
good implementation.

130 AES-CBC Monte Carlo Tests

DRAFT References

131 The evaluator shall test the encrypt functionality for each selected key size using
100 3-tuples of pseudo-random values for plaintext, IVs, and keys.

132 The evaluator shall supply a single 3-tuple of pseudo-random values for each
selected key size. This 3-tuple of plaintext, IV, and key is provided as input to
the below algorithm to generate the remaining 99 3-tuples, and to run each 3-
tuple through 1000 iterations of AES-CBC encryption.

Input: PT, IV, Key

Key[0] = Key

IV[0] = IV

PT[0] = PT

for i = 0 to 99 {

 Output Key[i], IV[i], PT[0]

 For j = 0 to 999 {

if (j == 0) {

CT[j] = AES-CBC-Encrypt(Key[i], IV[i], PT[j])

PT[j+1] = IV[i]

} else {

CT[j] = AES-CBC-Encrypt(Key[i], PT[j])

PT[j+1] = CT[j-1]

 }

 }

 Output CT[j]

 If (KeySize == 128) Key[i+1] = Key[i] xor CT[j]

 If (KeySize == 192) Key[i+1] = Key[i] xor (last 64 bits of CT[j-1] ||
CT[j])

 If (KeySize == 256) Key[i+1] = Key[i] xor (CT[j-1] || CT[j])

 IV[i+1] = CT[j]

 PT[0] = CT[j-1]

 }

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

133 The ciphertext computed in the 1000th iteration (CT[999]) is the result for each
of the 100 3-tuples for each selected key size. This result shall be compared to
the result of running 1000 iterations with the same values using a known good
implementation.

134 The evaluator shall test the decrypt functionality using the same test as above,
exchanging CT and PT, and replacing AES-CBC-Encrypt with AES-CBC-
Decrypt.

135 UDE2: AES-CCM Tests

136 These tests are intended to be equivalent to those described in the NIST
document, “The CCM Validation System (CCMVS)”, updated 9 Jan 2012,
found at http://csrc.nist.gov/groups/STM/cavp/documents/mac/CCMVS.pdf.

137 It is not recommended that evaluators use values obtained from static sources
such as
http://csrc.nist.gov/groups/STM/cavp/documents/mac/ccmtestvectors.zip or
use values not generated expressly to exercise the AES-CCM implementation.

138 The evaluator shall test the generation-encryption and decryption-verification
functionality of AES-CCM for the following input parameter and tag lengths:

• Keys:	All	supported	and	selected	key	sizes	(e.g.,	128,	256	bits).	
• Associated	 Data:	 Two	 or	 three	 values	 for	 associated	 data	 length:	 The	

minimum	(>=0	bytes)	and	maximum	(<=32	bytes)	supported	associated	
data	lengths,	and	2^16	(65536)	bytes,	if	supported.	

• Payload:	Two	values	for	payload	length:	The	minimum	(>=0	bytes)	and	
maximum	(<=32	bytes)	supported	payload	lengths.	

• Nonces:	All	supported	nonce	lengths	(7,	8,	9,	10,	11,	12,	13)	in	bytes.	
• Tag:	All	supported	tag	lengths	(4,	6,	8,	10,	12,	14,	16)	in	bytes.	

139 The testing for CCM consists of five tests. To determine correctness in each of
the below tests, the evaluator shall compare the ciphertext with the result of
encryption of the same inputs with a known good implementation.

140 Variable	Associated	Data	Test:	For	each supported key size and associated data
length, and any supported payload length, nonce length, and tag length, the
evaluator shall supply one key value, one nonce value, and 10 pairs of associated
data and payload values, and obtain the resulting ciphertext.

141 Variable	Payload	Test:	For	each supported key size and payload length, and any
supported associated data length, nonce length, and tag length, the evaluator
shall supply one key value, one nonce value, and 10 pairs of associated data and
payload values, and obtain the resulting ciphertext.	

142 Variable	Nonce	Test:	 For	 each	 supported key size and nonce length, and any
supported associated data length, payload length, and tag length, the evaluator

DRAFT References

shall supply one key value, one nonce value, and 10 pairs of associated data and
payload values, and obtain the resulting ciphertext.

143 Variable Tag Test: For each supported key size and tag length, and any
supported associated data length, payload length, and nonce length, the
evaluator shall supply one key value, one nonce value, and 10 pairs of associated
data and payload values, and obtain the resulting ciphertext.

144 Decryption-Verification Process Test: To test the decryption-verification
functionality of AES- CCM, for each combination of supported associated data
length, payload length, nonce length, and tag length, the evaluator shall supply
a key value and 15 sets of input plus ciphertext, and obtain the decrypted
payload. Ten of the 15 input sets supplied should fail verification and five
should pass.

145 UDE3: AES-GCM Tests

146 These tests are intended to be equivalent to those described in the NIST
document, “The Galois/Counter Mode (GCM) and GMAC Validation System
(GCMVS) with the Addition of XPN Validation Testing”, rev. 15 Jun 2016,
section 6.2, found at
http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmvs.pdf.

147 It is not recommended that evaluators use values obtained from static sources
such as
http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip, or
use values not generated expressly to exercise the AES-GCM implementation.

148 The evaluator shall test the authenticated encrypt functionality of AES-GCM by
supplying 15 sets of Key, Plaintext, AAD, IV, and Tag data for every
combination of the following parameters as selected in the ST and supported by
the implementation under test:

• Key	size	in	bits:	Each	selected	and	supported	key	sizes	(128,	256).	
• Plaintext	 length	 in	 bits:	 Up	 to	 four	 values	 for	 plaintext	 length:	 Two	

values	that	are	non-zero	integer	multiples	of	128,	if	supported.	And	two	
values	that	are	non-multiples	of	128,	if	supported.	

• AAD	 length	 in	 bits:	 Up	 to	 five	 values	 for	 AAD	 length:	 Zero-length,	 if	
supported.	 Two	 values	 that	 are	 non-zero	 integer	 multiples	 of	 128,	 if	
supported.	 And	 two	 values	 that	 are	 integer	 non-multiples	 of	 128,	 if	
supported.	

• IV	length	in	bits:	Up	to	three	values	for	IV	length:	96	bits.	Minimum	and	
maximum	supported	lengths,	if	different.	

• Tag	length	in	bits:	Each	supported	length	(128,	120,	112,	104,	96,	64,	32).	

149 To determine correctness, the evaluator shall compare the resulting values to
those obtained by submitting the same inputs to a known good implementation.

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

150 The evaluator shall test the authenticated decrypt functionality of AES-GCM by
supplying 15 Ciphertext-Tag pairs for every combination of the above
parameters, replacing Plaintext length with Ciphertext length. For each
parameter combination the evaluator shall introduce an error into either the
Ciphertext or the Tag such that approximately half of the cases are correct and
half the cases contain errors. To determine correctness, the evaluator shall
compare the resulting pass/fail status and Plaintext values to the results obtained
by submitting the same inputs to a known-good implementation.

151 UDE4: XTS-AES Tests

152 These tests are intended to be equivalent to those described in the NIST
document, “The XTS-AES Validation System (XTSVS)”, updated 5 Sept 2013,
found at http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSVS.pdf.

153 It is not recommended that evaluators use values obtained from static sources
such as the XTS-AES test vectors at
http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSTestVectors.zip or
use values not generated expressly to exercise the XTS-AES implementation.

154 The evaluator shall generate test values as follows:

155 For each supported key size (256 bit (for AES-128) and 512 bit (for AES-256)
keys), the evaluator shall provide up to five data lengths:

• Two	data	lengths	divisible	by	the	128-bit	block	size,	if	data	unit	lengths	of	
complete	block	sizes	are	supported.	

• Two	data	lengths	not	divisible	by	the	128-bit	block	size,	if	data	unit	lengths	
of	partial	block	sizes	are	supported.	

• The	 largest	 data	 length	 supported	 by	 the	 implementation,	 or	 2^16	
(65536),	whichever	is	larger.	

156 The evaluator shall specify whether the implementation supports tweak values
of 128-bit hexadecimal strings or a data unit sequence number, or both.

157 For	each	combination	of	key	size and data length, the evaluator shall provide 100
sets of input data and obtain the ciphertext that results from XTS-AES
encryption. If both kinds of tweak values are supported then each type of tweak
value shall be used in half of every 100 sets of input data, for all combinations
of key size and data length. The evaluator shall verify that the resulting
ciphertext matches the results from submitting the same inputs to a known-good
implementation of XTS- AES.

158 The evaluator shall test the decrypt functionality of XTS-AES using the same
test as for encrypt, replacing plaintext values with ciphertext values and XTS-
AES encrypt with XTS-AES decrypt.

159 UDE5: Camellia-CBC Tests

DRAFT References

160 To test the encrypt and decrypt functionality of Camellia in CBC mode, the
evaluator shall perform the tests as specified in 10.2.1.2 of ISO/IEC
18367:2016.

161 UDE6: Camellia-CCM Tests

162 To test the encrypt functionality of Camellia in CCM mode, the evaluator shall
perform the tests as specified in 10.6.1.1 of ISO/IEC 18367:2016.

163 To test the decrypt functionality of Camellia in CCM mode, the evaluator shall
perform the tests as specified in 10.6.1.2 of ISO/IEC 18367:2016.

164 As a prerequisite for these tests, the evaluator shall perform the test for encrypt
functionality of Camellia in ECB mode as specified in 10.2.1.2 of ISO/IEC
18367:2016.

165 UDE7: Camellia-GCM Tests

166 To test the encrypt functionality of Camellia in GCM, the evaluator shall
perform the tests as specified in 10.6.1.1 of ISO/IEC 18367:2016.

167 To test the decrypt functionality of Camellia in GCM, the evaluator shall
perform the tests as specified in 10.6.1.2 of ISO/IEC 18367:2016.

168 As a prerequisite for these tests, the evaluator shall perform the test for encrypt
functionality of Camellia in ECB mode as specified in 10.2.1.2 of ISO/IEC
18367:2016.

169 UDE8: XTS-Camellia Tests

170 These tests are intended to be equivalent to those described in the IPA
document, ATR-01-B, “Specifications of Cryptographic Algorithm
Implementation Testing – Symmetric-Key Cryptography”, found at
https://www.ipa.go.jp/security/jcmvp/jcmvp_e/documents/atr/atr01b_en.pdf.

171 The evaluator shall generate test values as follows:

172 For each supported key size (256 bit (for Camellia-128) and 512 bit (for
Camellia-256) keys), the evaluator shall provide up to five data lengths:

• Two	data	lengths	divisible	by	the	128-bit	block	size,	if	data	unit	lengths	of	
complete	block	sizes	are	supported.	

• Two	data	lengths	not	divisible	by	the	128-bit	block	size,	if	data	unit	lengths	
of	partial	block	sizes	are	supported.	

• The	 largest	 data	 length	 supported	 by	 the	 implementation,	 or	 2^16	
(65536),	whichever	is	larger.	

173 The evaluator shall specify whether the implementation supports tweak values
of 128-bit hexadecimal strings or a data unit sequence number, or both.

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

174 For	each	combination	of	key	size and data length, the evaluator shall provide 100
sets of input data and obtain the ciphertext that results from XTS-Camellia
encryption. If both kinds of tweak values are supported, 50 of each 100 sets of
input data shall use each type of tweak value. The resulting ciphertext shall be
compared to the results of a known-good implementation.

175 As a prerequisite for this test, the evaluator shall perform the test for encrypt
functionality of Camellia in ECB mode as specified in 10.2.1.2 of ISO/IEC
18367:2016.

176 The evaluator shall test the decrypt functionality of XTS-Camellia using the
same test as for encrypt, replacing plaintext values with ciphertext values and
XTS-Camellia encrypt with XTS-Camellia decrypt.

177 As a prerequisite for this test, the evaluator shall perform the test for decrypt
functionality of Camellia in ECB mode as specified in 10.2.1.2 of ISO/IEC
18367:2016.

2.1.7 Cryptographic Key Chaining (FCS_KYC_EXT.1)

2.1.7.1 FCS_KYC_EXT.1 Cryptographic key chaining

2.1.7.1.1 TSS

178 The evaluator shall check that the TSS contains a high-level description of the
chain of intermediary keys (including the type and length of each key)
originating from the authorisation data and ending with the DEK.

2.1.7.1.2 Guidance Documentation

179 None.

2.1.7.1.3 KMD

180 The evaluator shall examine the KMD to verify that it describes the chain of
intermediary keys originating from the authorisation data and ending in the
DEK using methods selected in FCS_KYC_EXT. The evaluator shall ensure
that the description of the key chain demonstrates that it maintains the chain of
keys using an authorisation data submask according to FCS_CKM_EXT.5, key
wrapping according to FCS_CKM.3 and uses only other selected methods in
FCS_KYC_EXT.1 in accordance with the definition of their associated SFRs.

181 The evaluator shall examine the KMD to verify that the effective strength of the
DEK (based only on key length) is maintained throughout the key chain. The
evaluator shall examine the key hierarchy to ensure that at no point could the
chain be broken without a cryptographic exhaust or knowledge of the initial
authorisation value.

182 The evaluator shall verify the KMD includes a description of the effective
strength of keys throughout the key chain.

DRAFT References

183 The evaluator shall examine the KMD to verify that the description of the key
chain is consistent with the information given in the TSS (e.g. by examining the
description of the key chain in both places), the Operational Guidance (e.g. by
examining the description of user inputs required, any configuration options
available, and the operations available to directly or indirectly create and use
keys4), and any observations made during evaluator testing.

2.1.7.1.4 Tests

184 TBD.

2.1.8 Cryptographic Salt Generation (FCS_SLT_EXT.1)

2.1.8.1 FCS_SLT_EXT.1 Cryptographic salt generation

2.1.8.1.1 TSS

185 The evaluator shall ensure the TSS describes how salts are generated using the
RBG.

2.1.8.1.2 Guidance Documentation

186 None.

2.1.8.1.3 Tests

187 The evaluator shall confirm by testing that the salts obtained in the
cryptographic operations that use the salts are of the length specified in
FCS_SLT_EXT.1, are obtained from the RBG, and are fresh on each
invocation.

188 Note: in general these tests may be carried out as part of the tests of the relevant
cryptographic operations.

2.1.9 Random Bit Generation (FCS_RBG_EXT)

2.1.9.1 FCS_RBG_EXT.1 Random Bit Generation (RBG)

2.1.9.1.1 TSS

189 TBD.

2.1.9.1.2 Guidance Documentation

190 TBD.

191

4 For example: the relationship of authorisation data validation to the decryption of the DEK should be examined
for consistency with the key chain description to check for any possible intermediate validation operations and/or
data that are not mentioned in the key chain description.

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

2.1.9.1.3 Tests

192 The following test is intended to be equivalent to that defined in The NIST SP
800-90A Deterministic Random Bit Generator Validation System (DRBGVS),
Updated 29 October 2015, from the National Institute of Standards and
Technology
(http://csrc.nist.gov/groups/STM/cavp/documents/drbg/DRBGVS.pdf). It is
not recommended that evaluators use values obtained from static sources such
as the sample DRBG Test Vectors on the CAVP Test site.

193 The evaluator shall verify the implementation of the Deterministic Random Bit
Generation function by running 15 tests for each combination of the following
parameters as selected in FCS_RBG_EXT.1.1 and supported by the
implementation:

• Mechanism:	Hash_DRBG,	HMAC_DRBG,	CTR_DRBG		
• Option:		

o for	Hash_DRBG	and	HMAC_DRBG:	selected	hash	function	and	size		
o for	CTR_DRBG:	selected	block	cipher	and	whether	or	not	a	Derivation	

Function	(df)	is	used		
• Prediction	Resistance	enabled	or	disabled		
• Entropy	input	length		
• Nonce	length		
• Personalization	String	length		
• Additional	Input	length		
• Returned	Bits	length		

194 Tests with Prediction Resistance Enabled consist of the following steps:

1. Instantiate	DRBG	
2. Generate	a	first	block	of	random	bits	
3. Generate	a	second	block	of	random	bits	
4. Uninstantiate	DRBG	

195 For each test, the evaluator shall provide the following randomly generated
inputs:

• Entropy,	Nonce,	and	Personalization	string	for	step	(1)	
• Additional	Input	and	Entropy	for	step	(2)	
• Additional	Input	and	Entropy	for	step	(3)	

196 The evaluator shall use a known-good implementation to verify that the
Returned Bits output from step (3) is the result expected.

197 Tests with Prediction Resistance Disabled consist of the following steps:

1. Instantiate	DRBG	
2. Reseed	(if	the	implementation	supports	reseed	functionality)	
3. Generate	a	first	block	of	random	bits	
4. Generate	a	second	block	of	random	bits	
5. Uninstantiate	DRBG	

DRAFT References

198 For each test, the evaluator shall provide the following randomly generated
inputs:

• Entropy,	Nonce,	and	Personalization	String	for	step	(1)	
• Additional	Input	and	Entropy	for	step	(2)	(if	reseed	is	supported)	
• Additional	Input	for	step	(3)	
• Additional	Input	for	step	(4)	

199 The evaluator shall use a known-good implementation to verify that the
Returned Bits output from step (4) is the result expected.

200 The implementation passes the DRBG test if the Returned Bits result matches
the Returned Bits from the known-good implementation.

2.2 User Data Protection (FDP)

2.2.1 Protection of User Data on Device (FDP_UDD_EXT)

2.2.1.1 FDP_UDD_EXT.1 Protection of User Data on Device

2.2.1.1.1 TSS

201 The evaluator shall examine the TSS to ensure that it describes how user data is
written to the device’s storage medium and the point at which the encryption
function is applied. The evaluator examines the TSS to confirm its justification

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

of why standard methods of accessing the device via the host platform’s
operating system will always pass through these functions.

202 The evaluator shall verify that the TSS describes the initialization of the TOE
and the activities the TOE performs to ensure that it encrypts the entirety of the
user data when a user first provisions the TOE. The evaluator shall verify that
the TSS describes areas of the storage medium that it does not encrypt, and
confirms that no user data is stored in those areas.

2.2.1.1.2 KMDSD

203 The evaluator shall examine the KMDSD to verify that it includes all of the
requirements for this document in [USBcPP, D].

204 The evaluator shall examine the KMDSD to verify that it provides sufficient
description of all platforms to ensure that the product encrypts all user data
storage areas. In performing this examination the evaluator shall take into
account (at least) the description of the relevant datapaths, the situations
identified in the KMDSD in which user data may be read and stored in other
parts of the TOE (e.g. as part of a caching or look-ahead strategy), and the
KMDSD rationale for why no stored unencrypted user data can survive beyond
the session in which it is written and/or read.

205 The evaluator shall examine the KMDSD to verify that it provides information
on those conditions in which data bypasses the data encryption engine (e.g. for
system data) and shall confirm that this does not include user data.

206 The evaluator shall examine the KMDSD to verify that it provides a description
of the platform’s boot initialisation, the encryption initialisation process, and at
what point the product enables the encryption. The evaluator shall confirm that
the description shows that the product does not allow for the transfer of user
data before it fully initialises the encryption.

207 The evaluator shall examine the KMDSD to ensure the consistency and
accuracy of the description as judged against the TSS, the operational guidance,
and any observations made during testing.

2.2.1.1.3 Operational Guidance

208 The evaluator shall examine the AGD guidance to determine that it describes
the initial steps needed to enable all necessary cryptographic functions. The
guidance shall provide instructions that are sufficient to ensure that all user data
stored on the device will be encrypted. The evaluator shall examine the AGD
guidance to determine that user data encryption is performed without user
intervention. The user data encryption shall occur transparently to the user and
the decision to protect the data is outside the discretion of the user.

DRAFT References

2.2.1.1.4 Test

209 The evaluator examines the tool and its documentation to confirm that it cannot
be used to compromise instances of the TOE in a real operational environment
(i.e. that they can be used only in test/diagnostic environments).

210 The evaluator shall perform the following tests:

211 Test 1: The evaluator shall utilize developer provided tools which allow
inspection of the encrypted drive, and may allow provisioning with a known
key. The evaluator shall ensure that the TOE is initialized and that the
encryption engine is ready. The evaluator shall:

1. Determine a random character pattern of at least 64 KB;

10. Retrieve information on the TOE’s lowest and highest logical
address for which encryption is enabled;

11. Write pattern to storage device in multiple locations: randomly select
several logical address locations within the device’s lowest to
highest address range and write pattern to those addresses.

12. Verify data is encrypted: engage device’s functionality for
generating a new encryption key, thus performing an erase of the key
per FCS_CKM.4. Read from the same locations at which the data
was written; compare the retrieved data to the written data and
ensure they do not match.

2.2.2 Protection of System Data on Device (FDP_SDD_EXT)

2.2.2.1 FDP_SDD_EXT.1 Protection of System Data on Device

2.2.2.1.1 TSS

212 The evaluator shall examine the TSS to ensure that it identifies the users
authorised to write to system data, and describes how system data is written to
the device’s storage medium, including the nature of the authorisation
mechanism and the point at which it is applied. The evaluator examines the TSS
to confirm its justification of why standard methods of accessing the device via
the host platform’s operating system will always pass through these functions.

213 The evaluator shall examine the TSS to ensure the accuracy of the description
as judged against other parts of the ST, the KMDSD, the operational guidance,
and any observations made during testing.

214 The evaluator shall verify that the TSS describes the initialisation of the TOE
and the activities the TOE performs to ensure that it protects the system data
from unauthorised access when a user first provisions the TOE.

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

2.2.2.1.2 KMDSD

215 The evaluator shall examine the KMDSD to verify that it provides sufficient
description of all platforms to enable the evaluator to ensure that the product
protects against unauthorised access to all system data storage areas.

216 The evaluator shall examine the KMDSD to verify that it provides a description
of the platform’s boot initialisation, and at what point the product enables the
system data protection. The evaluator shall confirm that the description shows
that the product does not allow modification of system data before it fully
initialises the access protection.

2.2.2.1.3 Operational Guidance

217 The evaluator shall check the AGD guidance to determine that system data can
only change in ways that reflect legitimate use of the device by authorised users.
The evaluator shall verify that descriptions provided in the AGD guidance
corresponds to descriptions in the TSS and the KMDSD.

2.2.2.1.4 Test

218 The evaluator shall perform the following tests:

219 Test 1: The evaluator shall initialise the TOE and before the device fully
initialises the access protection, the evaluator shall attempt to modify system
data via the host platform’s operating system.

220 Test 2: The evaluator shall not provide any authorisation data and attempt to
modify system data via the host platform’s operating system.

2.3 Identification and Authentication (FIA)

2.3.1 Authentication Failures (FIA_AFL)

2.3.1.1 FIA_AFL.1 Authentication failure handling

2.3.1.1.1 TSS

221 The evaluator shall check that the TSS identifies the maximum number of
unsuccessful authentication attempts prior to the deletion of the DEK by the
TSF. The evaluator shall also examine the TSS to determine whether the user is
able to configure the limit of unsuccessful authentication attempts and, if so,
shall verify that the TSS specifies a range of acceptable values that is consistent
with FIA_AFL.1.

2.3.1.1.2 KMDSD

222 The evaluator shall examine the KMDSD to verify that it describes the methods
the TOE employs to limit the number of consecutively failed authorisation
attempts.

DRAFT References

2.3.1.1.3 Operational Guidance

223 The evaluator shall examine the operational guidance to ensure it describes how
to configure the TOE to ensure the limits regarding validation attempts can be
established. The operational guidance shall also list a range of acceptable
values. If this value is not configurable, the limit shall simply be stated in the
guidance.

224 The evaluator shall examine the operational guidance to ensure that it clearly
alerts the user to the fact that the DEK is deleted and that therefore the encrypted
user data will be permanently inaccessible after the defined number of
unsuccessful authorisation attempts has been met.

2.3.1.1.4 Test

225 The evaluator shall perform the following test

226 Test 1: The evaluator shall confirm that the TSF will not allow to configure a
number of unsuccessful authorisation attempts that is outside of the specified
range of acceptable values. This test case is only applicable for devices that
allow configuration of the authentication failure threshold value.

227 Test 2: The evaluator shall enter invalid authorisation data so that the
documented maximum number of unsuccessful authorisation attempts is
reached. The evaluator shall verify that the encrypted user data is no longer
available on the device.

2.3.2 Passphrase support (FIA_PPS)

2.3.2.1 FIA_PPS_EXT.1 Passphrase entry interface

2.3.2.1.1 TSS

228 The evaluator shall check that the TSS describes the method of passphrase entry
on the device.

2.3.2.1.2 Operational Guidance

229 The evaluator shall examine the operational guidance to ensure that the method
of passphrase entry on the device is described. The operational guidance shall
specify if the passphrase is entered via the host software or if the TOE includes
a passphrase-entry interface. The guidance documentation shall describe all
passphrase entry methods in case the device support more than one passphrase
entry method/interface.

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

2.4 Protection of the TSF (FPT)

2.4.1 Fail secure (FPT_FLS)

2.4.1.1 FPT_FLS.1 Failure with preservation of secure state

2.4.1.1.1 TSS

230 The evaluator shall check that the TSS describes the failure conditions that
cause the TOE to enter a mute state, and that the mute state is specified as being
irreversible.

2.4.1.1.2 KMDSD

231 The evaluator shall examine the KMDSD to verify it specifies how the TOE
ensures that all data output via the data output interface is to be inhibited during
error states or self-test conditions. The evaluator shall also verify, by inspection
of the design of the TOE, that the data output interface is, in fact, logically or
physically inhibited under these conditions.

2.4.1.1.3 Operational Guidance

232 The evaluator shall verify that the operational guidance describes the method
by which the product verifies the correct operation of the TSF. The evaluator
shall verify that the operational guidance describes security-relevant events
related to the self-testing failures, such that each user knows what events may
occur and what action (if any) he may have to take in order to maintain security.

233 The evaluator shall verify that the operational guidance specifies that all data
output via the data output interface is inhibited whenever the TOE is in an error
state. The evaluator shall verify from the operational guidance that once an error
condition is detected and the error state is entered, all data output via the data
output interface is inhibited and the device enters an irreversible mute state.
Status information to identify the type of error may be allowed from the status
output interface, as long as the evaluator can verify that no CSPs, plaintext data,
or other information that if misused could lead to a compromise.

2.4.1.1.4 Test

234 The evaluator shall perform the following tests:

235 Test 1: The evaluator shall cause self-testing errors and firmware integrity test
errors during initial start-up to verify that the device preserves a secure state i.e.
enters a mute state. This test should be repeated for all different failure
conditions. The evaluator shall:

1. cause known answer self-testing and firmware integrity tests errors.
<Check: is this feasible?>

2. verify that all data output via the data output interface is inhibited
and the device enters the mute state. If status information is output

DRAFT References

from the status output interface to identify the type of error, the
evaluator shall verify that the information output is not sensitive. The
evaluator shall verify that no plaintext data, or other information that
if misused could lead to a compromise.

2.4.2 Protection of Keys and Keying Material (FPT_KYP_EXT)

2.4.2.1 FPT_KYP_EXT.1 Protection of Keys and Keying Material

2.4.2.1.1 TSS

236 The evaluator shall check the TSS to confirm that protection of keys and keying
material is described in the TSS.

2.4.2.1.2 KMDSD

237 The evaluator shall examine the KMDSD to ensure that the methods used to
protect the keys stored in non-volatile memory are described, and that this is
consistent with the description in the TSS, the Operational Guidance, and any
observations made during evaluator testing.

238 The evaluator shall examine the KMDSD to ensure that it describes the storage
location of all keys and the protection of all keys stored in non-volatile memory,
verifying that they are wrapped as specified in FCS_CKM.3 or encrypted as
specified in FCS_COP.1/KeyEnc.

239 The evaluator is reminded that plaintext keys or keying material that are not part
of the key chain for the purposes of FCS_KYC_EXT.1, and plaintext keys or
keying material that no longer provide access to the encrypted user data after
initial provisioning, do not need to be stored encrypted or wrapped in non-
volatile memory.

2.4.2.1.3 Test

240 The evaluator shall perform the following test:

241 Test 1: The evaluator shall utilize developer provided tools which allow
inspection of the encrypted drive, and may allow provisioning with a known
key. The evaluator shall ensure that the TOE is initialized and that the
encryption engine is ready. The evaluator shall ensure that keys and keying
material are stored wrapped or encrypted, i.e. keys that are part of the key chain
are not stored in plaintext.

2.4.3 TSF self test (FPT_TST)

2.4.3.1 FPT_TST.1 TSF testing

2.4.3.1.1 TSS

242 The evaluator shall examine the TSS to confirm that it describes the known-
answer tests for cryptographic functions and firmware integrity tests.

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

243 The evaluator shall examine the TSS to confirm that it describes the method by
which the product verifies the correct operation of the TSF and the integrity of
TSF data and firmware. The evaluator shall verify that the TSS indicates these
self-tests are run at start-up automatically, and do not involve any inputs from
or actions by the user.

244 The evaluator shall check that the TSS includes a description of the irreversible
mute state that the TSF enters when self-tests fail (cf. FPT_FLS.1).

2.4.3.1.2 KMDSD

245 The evaluator shall examine the KMDSD description of the initialisation
process to ensure that it identifies the point at which the self-tests are run.

2.4.3.1.3 Operational Guidance

246 The evaluator shall examine the operational guidance to ensure that the self-
tests performed during initial start-up of the device are described.

247 The user guidance shall include a description of the irreversible mute state that
the TSF enters when self-tests fail. The user guidance shall also state that the
mute state is irreversible. The evaluator shall verify that there no conditions and
actions described in the user guidance to exit the mute state and resume normal
operation.

2.4.4 Submask Validation (FPT_VAL_EXT)

2.4.4.1 FPT_VAL_EXT.1 Validation

2.4.4.1.1 TSS

248 The evaluator shall examine the TSS to check that the TSF supports a validation
mechanism for each authorisation data submask used in the key chain.

249 The evaluator shall examine the TSS to verify that the link between individual
submask validation actions and the definition of an authorisation attempt failure
for FIA_AFL.1 is described.

2.4.4.1.2 KMDSD

250 The evaluator shall examine the KMDSD to ensure that it describes how
validation is performed, to identify the validation mechanism for each
authorisation data submask involved in the key chain and to verify that each
validation is performed using a method that is specified in FPT_VAL_EXT.1.

251 The evaluator shall examine the KMDSD to verify that the validation process
does not expose any material that might compromise the authorisation data
submask(s).

DRAFT References

2.4.4.1.3 Test

252 The evaluator shall perform the following test:

253 Test 1: The evaluator shall provide an incorrect authorisation factor and ensure
that the authorisation submask validation has failed. The evaluator shall verify
that the TOE behaves as described in the TSS. The evaluator shall ensure to test
all validation mechanisms described in the KMDSD and repeat this test for
different validation methods.

254 Test 2: The evaluator shall provide a correct authorisation factor and ensure that
the authorisation submask validation has been successful. The evaluator shall
verify that the TOE behaves as described in the TSS. The evaluator shall ensure
to test all validation mechanisms described in the KMDSD and repeat this test
for different validation methods.

2.5 TOE Access (FTA)

2.5.1 TOE access authorisation (FTA_USB)

2.5.1.1 FTA_USB_EXT.1 User Authorisation

2.5.1.1.1 TSS

255 The evaluator shall check that the TSS contains a description of user
authorisation, re-authorisation, and session termination.

2.5.1.1.2 Operational Guidance

256 The evaluator shall review the operational guidance to verify that it contains
instructions for starting a session with a valid passphrase, termination of a
session by the host, and re-authorisation being required under the following
conditions:

• connection of the TOE to a host device

• recovery of a host device from a power-down or sleep state while
the TOE is connected to it

• recovery of the TOE from its own power-down or sleep state

• any other conditions identified in the assignment in
FTA_USB_EXT.1.2.

257 The evaluator shall also review the operational guidance to verify it contains the
description of an inactivity time limit, which terminates the session by putting
the TOE into a powered-down or sleep state if exceeded.

2.5.1.1.3 Test

258 The evaluator shall perform the following tests:

Evaluation Activities for SFRsRequired Supplementary Information
 WORKING DRAFT

259 Test 1: The evaluator shall connect the TOE to a host device and verify that
correct authorisation is required before access to the related user data.

260 Test 3: The evaluator shall verify any previous sessions have expired when the
host device has powered-down or gone into a sleep state while the TOE was still
connected. The evaluator shall verify re-authorisation is required in order to
access user data when the host device powers-up or awakes from sleep.

261 Test 4: The evaluator shall determine the inactivity time limit from the
operational guidance and verify the TOE powers down or enters a sleep state
when the inactivity time limit is reached. The evaluator shall verify any previous
sessions have expired and user data is inaccessible when the TOE itself has
powered-down or gone into a sleep state. The evaluator shall verify re-
authorisation is required when the TOE powers-up or awakes from sleep.

262 Test 5: The evaluator shall initiate session termination from the host device
using instructions provided in the operational guidance. The evaluator shall then
verify user data is inaccessible once the session has been terminated via the host.

2.6 Security Management (FMT)

2.6.1 Specification of Management Functions (FMT_SMF)

2.6.1.1 FMT_SMF.1 Specification of Management Functions

2.6.1.1.1 TSS

263 The evaluator shall examine the TSS to confirm that the management functions
included in FMT_SMF.1 are described.

2.6.1.1.2 Operational Guidance

264 The evaluation shall review the operational guidance to ensure that it contains
instructions on how to change the value of the authorisation data.

2.6.1.1.3 Test

265 The evaluator shall perform the following tests:

266 Test 1: The evaluator shall change the value of the authorisation data following
the instructions provided in the operational guidance. The evaluator shall verify
that the TOE denies access to user’s encrypted data when the evaluator uses the
old authorisation factor values to gain access.

DRAFT References

3 Evaluation Activities for Optional
Requirements

3.1 Protection of the TSF (FPT)

3.1.1 Trusted Update (FPT_TUD_EXT)

[**USB iTC: Suggestion for FPT_TUD_EXT EA as this does not belong in FCS SigVer
primitive testing]

3.1.1.1 FPT_TUD_EXT.1 Trusted Update

3.1.1.1.1 TSS

267 The evaluator shall verify that the TSS describes all TSF software update
mechanisms for updating the system software. The evaluator shall verify that
the description includes a digital signature verification of the software before
installation and that installation fails if the verification fails. The evaluator shall
verify that the TSS describes the method by which the digital signature is
verified to include how the candidate updates are obtained, the processing
associated with verifying the digital signature of the update, and the actions that
take place for both successful and unsuccessful signature verification.

3.1.1.1.2 Guidance Documentation

268 The evaluator shall verify that the guidance documentation describes how the
verification of the authenticity of the update is performed (digital signature
verification). The description shall include the procedures for successful and
unsuccessful verification. The description shall correspond to the description in
the TSS.

3.1.1.1.3 KMD

269 The evaluator shall examine the KMD to ensure the following aspects:

• KMDSD must describe how the integrity of digital signature verification
keys in the TOE is protected. In the case of ECDSA, the EC domain
parameters have to be integrity protected as well.

• KMDSD must describe how the private key was created and how it is
integrity and confidentiality protected within the development site. The
developer must state in the KMDSD that the private key is only used to
sign the TOE firmware.

• KMDSD must describe which parts of the TOE can be updated. E.g.
firmware incl. bootloader, firmware without bootloader, single files, etc.

Evaluation Activities for Optional RequirementsRequired Supplementary Information
 WORKING DRAFT

3.1.1.1.4 Tests

270 Test 1: The evaluator performs the version verification activity to determine the
current version of the product as well as the most recently installed version
(should be the same version before updating). The evaluator obtains a legitimate
update using procedures described in the guidance documentation and verifies
that it is successfully installed on the TOE. For some TOEs loading the update
onto the TOE and activation of the update are separate steps ('activation' could
be performed e.g. by a distinct activation step or by rebooting the device). In
that case the evaluator verifies after loading the update onto the TOE but before
activation of the update that the current version of the product did not change
but the most recently installed version has changed to the new product version.
After the update, the evaluator performs the version verification activity again
to verify the version correctly corresponds to that of the update and that current
version of the product and most recently installed version match again.

271 Test 2: The evaluator performs the version verification activity to determine the
current version of the product as well as the most recently installed version
(should be the same version before updating). The evaluator obtains or produces
illegitimate update as described below, and attempts to install them on the TOE.
The evaluator verifies that the TOE rejects all of the illegitimate updates. The
evaluator performs this test using all of the following forms of illegitimate
updates:

• A modified version (e.g. using a hex editor) of a legitimately signed
update. The modification must cover all parts of the update. If e.g. the
update has the following format [Header | Firmware | Signature], then
all of the three parts have to be modified independently. One
modification must be an empty signature.

• The handling of version information of the most recently installed
version might differ between different TOEs. Depending on the point in
time when the attempted update is rejected, the most recently installed
version might or might not be updated. The evaluator shall verify that
the TOE handles the most recently installed version information for that
case as described in the guidance documentation. After the TOE has
rejected the update the evaluator shall verify, that both, current version
and most recently installed version, reflect the same version information
as prior to the update attempt.

• If there are several user roles defined for the TOE the evaluator has to
examine the user guidance to identify roles authorized to initiate an
update process. He has to test that the update process fails for
unauthorized users according the guidance.

272 Test 3: The evaluator shall test if the TOE remains in a secure state after
interrupting the update process e.g. by a power outage.

DRAFT References

3.1.2 Trusted Update Rollback (FPT_TUR_EXT)

3.1.2.1 FPT_TUR_EXT.1 Trusted Update Rollback

3.1.2.1.1 TSS

273 The evaluator shall check the TSS to ensure that it describes any constraints on
the ability to reverse previous successful updates, or to apply earlier updates
after later updates have already been successfully applied.

3.1.2.1.2 Operational Guidance

274 The evaluator shall examine the operational guidance to confirm that it
describes how authorised users can perform rollback of previously applied
updates. The evaluator also ensures that the operational guidance describes how
the product obtains candidate rollback updates; the processing associated with
verifying the digital signature, published hash or keyed hash of the rollback
updates; and the actions that take place for successful and unsuccessful cases.

3.1.2.1.3 Test

275 The evaluator shall perform the following test:

276 Test 1: The evaluator performs the version verification activity to determine the
current firmware version of the product. The evaluator obtains a legitimate
previous firmware update using procedures described in the operational
guidance and verifies that it an update successfully installs it on the product.
The evaluator verifies that the version correctly corresponds to that of the
update. The evaluator shall perform a subset of other assurance activity tests to
demonstrate that the update functions as expected.

Evaluation Activities for Selection-Based RequirementsRequired Supplementary
Information WORKING DRAFT

4 Evaluation Activities for Selection-Based
Requirements

4.1 Cryptographic Support (FCS)

4.1.1 Cryptographic Key Generation (FCS_CKM.1)

4.1.1.1 FCS_CKM.1/Asymm Cryptographic key generation (Asymmetric)

277 For any Identifier (AKG1-AKG3), this applies.

4.1.1.1.1 TSS

278 The evaluator shall examine the TSS to verify that it describes how the TOE
obtains a key based on input from a random bit generator as specified in
FCS_RBG_EXT.1. The evaluator shall review the TSS to verify that it
describes how the functionality described by FCS_RBG_EXT.1 is invoked. The
evaluator shall examine the TSS to verify that it identifies the usage for each
row identifier (key name, key size, standards) selected in the ST.

4.1.1.1.2 Guidance Documentation

279 The evaluator shall verify that the AGD guidance instructs the administrator
how to configure the TOE to use the selected key name(s) for all uses identified
in the ST.

4.1.1.1.3 Key Management Description (KMD)

280 If the TOE uses the generated key in a key chain/hierarchy then the evaluator
shall confirm that the KMD describes:

• If AKG1 is selected, then the KMD describes which methods for generating
p and q are used

• How the key is used as part of the key chain/hierarchy.

4.1.1.1.4 Tests

281 The	following tests require the developer to provide access to a test platform
that provides the evaluator with tools that are not found on the TOE in its
evaluated configuration.

282 AKG1: RSA Key Generation

283 The	below tests are derived from The 186-4 RSA Validation System (RSA2VS),
Updated 8 July 2014, Section 6.2, from the National Institute of Standards and
Technology.

DRAFT References

284 The evaluator shall verify the implementation of RSA Key Generation by the
TOE using the Key Generation test. This test verifies the ability of the TSF to
correctly produce values for the key components including the public
verification exponent e, the private prime factors p and q, the public modulus n
and the calculation of the private signature exponent d.

285 FIPS 186-4 Key Pair generation specifies 5 methods for generating the primes
p and q.

286 These are:

1. Random Primes:

• Provable	primes	
• Probable	primes	

2. Primes with Conditions:

• Primes	p1,	p2,	q1,	q2,	p	and	q	shall	all	be	provable	primes	
• Primes	p1,	p2,	q1	 and	q2	 shall	be	provable	primes	and	p	 and	q	 shall	be	

probable	primes	
• Primes	p1,	p2,	q1,	q2,	p	and	q	shall	all	be	probable	primes	

	
287 To	test	the key generation method for the Random Provable primes method and

for all the Primes with Conditions methods, the evaluator must seed the TSF
key generation routine with sufficient data to deterministically generate the
RSA key pair.

288 For each key length supported, the evaluator shall have the TSF generate 25 key
pairs. The evaluator shall verify the correctness of the TSF’s implementation by
comparing values generated by the TSF with those generated by a known good
implementation using the same input parameters.

289 If the TOE generates Random Probable Primes then if possible, the Random
Probable primes method should also be verified against a known good
implementation as described above. If verification against a known good
implementation is not possible, the evaluator shall have the TSF generate 25
key pairs for each supported key length nlen and verify that all of the following
are true:

• n=	p*q	
• p	and	q	are	probably	prime	according	to	Miller-Rabin	tests	with	error	

probability	<	2^(-125)	
• 2^16	<	e	<	2^256	and	e	is	an	odd	integer	
• GCD(p-1,e)	=	1	
• GCD(q-1,	e)	=	1	
• |p-q|	>	2^(nlen/2	–	100)	
• p	>=	squareroot(2)*(2^(nlen/2-1))	
• q	>=	squareroot(2)*(2^(nlen/2-1))	
• 2^(nlen/2)	<	d	<	LCM(p-1,	q-1)	
• e*d	=	1	mod	LCM(p-1,	q-1)		

Evaluation Activities for Selection-Based RequirementsRequired Supplementary
Information WORKING DRAFT

290 AKG2 & AKG3: ECC Key Generation

291 These tests are derived from The 186-4 Elliptic Curve Digital Signature
Algorithm Validation System (ECDSA2VS), Updated 18 Mar 2014, Section 6.

292 ECC Key Generation Test

293 For	each	selected	curve,	and	for	each	key	pair	generation	method	as	described	in	
FIPS	186-4,	section	B.4,	the evaluator shall require the implementation under test
to generate 10 private/public key pairs (d, Q). The private key, d, shall be
generated using a random bit generator as specified in FCS_RBG_EXT.1. The
private key, d, is used to compute the public key, Q'. The evaluator shall confirm
that 0<d<n (where n is the order of the group), and the computed value Q' is
then compared to the generated public/private key pairs' public key, Q, to
confirm that Q is equal to Q'.

294 Public Key Validation (PKV) Test

295 For each supported curve, the evaluator shall generate 12 private/public key
pairs using the key generation function of a known good implementation and
modify six of the public key values so that they are incorrect, leaving six values
unchanged (i.e., correct). To determine correctness, the evaluator shall submit
the 12 key pairs to the public key validation (PKV) function of the TOE and
shall confirm that the results correspond as expected to the modified and
unmodified values.

4.1.2 Cryptographic Key Access (FCS_CKM.3)

4.1.2.1 FCS_CKM.3/Chain Cryptographic key access (Key Wrapping)

296 Same as for FCS_CKM.3/DEK?

4.1.3 Cryptographic Key Derivation (FCS_CKM_EXT.5)

4.1.3.1 FCS_CKM_EXT.5/Chain Cryptographic key derivation

297 Same as for FCS_CKM_EXT.5/KEK?

4.1.4 Cryptographic operation (FCS_COP.1)

4.1.4.1 FCS_COP.1/KeyEnc Cryptographic operation (Key Encryption)

4.1.4.1.1 TSS

298 The evaluator shall examine the TSS to ensure that it identifies whether the
implementation of this cryptographic operation for key encryption (including
key lengths and modes) is the same as that used for user data encryption
(FCS_COP.1/UDE) or a different implementation.

DRAFT References

4.1.4.1.2 Guidance Documentation

299 No additional activities.

4.1.4.1.3 KMD

300 The evaluator shall examine the KMD to ensure that it confirms and is
consistent with the identification of the implementation of the key encryption
operation as the same or different compared to that used for user data encryption
(FCS_COP.1/UDE).

4.1.4.1.4 Tests

301 If the implementation of the key encryption operation is the same as for the user
data encryption (FCS_COP.1/UDE) and has been tested with the same key
lengths and modes as part of the testing for user data encryption then no further
testing is required here. If the key encryption uses a different implementation,
(where “different implementation” includes the use of different ley lengths or
modes), then the evaluator shall additionally test the key encryption
implementation using the corresponding tests specified for FCS_COP.1/UDE.

4.1.4.2 FCS_COP.1/Hash Cryptographic operation (Hash Algorithm)

302 Reference: Secure Hash Algorithm Properties

Algorithm Message Size
(bits)

Block Size
(bits)

Word Size
(bits)

Message Digest
Size (bits)

SHA-1 <2^64 512 32 160

SHA-224 <2^64 512 32 224

SHA-256 <2^64 512 32 256

SHA-384 <2^128 1024 64 384

SHA-512 <2^128 1024 64 512

SHA-512/224 <2^128 1024 64 224

SHA-512/256 <2^128 1024 64 256

Table 1: SHA Properties

4.1.4.2.1 TSS

303 The evaluator shall check that the association of the hash function with other
TSF cryptographic functions (for example, the digital signature verification
functions) is documented in the TSS. The evaluator shall also check that the
TSS identifies whether the implementation is bit-oriented or byte-oriented.

4.1.4.2.2 Guidance Documentation

304 The evaluator checks the AGD documents to determine that any configuration
that is required to configure the required hash sizes is present. The evaluator

Evaluation Activities for Selection-Based RequirementsRequired Supplementary
Information WORKING DRAFT

also checks the AGD documents to confirm that the instructions for establishing
the evaluated configuration use only those hash algorithms selected in the ST.

4.1.4.2.3 Tests

305 The tests below are derived from the “The Secure Hash Algorithm Validation
System (SHAVS), Updated: May 21, 2014” from the National Institute of
Standards and Technology.

306 The TSF hashing functions can be implemented with one of two orientations.
The first is a byte-oriented implementation: this hashes messages that are an
integral number of bytes in length (i.e., the length (in bits) of the message to be
hashed is divisible by 8). The second is a bit-oriented implementation: this
hashes messages of arbitrary length. Separate tests for each orientation are given
below.

307 The evaluator shall perform all of the following tests for each hash algorithm
and orientation implemented by the TSF and used to satisfy the requirements of
this PP. The evaluator shall compare digest values produced by a known-good
SHA implementation against those generated by running the same values
through the TSF.

308 Short Messages Test, Bit-oriented Implementation

309 The evaluators devise an input set consisting of m+1 messages, where m is the
block length of the hash algorithm in bits (see SHA Properties Table). The
length of the messages ranges sequentially from 0 to m bits. The message text
shall be pseudo-randomly generated. The evaluators compute the message
digest for each of the messages and ensure that the correct result is produced
when the messages are provided to the TSF.

310 Short Messages Test, Byte-oriented Implementation

311 The evaluators devise an input set consisting of m/8+1 messages, where m is the
block length of the hash algorithm in bits (see SHA Properties Table). The
length of the messages ranges sequentially from 0 to m/8 bytes, with each
message being an integral number of bytes. The message text shall be pseudo-
randomly generated. The evaluators compute the message digest for each of the
messages and ensure that the correct result is produced when the messages are
provided to the TSF.

312 Selected Long Messages Test, Bit-oriented Implementation

313 The evaluators devise an input set consisting of m messages, where m is the
block length of the hash algorithm in bits (see SHA Properties Table). The
length of the ith message is m + 99*i, where 1 ≤ i ≤ m. The message text shall
be pseudo-randomly generated. The evaluators compute the message digest for
each of the messages and ensure that the correct result is produced when the
messages are provided to the TSF.

DRAFT References

314 Selected Long Messages Test, Byte-oriented Implementation

315 The evaluators devise an input set consisting of m/8 messages, where m is the
block length of the hash algorithm in bits (see SHA Properties Table). The
length of the ith message is m + 8*99*i, where 1 ≤ i ≤ m/8. The message text
shall be pseudo-randomly generated. The evaluators compute the message
digest for each of the messages and ensure that the correct result is produced
when the messages are provided to the TSF.

316 Pseudo-randomly Generated Messages Test

317 The evaluators randomly generate a seed that is n bits long, where n is the length
of the message digest produced by the hash function to be tested. The evaluators
then formulate a set of 100 messages and associated digests by following the
algorithm provided in Figure 1 of SHAVS, section 6.4. The evaluators then
ensure that the correct result is produced when the messages are provided to the
TSF.

4.1.4.3 FCS_COP.1/HMAC Cryptographic operation (Keyed Hash)

4.1.4.3.1 TSS

318 The evaluator shall examine the TSS to ensure that it specifies the following
values used by the HMAC function: output MAC length used.

4.1.4.3.2 Guidance Documentation

319 No additional activities.

4.1.4.3.3 Tests

320 This test is derived from The Keyed-Hash Message Authentication Code
Validation System (HMACVS). Updated 6 May 2016.

321 The evaluator shall provide 15 sets of messages and keys for each selected hash
algorithm and hash length/key size/MAC size combination. The evaluator shall
have the TSF generate HMAC tags for these sets of test data. The evaluator shall
verify that the resulting HMAC tags match the results from submitting the same
inputs to a known-good implementation of the HMAC function, having the
same characteristics.

4.1.4.4 FCS_COP.1/SigVer Cryptographic operation (Signature Verification)

4.1.4.4.1 TSS

322 The evaluator shall check the TSS to ensure that it describes the overall flow of
the signature verification. This should at least include identification of the
format and general location (e.g., "firmware on the hard drive device" rather
than “memory location 0x00007A4B") of the data to be used in verifying the
digital signature; how the data received from the operational environment are
brought onto the device; and any processing that is performed that is not part of

Evaluation Activities for Selection-Based RequirementsRequired Supplementary
Information WORKING DRAFT

the digital signature algorithm (for instance, checking of certificate revocation
lists).

4.1.4.4.2 Guidance Documentation

323 No additional activities.

4.1.4.4.3 Tests

324 Each section below contains tests the evaluators must perform for each selected
digital signature scheme. Based on the assignments and selections in the
requirement, the evaluators choose the specific activities that correspond to
those selections.

325 The following tests require the developer to provide access to a test platform
that provides the evaluator with tools that are not found on the TOE in its
evaluated configuration.

326 SigVer1: RSASSA-PKCS1-v1_5 and SigVer4: RSASSA-PSS

327 These tests are derived from The 186-4 RSA Validation System (RSA2VS),
updated 8 Jul 2014, Section 6.4.

328 The FIPS 186-4 RSA Signature Verification Test tests the ability of the TSF to
recognize valid and invalid signatures. The evaluator shall provide a modulus
and three associated key pairs (d, e) for each combination of selected modulus
size and hash size. Each private key d is used to sign six pseudorandom
messages each of 1024 bits. For five of the six messages, the public key (e),
message, IR format, padding, or signature is altered so that signature
verification should fail. The test passes only if all the signatures made using
unaltered parameters result in successful signature verification, and all the
signatures made using altered parameters result in unsuccessful signature
verification.

329 SigVer5: ECDSA on NIST and Brainpool Curves

330 These tests are derived from The FIPS 186-4 Elliptic Curve Digital Signature
Algorithm Validation System (ECDSA2VS), updated 18 Mar 2014, Section 6.5.

331 The FIPS 186-4 ECC Signature Verification Test tests the ability of the TSF to
recognize valid and invalid signatures. The evaluator shall provide a modulus
and associated key pair (x, y) for each combination of selected curve, modulus
size, and hash size. Each private key (x) is used to sign 15 pseudorandom
messages of 1024 bits. For eight of the fifteen messages, the message, IR format,
padding, or signature is altered so that signature verification should fail. The
test passes only if all the signatures made using unaltered parameters result in
successful signature verification, and all the signatures made using altered
parameters result in unsuccessful signature verification.

332 SigVer2: Digital Signature Scheme 2

DRAFT References

333 The following or equivalent steps shall be taken to test the TSF.

334 For each supported modulus size, underlying hash algorithm, and length of the
trailer field (1- or 2-byte), the evaluator shall generate NT sets or recoverable
message (M1), non-recoverable message (M2), salt, public key and Signature
(å).

1. NT shall be greater than or equal to 20.

2. The length of salts shall be selected from its supported length range of
salt. The typical length of salt is equal to the output block length of
underlying hash algorithm (see 9.2.2 of ISO/IEC 9796-2:2010).

3. The length of recoverable messages should be selected by considering
modulus size, output block length of underlying hash algorithm, and
length of salt (LS). As described in Annex D of ISO/IEC 9796-2:2010, it
is desirable to maximise the length of recoverable message. The
following table shows the maximum bit-length of recoverable message
which is divisible by 512, for some combinations of modulus size,
underlying hash algorithm, and length of salt.

Maximum length
of recoverable
message divisible
by 512 (bits)

Modulus size
(bits)

Underlying hash
algorithm (bits)

Length of salt LS
(bits)

1536 2048 SHA-256 128

1024 256

1024 SHA-512 128

1024 256

512 512

2560 3072 SHA-256 128

2048 256

2048 SHA-512 128

2048 256

1536 512

Note that 2-byte trailer field is assumed in calculating the maximum length of
recoverable message.

Table 2: SigVer2 Test Lengths

4. The length of non-recoverable messages should be selected by
considering the underlying hash algorithm and usage(s). If the TSF is
used for verifying the authenticity of software/firmware updates, the
length of non-recoverable messages should be selected greater than or
equal to 2048-bit. With this length range, it means that the underlying
hash algorithm is also tested for two or more input blocks.

Evaluation Activities for Selection-Based RequirementsRequired Supplementary
Information WORKING DRAFT

5. The evaluator shall select approximately one half of NT sets and shall
alter one of the values (non-recoverable message, public key exponent
or signature) in the sets. In altering public key exponent, the evaluator
shall alter the public key exponent while keeping the exponent odd. In
altering signatures, the following ways should be considered:

i. Altering a signature just by replacing a bit in the bit-string
representation of the signature

ii. Altering a signature so that the trailer in the message
representative cannot be interpreted. This can be achieved by
following ways:

¾ Setting the rightmost four bits of the message representative
to the values other than ‘1100’.

¾ In the case when 1-byte trailer is used, setting the rightmost
byte of the message representative to the values other than
‘0xbc’, while keeping the rightmost four bits to ‘1100’.

¾ In the case when 2-byte trailer is used, setting the rightmost
byte of the message representative to the values other than
‘0xcc’, while keeping the rightmost four bits to ‘1100’.

iii. In the case when 2-byte trailer is used, altering a signature so that
the hash algorithm identifier in the trailer (i.e. the left most byte
of the trailer) does not correspond to hash algorithm(s) identified
in the SFR. The hash algorithm identifiers are 0x34 for SHA-256
(see Clause 10 of ISO/IEC 10118-3:2004), and 0x35 for SHA-
512 (see Clause 11 of ISO/IEC 10118-3:2004).

iv. Let LS be the length of salt, altering a signature so that the
intermediate bit string D in the message representative is set to
all zeros except for the rightmost LS bits of D.

v. (non-conformant signature length) altering a signature so that the
length of signature å is changed to modulus size and the most
significant bit of signature å is set equal to ‘1’.

vi. (non-conformant signature) altering a signature so that the
integer converted from signature å is greater than modulus n.

335 The evaluator shall supply the NT sets to the TSF and obtain in response a set of
NT Verification-Success or Verification-Fail values. When the Verification-
Success is obtained, the evaluator shall also obtain recovered Message (M1*).

336 The evaluator shall verify the Verification-Success results correspond to the
unaltered sets and Verification-Fail results correspond to the altered sets.

DRAFT References

337 For each recovered message, the evaluator shall compare the recovered message
(M1*) with the corresponding recoverable message (M1) in the unaltered sets.

338 The test passes only if all the signatures made using unaltered sets result in
Verification-Success, each recovered message (M1*) is equal to corresponding
M1 in the unaltered sets, and all the signatures made using altered sets result in
Verification-Fail.

339 SigVer3: Digital Signature Scheme 3

340 The evaluator shall perform the test described in SigVer2: Digital Signature
Scheme 2 while using a fixed salt for NT sets.

4.1.5 Random Bit Generation (FCS_RBG_EXT)

4.1.5.1 FCS_RBG_EXT.2 Random Bit Generation (External Seeding)

4.1.5.1.1 TSS

341 <TBD>

4.1.5.1.2 Guidance Documentation

342 <TBD>

4.1.5.1.3 Tests

343 <TBD>

4.1.5.2 FCS_RBG_EXT.3 Random Bit Generation (Internal Seeding Single
Source)

4.1.5.2.1 TSS

344 The evaluator will verify that the TSS documents the types of noise sources
selected in FCS_RBG_EXT.3.1 and indicates the minimum amount of min-
entropy provided by these sources. If this SFR is iterated, the evaluator shall
check that the TSS indicates the purpose for each entropy source (e.g.,
initialization or reseed) and that the output from these entropy sources is not
later combined into a single seed.

4.1.5.2.2 Guidance Documentation

345 The evaluator will check that the Operational Guidance describes any settings,
operational requirements, or user input necessary for the proper function of the
noise sources.

Evaluation Activities for Selection-Based RequirementsRequired Supplementary
Information WORKING DRAFT

4.1.5.2.3 Entropy Documentation and Assessment (EAR)

346 The developer shall produce documentation and the evaluator shall perform
evaluation activities in accordance with Appendix XX: Entropy Documentation
and Assessment. When multiple noise sources are used to provide the minimum
amount of min-entropy, the Entropy Documentation must demonstrate that
entropy from each of these individual sources is generated independently.

4.1.5.2.4 Tests

347 <TBD>

4.1.5.3 FCS_RBG_EXT.4 Random Bit Generation (Internal Seeding Multiple
Sources)

4.1.5.3.1 TSS

348 <TBD>

4.1.5.3.2 Guidance Documentation

349 <TBD>

4.1.5.3.3 Tests

350 <TBD>

4.1.5.4 FCS_RBG_EXT.5 Random Bit Generation (Combining Noise
Sources)

4.1.5.4.1 TSS

351 <TBD>

4.1.5.4.2 Guidance Documentation

352 <TBD>

4.1.5.4.3 Tests

353 <TBD>

354

DRAFT References

4.2 Identification and Authentication (FIA)

4.2.1 Passphrase support (FIA_PPS_EXT)

4.2.1.1 FIA_PPS_EXT.2/num Passphrase composition - numeric

4.2.1.1.1 TSS

355 The evaluator shall examine the TSS to ensure that it describes the manner in
which the TOE enforces the composition of passphrases, including the length,
and requirements on characters.

4.2.1.1.2 Operational Guidance

356 The evaluator shall examine the operational guidance to ensure it provides
guidance on the composition of passphrases, including the length, and
requirements on characters.

4.2.1.1.3 Test

357 The evaluator shall perform the following test:

358 Test 1: The evaluator shall compose two types of passphrases - those
specifically designed to meet the requirements and others designed to fail. For
each passphrase, the evaluator shall verify that the TOE mechanism rejects the
passphrase if it contains less than 8 characters. While the evaluator is not
required (nor is it feasible) to test all possible compositions of passphrases, the
evaluator shall ensure that the minimum and maximum length listed in the
requirement is supported, and justify the subset of those characters chosen for
testing.

4.2.1.2 FIA_PPS_EXT.2/alph Passphrase composition - alphanumeric

4.2.1.2.1 TSS

359 The evaluator shall examine the TSS to ensure that it describes the manner in
which the TOE enforces the composition of passphrases, including the length,
and requirements on characters.

4.2.1.2.2 Operational Guidance

360 The evaluator shall examine the operational guidance to ensure it provides
guidance on the composition of passphrases, including the length, and
requirements on characters.

4.2.1.2.3 Test

361 The evaluator shall perform the following test:

362 Test 1: The evaluator shall compose two types of passphrases - those
specifically designed to meet the requirements and others designed to fail. For
each passphrase, the evaluator shall verify that the TOE mechanism rejects the

Evaluation Activities for Selection-Based RequirementsRequired Supplementary
Information WORKING DRAFT

passphrase if it contains less than 8 characters. While the evaluator is not
required (nor is it feasible) to test all possible compositions of passphrases, the
evaluator shall ensure that the minimum and maximum length listed in the
requirement is supported, and justify the subset of those characters chosen for
testing.

4.2.2 User authentication (FIA_UAU)

4.2.2.1 FIA_UAU.7 Protected authentication feedback

4.2.2.1.1 TSS

363 The evaluator shall check that the TSS describes how the TOE obscures
feedback while authorisation on the device is in progress.

4.2.2.1.2 Test

364 The evaluator shall perform the following test for each method of authorisation
allowed on the device:

365 Test 1: The evaluator shall enter authorisation data on the TOE. While making
this attempt, the evaluator shall verify that any feedback provided is obscured
while entering the authorisation data.

4.3 Security Management (FMT)

4.3.1 Specification of Management Functions (FMT_SMF)

4.3.1.1 FMT_SMF.1 Specification of Management Functions

4.3.1.1.1 TSS

366 The evaluator shall examine the TSS to determine that management functions
included in FMT_SMF are described.

4.3.1.1.2 Operational Guidance

367 The evaluation shall review the operational guidance to ensure that it contains
instructions on how the authorised user can:

• define a user configurable number of unsuccessful
authentication attempts

• disable data recovery mechanism

• enable data recovery mechanism and then generate the new DEK
as specified in FCS_CKM.1

• query the current version of the TOE firmware/software

• initiate updates to the TOE firmware/software

DRAFT References

4.3.1.1.3 Test

368 The evaluator shall perform the following tests:

369 Test 1: (optional)The evaluator shall set a valid number of unsuccessful
authentication attempts within the range of acceptable values using instruction
provided in the operational guidance and verify that configuration was
successful. This test is not applicable for devices that do not allow users to
configure a number of unsuccessful authentication attempts.

370 Test 2: (optional) The evaluator shall set an invalid number of unsuccessful
authentication attempts using instruction provided in the operational guidance
and verify that configuration was unsuccessful. The evaluator shall set numbers
that are greater than and less than the number in the accepted range. This test is
not applicable for devices that do not allow users to configure a number of
unsuccessful authentication attempts.

371 Test 3: (optional) The evaluator shall define a user configurable number of
unsuccessful authentication attempts within a range of acceptable values
defined in FIA_AFL.1. The evaluator shall enter invalid authorisation factor the
configured number of times to verify that the encrypted user data is no longer
accessible to the users. This test is not applicable for devices that do not allow
users to configure a number of unsuccessful authentication attempts.

372 Test 4: (optional) The evaluator shall disable the data recovery mechanism and
verify that the data on the device could not be recovered. This test is not
applicable for devices that do not provide data recovery mechanism.

373 Test 5: (optional) The evaluator shall enable data recovery mechanism. In order
to ensure that the new DEK has been generated. The evaluator shall try to access
use data that was previously stored on the device. This test is not applicable for
devices that do not provide data recovery mechanism.

Evaluation Activities for SARsRequired Supplementary Information
 WORKING DRAFT

5 Evaluation Activities for SARs

374 The sections below specify EAs for the Security Assurance Requirements
(SARs) included in the related cPPs. The EAs in Section 2 (), Section 3
(Evaluation Activities for Optional Requirements), and Section 4 (Evaluation
Activities for Selection-Based Requirements) are an interpretation of the more
general CEM assurance requirements as they apply to the specific technology
area of the TOE.

375 In this section, each SAR that is contained in the cPP is listed, and the EAs that
are not associated with an SFR are captured here, or a reference is made to the
CEM, and the evaluator is expected to perform the CEM work units.

5.1 ASE: Security Target Evaluation

376 When evaluating a Security Target, the evaluator performs the work units as
presented in the CEM. In addition, the evaluator ensures the content of the TSS
in the ST satisfies the EAs specified in Section 2 ().

5.2 ADV: Development

5.2.1 Basic Functional Specification (ADV_FSP.1)

377 The EAs for this assurance component focus on understanding the interfaces
(e.g., application programming interfaces, command line interfaces, graphical
user interfaces, network interfaces) described in the AGD documentation, and
possibly identified in the TOE Summary Specification (TSS) in response to the
SFRs. Specific evaluator actions to be performed against this documentation are
identified (where relevant) for each SFR in Section 2 (), and in EAs for AGD,
ATE and AVA SARs in other parts of Section 5.

378 The EAs presented in this section address the CEM work units ADV_FSP.1-1,
ADV_FSP.1-2, ADV_FSP.1-3, and ADV_FSP.1-5.

379 The EAs are reworded for clarity and interpret the CEM work units such that
they will result in more objective and repeatable actions by the evaluator. The
EAs in this SD are intended to ensure the evaluators are consistently performing
equivalent actions.

380 The documents to be examined for this assurance component in an evaluation
are therefore the Security Target, AGD documentation, and any required
supplementary information required by the cPP: no additional “functional
specification” documentation is necessary to satisfy the EAs. The interfaces that
need to be evaluated are also identified by reference to the EAs listed for each
SFR, and are expected to be identified in the context of the Security Target,
AGD documentation, and any required supplementary information defined in
the cPP rather than as a separate list specifically for the purposes of CC
evaluation. The direct identification of documentation requirements and their

DRAFT References

assessment as part of the EAs for each SFR also means that the tracing required
in ADV_FSP.1.2D (work units ADV_FSP.1-4, ADV_FSP.1-6 and
ADV_FSP.1-7 is treated as implicit and no separate mapping information is
required for this element.

CEM ADV_FSP.1 Work Units Evaluation Activities

ADV_FSP.1-1 The evaluator shall
examine the functional

specification to determine that it
states the purpose of each SFR-
supporting and SFR-enforcing

TSFI.

5.2.1.1 Evaluation Activity: The evaluator
shall examine the interface documentation

to ensure it describes the purpose and
method of use for each TSFI that is
identified as being security relevant.

ADV_FSP.1-2 The evaluator shall
examine the functional

specification to determine that the
method of use for each SFR-

supporting and SFR-enforcing TSFI
is given.

5.2.1.2 Evaluation Activity: The evaluator
shall examine the interface documentation

to ensure it describes the purpose and
method of use for each TSFI that is
identified as being security relevant.

ADV_FSP.1-3 The evaluator shall
examine the presentation of the

TSFI to determine that it identifies
all parameters associated with each
SFR-enforcing and SFR supporting
TSFI.

5.2.1.3 Evaluation Activity: The evaluator
shall check the interface documentation to

ensure it identifies and describes the
parameters for each TSFI that is identified

as being security relevant.

ADV_FSP.1-4 The evaluator shall
examine the rationale provided by

the developer for the implicit
categorisation of interfaces as SFR-
non-interfering to determine that it

is accurate.

Paragraph 561 from the CEM: “In the case
where the developer has provided adequate

documentation to perform the analysis
called for by the rest of the work units for

this component without explicitly
identifying SFR-enforcing and SFR-

supporting interfaces, this work unit should
be considered satisfied.”

Since the rest of the ADV_FSP.1 work
units will have been satisfied upon

completion of the EAs, it follows that this
work unit is satisfied as well.

ADV_FSP.1-5 The evaluator shall
check that the tracing links the

SFRs to the corresponding TSFIs.

5.2.1.4 Evaluation Activity: The evaluator
shall examine the interface documentation
to develop a mapping of the interfaces to

SFRs.

ADV_FSP.1-6 The evaluator shall
examine the functional

specification to determine that it is
EAs that are associated with the SFRs in
Section 2, and, if applicable, Sections 3

Evaluation Activities for SARsRequired Supplementary Information
 WORKING DRAFT

a complete instantiation of the
SFRs.

and 4, are performed to ensure that all the
SFRs where the security functionality is
externally visible (i.e., at the TSFI) are

covered. Therefore, the intent of this work
unit is covered.

ADV_FSP.1-7 The evaluator shall
examine the functional

specification to determine that it is
an accurate instantiation of the

SFRs.

EAs that are associated with the SFRs in
Section 2, and, if applicable, Sections 3 and
4, are performed to ensure that all the SFRs
where the security functionality is
externally visible (i.e., at the TSFI) are
addressed, and that the description of the
interfaces is accurate with respect to the
specification captured in the SFRs.
Therefore, the intent of this work unit is
covered.

Table 3: Mapping of ADV_FSP.1 CEM Work Units to Evaluation Activities

5.2.1.1 Evaluation Activity

381 The evaluator shall examine the interface documentation to ensure it describes
the purpose and method of use for each TSFI that is identified as being security
relevant.

382 In this context, TSFI are deemed security relevant if they are used by the
administrator to configure the TOE, or to perform other administrative functions
(e.g., audit review or performing updates). Additionally, those interfaces that
are identified in the ST, or guidance documentation, as adhering to the security
policies (as presented in the SFRs), are also considered security relevant. The
intent, is that these interfaces will be adequately tested, and having an
understanding of how these interfaces are used in the TOE is necessary to ensure
proper test coverage is applied.

383 The set of TSFI that are provided as evaluation evidence are contained in the
Administrative Guidance and User Guidance.

5.2.1.2 Evaluation Activity

384 The evaluator shall check the interface documentation to ensure it identifies and
describes the parameters for each TSFI that is identified as being security
relevant.

5.2.1.3 Evaluation Activity

385 The evaluator shall examine the interface documentation to develop a mapping
of the interfaces to SFRs.

DRAFT References

386 The evaluator uses the provided documentation and first identifies, and then
examines a representative set of interfaces to perform the EAs presented in
Section 2 (), including the EAs associated with testing of the interfaces.

387 It should be noted that there may be some SFRs that do not have an interface
that is explicitly “mapped” to invoke the desired functionality. For example,
generating a random bit string, destroying a cryptographic key that is no longer
needed, or the TSF failing to a secure state, are capabilities that may be specified
in SFRs, but are not invoked by an interface.

388 However, if the evaluator is unable to perform some other required EA because
there is insufficient design and interface information, then the evaluator is
entitled to conclude that an adequate functional specification has not been
provided, and hence that the verdict for the ADV_FSP.1 assurance component
is a ‘fail’.

5.3 AGD: Guidance Documents

389 It is not necessary for a TOE to provide separate documentation to meet the
individual requirements of AGD_OPE and AGD_PRE. Although the EAs in
this section are described under the traditionally separate AGD families, the
mapping between the documentation provided by the developer and the
AGD_OPE and AGD_PRE requirements may be many-to-many, as long as all
requirements are met in documentation that is delivered to administrators and
users (as appropriate) as part of the TOE.

5.3.1 Operational User Guidance (AGD_OPE.1)

390 The evaluator performs the CEM work units associated with the AGD_OPE.1
SAR. Specific requirements and EAs on the guidance documentation are
identified (where relevant) in the individual EAs for each SFR.

391 In addition, the evaluator performs the EAs specified below.

5.3.1.1 Evaluation Activity

392 The evaluator shall ensure the Operational guidance documentation is
distributed to administrators and users (as appropriate) as part of the TOE, so
that there is a reasonable guarantee that administrators and users are aware of
the existence and role of the documentation in establishing and maintaining the
evaluated configuration.

5.3.1.2 Evaluation Activity

393 The evaluator shall ensure that the Operational guidance is provided for every
Operational Environment that the product supports as claimed in the Security
Target and shall adequately address all platforms claimed for the TOE in the
Security Target.

Evaluation Activities for SARsRequired Supplementary Information
 WORKING DRAFT

5.3.1.3 Evaluation Activity

394 The evaluator shall ensure that the Operational guidance contains instructions
for configuring any cryptographic engine associated with the evaluated
configuration of the TOE. It shall provide a warning to the administrator that
use of other cryptographic engines was not evaluated nor tested during the CC
evaluation of the TOE.

5.3.1.4 Evaluation Activity

395 The evaluator shall ensure the Operational guidance makes it clear to an
administrator which security functionality and interfaces have been assessed
and tested by the EAs.

5.3.2 Preparative Procedures (AGD_PRE.1)

396 The evaluator performs the CEM work units associated with the AGD_PRE.1
SAR. Specific requirements and EAs on the preparative documentation are
identified (and where relevant are captured in the Guidance Documentation
portions of the EAs) in the individual EAs for each SFR.

397 Preparative procedures are distributed to administrators and users (as
appropriate) as part of the TOE, so that there is a reasonable guarantee that
administrators and users are aware of the existence and role of the
documentation in establishing and maintaining the evaluated configuration.

398 In addition, the evaluator performs the EAs specified below.

5.3.2.1 Evaluation Activity

399 The evaluator shall examine the Preparative procedures to ensure they include
a description of how the administrator verifies that the operational environment
can fulfil its role to support the security functionality (including the
requirements of the Security Objectives for the Operational Environment
specified in the Security Target).

400 The documentation should be in an informal style and should be written with
sufficient detail and explanation that they can be understood and used by the
target audience (which will typically include IT staff who have general IT
experience but not necessarily experience with the TOE product itself).

5.3.2.2 Evaluation Activity

401 The evaluator shall examine the Preparative procedures to ensure they are
provided for every Operational Environment that the product supports as
claimed in the Security Target and shall adequately address all platforms
claimed for the TOE in the Security Target.

DRAFT References

5.3.2.3 Evaluation Activity

402 The evaluator shall examine the preparative procedures to ensure they include
instructions to successfully install the TSF in each Operational Environment.

5.3.2.4 Evaluation Activity

403 The evaluator shall examine the preparative procedures to ensure they include
instructions to manage the security of the TSF as a product and as a component
of the larger operational environment.

5.4 ALC: Life-cycle Support

5.4.1 Labelling of the TOE (ALC_CMC.1)

404 When evaluating that the TOE has been provided and is labelled with a unique
reference, the evaluator performs the work units as presented in the CEM.

5.4.2 TOE CM coverage (ALC_CMS.1)

405 When evaluating the developer’s coverage of the TOE in their CM system, the
evaluator performs the work units as presented in the CEM.

5.5 ATE: Tests

5.5.1 Independent Testing – Conformance (ATE_IND.1)

406 The focus of the testing is to confirm that the requirements specified in the SFRs
are being met. Additionally, testing is performed to confirm the functionality
described in the TSS, as well as the dependencies on the Operational guidance
documentation is accurate.

407 The evaluator performs the CEM work units associated with the ATE_IND.1
SAR. Specific testing requirements and EAs are captured for each SFR in
Section 2: .

5.6 AVA: Vulnerability Assessment

408 <The iTC plays a key role in determining the scope of the vulnerability analysis
with respect to what is publicly reported. The iTC must perform several
activities to complete sections of this Supporting Document in order to ensure
the flaws investigated by the evaluation team are meaningful in the context of
the cPP and cover the areas of concern by the iTC for this technology.

409 There are four activities (and associated outputs) that need to be performed by
the iTC:

410 1) identification of public sources of vulnerability information and actions to be
taken on that information (this will be used for Type 1 flaw hypotheses as
defined in Appendix A);

Evaluation Activities for SARsRequired Supplementary Information
 WORKING DRAFT

411 2) identification of specific vulnerabilities particular to the technology (perhaps
from previous evaluations, or from flaw reports to vendors that are part of the
iTC) (this will be used for Type 2 flaw hypotheses as defined in Appendix A);

412 3) identification of additional documentation to be used in the vulnerability
analysis activity (this will be used for Type 3 flaw hypotheses as defined in
Appendix A); and

413 4) identification of any tools—and actions to be performed with those tools—
to support flaw identification (this will be used for Type 4 flaw hypotheses as
defined in Appendix A).

414 Each of these activities is discussed in more detail below, with pointers to where
the output of each activity should go in this Supporting Document.>

5.6.1 Vulnerability Survey (AVA_VAN.1)

415 While vulnerability analysis is inherently a subjective activity, a minimum level
of analysis can be defined and some measure of objectivity and repeatability (or
at least comparability) can be imposed on the vulnerability analysis process. In
order to achieve such objectivity and repeatability it is important that the
evaluator follows a set of well-defined activities, and documents their findings
so others can follow their arguments and come to the same conclusions as the
evaluator. While this does not guarantee that different evaluation facilities will
identify exactly the same type of vulnerabilities or come to exactly the same
conclusions, the approach defines the minimum level of analysis and the scope
of that analysis, and provides Certification Bodies a measure of assurance that
the minimum level of analysis is being performed by the evaluation facilities.

416 In order to meet these goals some refinement of the AVA_VAN.1 CEM work
units is needed. The following table indicates, for each work unit in
AVA_VAN.1, whether the CEM work unit is to be performed as written, or if
it has been clarified by an Evaluation Activity. If clarification has been
provided, a reference to this clarification is provided in the table.

CEM AVA_VAN.1 Work Units Evaluation Activities

AVA_VAN.1-1 The evaluator shall
examine the TOE to determine that
the test configuration is consistent
with the configuration under
evaluation as specified in the ST.

The evaluator shall perform the CEM
activity as specified.

If the iTC specifies any tools to be used in
performing this analysis in section A.3.4,
the following text is also included in this
cell: “The calibration of test resources
specified in paragraph 1418 of the CEM

DRAFT References

applies to the tools listed in Appendix A,
Section A.1.4.”

AVA_VAN.1-2 The evaluator shall
examine the TOE to determine that
it has been installed properly and is
in a known state

The evaluator shall perform the CEM
activity as specified.

AVA_VAN.1-3 The evaluator shall
examine sources of information
publicly available to identify
potential vulnerabilities in the TOE.

Replace CEM work unit with activities
outlined in Appendix A, Section 1

AVA_VAN.1-4 The evaluator shall
record in the ETR the identified
potential vulnerabilities that are
candidates for testing and
applicable to the TOE in its
operational environment.

Replace the CEM work unit with the
analysis activities on the list of potential
vulnerabilities in Appendix A, section 1,
and documentation as specified in
Appendix A, Section 1.

AVA_VAN.1-5 The evaluator shall
devise penetration tests, based on
the independent search for potential
vulnerabilities.

Replace the CEM work unit with the
activities specified in Appendix A, section
1.

AVA_VAN.1-6 The evaluator shall
produce penetration test
documentation for the tests based
on the list of potential
vulnerabilities in sufficient detail to
enable the tests to be repeatable.
The test documentation shall
include:

a) identification of the potential
vulnerability the TOE is being
tested for;
b) instructions to connect and setup
all required test equipment as
required to conduct the penetration
test;
c) instructions to establish all
penetration test prerequisite initial
conditions;
d) instructions to stimulate the TSF;
e) instructions for observing the
behaviour of the TSF;
f) descriptions of all expected
results and the necessary analysis to
be performed on the observed
behaviour for comparison against

The CEM work unit is captured in
Appendix A, Section 1; there are no
substantive differences.

Evaluation Activities for SARsRequired Supplementary Information
 WORKING DRAFT

expected results;
g) instructions to conclude the test
and establish the necessary post-test
state for the TOE.

AVA_VAN.1-7 The evaluator shall
conduct penetration testing.

The evaluator shall perform the CEM
activity as specified. See Appendix A,
Section 1, paragraph 493 for guidance
related to attack potential for confirmed
flaws.

AVA_VAN.1-8 The evaluator shall
record the actual results of the
penetration tests.

The evaluator shall perform the CEM
activity as specified.

AVA_VAN.1-9 The evaluator shall
report in the ETR the evaluator
penetration testing effort, outlining
the testing approach, configuration,
depth and results.

Replace the CEM work unit with the
reporting called for in Appendix A, Section
1.

AVA_VAN.1-10 The evaluator
shall examine the results of all
penetration testing to determine that
the TOE, in its operational
environment, is resistant to an
attacker possessing a Basic attack
potential.

This work unit is not applicable for Type 1
and Type 2 flaws (as defined in Appendix
A, Section 1), as inclusion in this
Supporting Document by the iTC makes
any confirmed vulnerabilities stemming
from these flaws subject to an attacker
possessing a Basic attack potential. This
work unit is replaced for Type 3 and Type 4
flaws by the activities defined in Appendix
A, Section 1, paragraph 493.

AVA_VAN.1-11 The evaluator
shall report in the ETR all
exploitable vulnerabilities and
residual vulnerabilities, detailing
for each:

a) its source (e.g. CEM activity
being undertaken when it was
conceived, known to the evaluator,
read in a publication);
b) the SFR(s) not met;
c) a description;
d) whether it is exploitable in its
operational environment or not (i.e.
exploitable or residual).
e) the amount of time, level of
expertise, level of knowledge of the
TOE, level of opportunity and the
equipment required to perform the

Replace the CEM work unit with the
reporting called for in Appendix A, Section
1.

DRAFT References

identified vulnerabilities, and the
corresponding values using the
tables 3 and 4 of Annex B.4.

Table 4: Mapping of AVA_VAN.1 CEM Work Units to Evaluation Activities

417 Because of the level of detail required for the evaluation activities, the bulk of
the instructions are contained in Appendix A, while an “outline” of the
assurance activity is provided below.

5.6.1.1 Evaluation Activity (Documentation):

418 <If the iTC determines that no additional documentation beyond that specified
below is required, it is acceptable to remove this Evaluation Activity in the
Supporting Document.

419 If the iTC determines that additional documentation is appropriate, they will
insert a description of that documentation in this paragraph. The iTC must
specify the required documentation in as much detail as possible to eliminate
issues associated with the evaluators evaluating the suitability of the
documentation rather than using the documentation to evaluate the product.
Therefore, documentation statements such as “Supply a high-level and low-
level design” are discouraged. An example of a better statement is:

420 “The developer shall provide documentation identifying the list of software and
hardware components that compose the TOE. Hardware components apply to
all systems claimed in the ST, and should identify at a minimum the processors
used by the TOE. Software components include any libraries used by the TOE,
such as cryptographic libraries. This additional documentation is merely a list
of the name and version number of the components, and will be used by the
evaluators in formulating hypotheses during their analysis.”>

421 The evaluator shall examine the documentation outlined below provided by the
vendor to confirm that it contains all required information. This documentation
is in addition to the documentation already required to be supplied in response
to the EAs listed previously.

422 In addition to the activities specified by the CEM in accordance with Table 2
above, the evaluator shall perform the following activities.

5.6.1.2 Evaluation Activity

423 The evaluator formulates hypotheses in accordance with process defined in
Appendix 1. The evaluator documents the flaw hypotheses generated for the
TOE in the report in accordance with the guidelines in Appendix 1. The
evaluator shall perform vulnerability analysis in accordance with Appendix 1.
The results of the analysis shall be documented in the report according to
Appendix 1.

Required Supplementary InformationRequired Supplementary Information
 WORKING DRAFT

6 Required Supplementary Information

424 This Supporting Document refers in various places to the possibility that
‘required supplementary information’ may need to be supplied as part of the
deliverables for an evaluation. This term is intended to describe information that
is not necessarily included in the Security Target or operational guidance, and
that may not necessarily be public.

425 The USP cPP requires an entropy analysis ([USBcPP, D.1]), and a Key
Management and Data Storage Description ([USBcPP, D.2]). The evaluation
activities that the evaluator is to perform with those documents are captured
under the appropriate SFRs in sections 2-5.

DRAFT References

7 References

 [CC1] Common Criteria for Information Technology Security
Evaluation, Part 1: Introduction and General Model
CCMB-2012-09-001, Version 3.1 Revision 4, September
2012

[CC2] Common Criteria for Information Technology Security
Evaluation,
Part 2: Security Functional Components,
CCMB-2012-09-002, Version 3.1 Revision 4,
September 2012

[CC3] Common Criteria for Information Technology Security
Evaluation,
Part 3: Security Assurance Components,
CCMB-2012-09-003, Version 3.1 Revision 4, September
2012

[CEM] Common Methodology for Information Technology
Security Evaluation, CCMB-2012-09-004, Version 3.1
Revision 4, September 2012

[USBcPP] collaborative Protection Profile for USB Portable
Storage Devices, <Other details TBD>

 WORKING DRAFT AppendixesAppendixes

Appendixes

 WORKING DRAFTVulnerability AnalysisEquivalency
Considerations

A. Vulnerability Analysis
A.1 Sources of vulnerability information

426 CEM Work Unit AVA_VAN.1-3 has been supplemented in this Supporting
Document to provide a better-defined set of flaws to investigate and procedures
to follow based on this particular technology. Terminology used is based on the
flaw hypothesis methodology, where the evaluation team hypothesizes flaws
and then either proves or disproves those flaws (a flaw is equivalent to a
“potential vulnerability” as used in the CEM). Flaws are categorized into four
“types” depending on how they are formulated:

1. A list of flaw hypotheses applicable to the technology described by the
cPP derived from public sources as documented in Section A.1.1—this
fixed set has been agreed to by the iTC. Additionally, this will be
supplemented with entries for a set of public sources (as indicated below)
that are directly applicable to the TOE or its identified components (as
defined by the process in Section A.1.1 below); this is to ensure that the
evaluators include in their assessment applicable entries that have been
discovered since the cPP was published;

2. A list of flaw hypotheses contained in this document that are derived from
lessons learned specific to that technology and other iTC input (that might
be derived from other open sources and vulnerability databases, for
example) as documented in Section A.1.2;

3. A list of flaw hypotheses derived from information available to the
evaluators; this includes the baseline evidence provided by the vendor
described in this Supporting Document (documentation associated with
EAs, documentation described in Section 5.6.1.1, <the iTC can remove the
reference to Section 5.6.1.1 if no additional documentation is defined>
documentation described in Section 6), as well as other information
(public and/or based on evaluator experience) as documented in Section
A.1.3; and

4. A list of flaw hypotheses that are generated through the use of iTC-defined
tools (e.g., nmap, protocol testers) and their application is specified in
section A.1.4.

A.1.1 Type 1 Hypotheses—Public-Vulnerability-based

427 <The iTC must determine what public vulnerability databases are to be used as
the basis for Type 1 hypotheses, and what entries in these databases apply. A
sample list of resources is contained in Appendix D, but the iTC is not bound
by that list.

428 In performing this activity, the iTC first agrees upon the sources to be used. The
list of sources should be searched by the iTC with an agreed-upon set of terms
such that the iTC feels a representative set of vulnerabilities with respect to the
technology type is returned.

 WORKING DRAFT AppendixesAppendixes

429 Having identified the sources, for each source the iTC defines criteria for
selecting entries in the list. The lists and criteria should be identified in this
section of the Supporting Document so that evaluators can use the same sources
and criteria at evaluation time to select entries that were made after the cPP was
published. For each entry that meets the criteria, the iTC determines whether
or not to include it in the list of flaw hypotheses defined in this Supporting
Document. This will likely necessitate the creation of some criteria by which
to judge an entry that is agreed to by the iTC. For instance, CVEs that would
generate flaw hypotheses related to buffer overflows would probably be rejected
as a generic flaw hypothesis. The output of this activity is a list of specific
entries from the selected sources that will be used as flaw hypotheses.>

430 The following list of public sources of vulnerability information was selected
by the iTC:

431 The Common Vulnerabilities and Exposures database at
http://cve.mitre.org/cve. The same database is also available at
https://nvd.nist.gov.

432 <iTC comment: no other vulnerability database appear to add anything
important to the search results from the CVE database >

433 The list of sources above was searched with the following search terms:

434 “USB”, “flash drive”, “USB drive”, “USB flash”

435 It should be noted that any attacks on the communication between the USB
device and the host computer, or using the host computer, are out of scope since
the protected data is available as plaintext here.

436 <iTC comment: The search results for “USB” contains all relevant search
results for any of the other search terms, including many others, not listed
above>

437 < iTC comment: Shouldn’t there be a list of type 1 flaw hypotheses here,
derived from database searches? Also, it would be relevant to specify some
criteria for excluding search hits from consideration. In any case I present
my results below and exclusion criteria above>

438 No potential vulnerabilities applicable to the cPP was found by the iTC.

439 < iTC comment: Several relevant potential flaws were found, but since these
did were not reported as flaws in USB mass storage devices, but in other
devices, the flaw hypotheses are listed as type 2>

440 In order to supplement this list, the evaluators shall also perform a search on the
sources listed above to determine a list of potential flaw hypotheses that are
more recent that the publication date of the cPP, and those that are specific to
the TOE and its components as specified by the additional documentation
mentioned above. Any duplicates – either in a specific entry, or in the flaw

 WORKING DRAFTVulnerability AnalysisEquivalency
Considerations

hypothesis that is generated from an entry from the same or a different source –
can be noted and removed from consideration by the evaluation team.

441 As part of type 1 flaw hypothesis generation for the specific components of the
TOE, the evaluator shall also search the component manufacturer’s websites to
determine if flaw hypotheses can be generated on this basis (for instance, if
security patches have been released for the version of the component being
evaluated, the subject of those patches may form the basis for a flaw
hypothesis).

442 The Common Vulnerabilities and Exposures database at
http://cve.mitre.org/cve should be searched for occurrences of the name and
version of the USB controller and the cryptographic library used in the device.
Any vulnerabilities found, that are applicable to the implemented versions of
these components, shall be presented as flaw hypotheses.

A.1.2 Type 2 Hypotheses—iTC-Sourced

443 <The iTC must consider if there are any technology-specific vulnerabilities or
types of vulnerabilities that the evaluators should consider that are not contained
in the previous section. This could be based on previous evaluations against the
cPP, experience of the iTC members, or other factors. These vulnerabilities
should be limited to those exploitable with a Basic Attack Potential—as
characterized by the time, technical expertise, knowledge of the TOE,
equipment, and access needed for exploitation. Section B.4.2.2. of the CEM
provides detailed guidance on how these factors should be considered in
determining attack potential relative to vulnerabilities.

444 This set of vulnerabilities (Type 2) is listed below and would then need to be
considered by the evaluation team. It is likely that there will be few or no entries
identified for this type until more experience is gained with the cPP.>

445 The following list of flaw hypothesis generated by the iTC for this technology
must be considered by the evaluation team as flaw hypotheses in performing the
vulnerability assessment.

446 Flaw hypothesis type 2 number 1

447 Hypothesis:

448 Plaintext, key material, and intermediate results from DEK decryption may be
left in persistent memory, or in powered volatile storage (if there is a power
source in the device). Both when the device is unplugged prematurely and after
the read/write operations have been completed need to be considered.

449 In combination with one of the potential flaws below, or by physically
connecting to memory circuits in the device, plaintext, key material or
intermediate DEK decryption results can be extracted.

450 Discussion:

 WORKING DRAFT AppendixesAppendixes

451 The risk can be eliminated by verifying that no plaintext, key material, or
intermediate DEK decryption results remains in memory after completed
operation or after unplugging the device prematurely. This can be verified in
conjunction with the (ATE) testing whether the keys are erased after operation.
The iTC estimated these attacks to be exploitable for a basic attacker.

452 Flaw hypothesis type 2 number 2

453 Hypothesis:

454 There may be a privileged interface left available, that provides easy access to
firmware, configuration parameters, key material and user data in the memory
areas in the device. Possible examples could be debug interfaces, JTAG or
similar.

455 This potential flaw could be exploited to change the configuration to allow
unlimited password attempts, which would make it feasible to stage a brute
force attack against the password. It could also be exploited to extract encrypted
DEK and data to perform a brute force attack against the password outside the
device.

456 Discussion:

457 The risk can be eliminated by trying to connect to any such interfaces that have
been accessible during the development or production of the device. The
existence/nonexistence of such interfaces should first be verified using the
design documentation, and by asking the developer. For these attacks the iTC
estimated the attack potential to be enhanced basic.

458 Flaw hypothesis type 2 number 3

459 Hypothesis:

460 It may be possible to update the firmware in the device through the USB
interface, which enables an attacker to extract the encrypted DEK and the
encrypted user data and perform an unlimited brute force attack against the
password outside the device (the updated firmware itself can also perform the
brute force attack within the device).

461 Discussion:

462 The risk can be eliminated by verifying that any features for updating the
firmware have been disabled. The availability of such a feature should first be
verified using the design documentation, and by asking the developer, then the
evaluator should try to use the feature. For these attacks the iTC estimated the
attack potential to be moderate.

463 Flaw hypothesis type 2 number 4

464 Hypothesis:

 WORKING DRAFTVulnerability AnalysisEquivalency
Considerations

465 There may exist exploitable buffer overflow vulnerabilities in the firmware, that
could provide access to firmware, configuration parameters, key material and
user data in the memory areas in the device.

466 This potential flaw could be used to change the configuration to allow unlimited
password attempts, which would make it feasible to stage a brute force attack
against the password. It could also be used to extract encrypted DEK and data
to perform a brute force attack against the password outside the device.

467 Discussion:

468 The risk of having easily found buffer overflow flaws can be reduced by fuzz
testing. However, attacks using buffer overflows were estimated by the iTC at
attack potential high, rendering this a residual vulnerability with margin. If
exploits are developed and made publicly known, this may change.

469 <iTC comment: The evaluator should re-calculate the attack potentials
during the evaluation and consider the existence of exploits that would
simplify the attacks>

470 <iTC comment: It should be noted that there are at least one relevant
attack that does not need any flaw, that is estimated to be exploitable with
an attack potential of moderate. This is when the attacker accesses the
memory circuits physically, extracts encrypted user data and encrypted
DEK and performs a brute force attack against the password to decrypt
first the DEK, then the data. The physical access to circuits can be made
much more difficult by covering the circuits in epoxy.>

471 If the evaluators discover a Type 3 or Type 4 flaw that they believe should be
considered as a Type 2 flaw in future versions of this cPP, they should work
with their Certification Body to determine the appropriate means of submitting
the flaw for consideration by the iTC.

472 <iTC comment: the above paragraph overlaps with the last statements in
section A.1.3 and A.1.4. Should it be removed?>

A.1.3 Type 3 Hypotheses—Evaluation-Team-Generated

473 Type 3 flaws are formulated by the evaluator based on information presented
by the product (through on-line help, product documentation and user guides,
etc.) and product behaviour during the (functional) testing activities. The
evaluator is also free to formulate flaws that are based on material that is not
part of the baseline evidence (e.g., information gleaned from an Internet mailing
list, or reading interface documentation on interfaces not included in the set
provided by the developer), although such activities have the potential to vary
significantly based upon the product and evaluation facility performing the
analysis.

474 If the evaluators discover a Type 3 flaw that they believe should be considered
as a Type 2 flaw in future versions of this cPP, they should work with their

 WORKING DRAFT AppendixesAppendixes

Certification Body to determine the appropriate means of submitting the flaw
for consideration by the iTC.

475 <It may be the case that no activities of this type are appropriate for this
technology; in that case, this section can be removed and references in other
areas of this Supporting Document adjusted accordingly.>

A.1.4 Type 4 Hypotheses—Tool-Generated

476 No need for a tool based search for vulnerabilities is foreseen by the iTC.

477 <iTC comment: Fuzzing the USB interface would be relevant, but the attacks
that would use buffer overflows also would have to go further and for example
grab encrypted data and keys and then brute-force the password. These
combined attacks were estimated to correspond to an attack potential of
“high” and thus result in residual vulnerabilities. If a buffer overflow exploit
is published, the attack potential for using this would be considerably lower.
If this happens, the evaluator may propose to the scheme that fuzz testing is
used.>

478 If the evaluators discover a Type 4 flaw that they believe should be considered
as a Type 2 flaw in future versions of this cPP, they should work with their
Certification Body to determine the appropriate means of submitting the flaw
for consideration by the iTC.

A.2 Process for Evaluator Vulnerability Analysis

479 As flaw hypotheses are generated from the activities described above, the
evaluation team will disposition them; that is, attempt to prove, disprove, or
determine the non-applicability of the hypotheses. This process is as follows.

480 The evaluator will refine each flaw hypothesis for the TOE and attempt to
disprove it using the information provided by the developer or through
penetration testing. During this process, the evaluator is free to interact directly
with the developer to determine if the flaw exists, including requests to the
developer for additional evidence (e.g., detailed design information,
consultation with engineering staff); however, the CB should be included in
these discussions. Should the developer object to the information being
requested as being not compatible with the overall level of the evaluation
activity/cPP and cannot provide evidence otherwise that the flaw is disproved,
the evaluator prepares an appropriate set of materials as follows:

481 the source documents used in formulating the hypothesis, and why it represents
a potential compromise against a specific TOE function;

482 an argument why the flaw hypothesis could not be proven or disproved by the
evidence provided so far; and

483 the type of information required to investigate the flaw hypothesis further.

 WORKING DRAFTVulnerability AnalysisEquivalency
Considerations

484 The Certification Body (CB) will then either approve or disapprove the request
for additional information. If approved, the developer provides the requested
evidence to disprove the flaw hypothesis (or, of course, acknowledge the flaw).

485 For each hypothesis, the evaluator will note whether the flaw hypothesis has
been successfully disproved, successfully proven to have identified a flaw, or
requires further investigation. It is important to have the results documented as
outlined in Section 1 below.

486 If the evaluator finds a flaw, the evaluator must report these flaws to the
developer. All reported flaws must be addressed as follows:

487 If the developer confirms that the flaw exists and that it is exploitable at Basic
Attack Potential, then a change is made by the developer, and the resulting
resolution is agreed by the evaluator and noted as part of the evaluation report.

488 If the developer, the evaluator, and the CB agree that the flaw is exploitable
only above Basic Attack Potential and does not require resolution for any other
reason, then no change is made and the flaw is noted as a residual vulnerability
in the CB-internal report (ETR).

489 If the developer and evaluator agree that the flaw is exploitable only above Basic
Attack Potential, but it is deemed critical to fix because of technology-specific
or cPP-specific aspects such as typical use cases or operational environments,
then a change is made by the developer, and the resulting resolution is agreed
by the evaluator and noted as part of the evaluation report.

490 Disagreements between evaluator and vendor regarding questions of the
existence of a flaw, its attack potential, or whether it should be deemed critical
to fix are resolved by the CB.

491 Any testing performed by the evaluator shall be documented in the test report
as outlined in Section 1 below.

492 As indicated in Section 1, Reporting, the public statement with respect to
vulnerability analysis that is performed on TOEs conformant to the cPP is
constrained to coverage of flaws associated with Types 1 and 2 (defined in
Section 1) flaw hypotheses only. The fact that the iTC generates these candidate
hypotheses indicates these must be addressed.

493 For flaws of Types 3 and 4, each CB is responsible for determining what
constitutes Basic Attack Potential for the purposes of determining whether a
flaw is exploitable in the TOE’s environment. The determination criteria shall
be documented in the CB-internal report as specified in Section 1. As this is a
per-CB activity, no public claims are made with respect to the resistance of a
particular TOE against flaws of Types 3 and 4; rather, the claim is that the
activities outlined in this appendix were carried out, and the evaluation team
and CB agreed that any residual vulnerabilities are not exploitable by an attacker
with Basic Attack Potential.

 WORKING DRAFT AppendixesAppendixes

A.3 Reporting

494 The evaluators shall produce two reports on the testing effort; one that is public-
facing (that is, included in the non-proprietary evaluation report, which is a
subset of the Evaluation Technical Report (ETR)), and the complete ETR that
is delivered to the overseeing CB.

495 The public-facing report contains:

496 * The flaw identifiers returned when the procedures for searching public sources
were followed according to instructions in the Supporting Document per
Section A.1.1;

497 * A statement that the evaluators have examined the Type 1 flaw hypotheses
specified in this Supporting Document in section A.1.1 (i.e. the flaws listed in
the previous bullet) and the Type 2 flaw hypotheses specified in this Supporting
Document by the iTC in Section A.1.2.

498 <The above two bullets encompass all flaw hypotheses of Type 1 and Type 2.>

499 * A statement that the evaluation team developed Types 3 and 4 flaw hypotheses
in accordance with Sections A.1.3, A.1.4, and 1, and that no residual
vulnerabilities exist that are exploitable by attackers with Basic Attack Potential
as defined by the CB in accordance with the guidance in the CEM. It should be
noted that this is just a statement about the “fact of” Types 3 and 4 flaw
hypotheses being developed, and that no specifics about the number of flaws,
the flaws themselves, or the analysis pertaining to those flaws will be included
in the public-facing report.

500 No other information is provided in the public-facing report.

501 The internal CB report contains, in addition to the information in the public-
facing report:

• a list of all of the flaw hypotheses generated (cf. AVA_VAN.1-4);

• the evaluator penetration testing effort, outlining the testing approach,
configuration, depth and results (cf. AVA_VAN.1-9);

• all documentation used to generate the flaw hypotheses (in identifying the
documentation used in coming up with the flaw hypotheses, the evaluation team
must characterize the documentation so that a reader can determine whether it is
strictly required by this Supporting Document, and the nature of the
documentation (design information, developer engineering notebooks, etc.));

• the evaluator shall report all exploitable vulnerabilities and residual
vulnerabilities, detailing for each:

• its source (e.g. CEM activity being undertaken when it was
conceived, known to the evaluator, read in a publication);

• the SFR(s) not met;

• a description;

 WORKING DRAFTVulnerability AnalysisEquivalency
Considerations

• whether it is exploitable in its operational environment or not
(i.e. exploitable or residual).

• the amount of time, level of expertise, level of knowledge of the
TOE, level of opportunity and the equipment required to perform
the identified vulnerabilities (cf. AVA_VAN.1-11);

• how each flaw hypothesis was resolved (this includes whether the original flaw
hypothesis was confirmed or disproved, and any analysis relating to whether a
residual vulnerability is exploitable by an attacker with Basic Attack Potential)
(cf. AVA_VAN1-10); and

• in the case that actual testing was performed in the investigation (either as part of
flaw hypothesis generation using tools specified by the iTC in Section A.1.4, or in
proving/disproving a particular flaw) the steps followed in setting up the TOE (and
any required test equipment); executing the test; post-test procedures; and the
actual results (to a level of detail that allow repetition of the test, including the
following:

• identification of the potential vulnerability the TOE is being
tested for;

• instructions to connect and setup all required test equipment as
required to conduct the penetration test;

• instructions to establish all penetration test prerequisite initial
conditions;

• instructions to stimulate the TSF;
• instructions for observing the behaviour of the TSF;
• descriptions of all expected results and the necessary analysis

to be performed on the observed behaviour for comparison
against expected results;

• instructions to conclude the test and establish the necessary
post-test state for the TOE. (cf. AVA_VAN.1-6, AVA_VAN.1-
8).

 WORKING DRAFT AppendixesAppendixes

B. Equivalency Considerations
B.1 Introduction

502 This appendix provides a foundation for evaluators to determine whether a
vendor’s request for equivalency of products is allowed.

503 For the purpose of this evaluation, equivalency can be broken into two
categories:

• Variations in models: Separate TOE models/variations may include
differences that could necessitate separate testing across each model. If
there are no variations in any of the categories listed below, the models
may be considered equivalent.

• Variations in TOE dependencies on the environment (e.g.,
OS/platform the product is tested on): The method a TOE provides
functionality (or the functionality itself) may vary depending upon the
environment on which it is installed. If there is no difference in the TOE-
provided functionality or in the manner in which the TOE provides the
functionality, the models may be considered equivalent.

504 Determination of equivalency for each of the above specified categories can
result in several different testing outcomes.

505 If a set of TOE are determined to be equivalent, testing may be performed on a
single variation of the TOE. However, if the TOE variations have security-
relevant functional differences, each of the TOE models that exhibits either
functional or structural differences must be separately tested. Generally
speaking, only the difference between each variation of TOE must be separately
tested. Other equivalent functionality may be tested on a representative model
and not across multiple platforms.

506 If it is determined that a TOE operates the same regardless of the environment,
testing may be performed on a single instance for all equivalent configurations.
However, if the TOE is determined to provide environment-specific
functionality, testing must take place in each environment for which a difference
in functionality exists. Similar to the above scenario, only the functionality
affected by environment differences must be retested.

507 If a vendor disagrees with the evaluator’s assessment of equivalency, the
Scheme arbitrates between the two parties whether equivalency exists.

 WORKING DRAFT Equivalency
ConsiderationsEquivalency Considerations

B.2 Evaluator guidance for determining equivalence

B.2.1 Strategy

508 When performing the equivalency analysis, the evaluator should consider each
factor independently. A factor may be any number of things at various levels of
abstraction, ranging from the processor a device uses, to the underlying
operating system and hardware platform a software application relies upon.
Examples may be the various chip sets employed by the product, the type of
network interface (different device drivers), storage media (solid state drive,
spinning disk, EEPROM). It is important to consider how the difference in these
factors may influence the TOE’s ability to enforce the SFRs. Each analysis of
an individual factor will result in one of two outcomes:

• For the particular factor, all variations of the TOE on all supported
platforms are equivalent. In this case, testing may be performed on a
single model in a single test environment and cover all supported models
and environments.	

• For the particular factor, a subset of the product has been identified to
require separate testing to ensure that it operates identically to all other
equivalent TOEs. The analysis would identify the specific combinations
of models/testing environments that needed to be tested.	

509 Complete CC testing of the product would encompass the totality of each
individual analysis performed for each of the identified factors.

B.3 Test presentation/Truth in advertising

510 In addition to determining what to test, the evaluation results and resulting
validation report must identify the actual module and testing environment
combinations that have been tested. The analysis used to determine the testing
subset may be considered proprietary and will only optionally be publicly
included.

 WORKING DRAFT AppendixesAppendixes

C. Public Vulnerability Sources
The following sources of public vulnerabilities are sources for the iTC to consider in both
formulating the specific list of flaws to be investigated by the evaluators, as well as to reference
in directing the evaluators to perform key-word searches during the evaluation of a specific
TOE.

a. Search Common Vulnerabilities and Exposures: http://cve.mitre.org/cve/

b. Search Core Security Technologies: http://www.coresecurity.com
c. Search eEye Digital Security: http://blog.beyondtrust.com/zd_threat?status=zeroday

d. Search Exploit / Vulnerability Search Engine: www.exploitsearch.net
e. Conduct SecurITeam Exploit Search: www.securiteam.com

f. Search SecurityTracker: www.securitytracker.com
g. Search VUPEN Security, formerly FrSIRT: www.vupen.com

h. Conduct Google search: www.google.com
i. Search McAfee Threat Intelligence http://www.mcafee.com/us/mcafee-labs/threat-
intelligence.aspx
j. Search Open Source Vulnerability Database http://osvdb.org/

k. Search Secwatch Advisories & Exploits https://securitynewsportal.com/index.shtml
l. Search Symantec http://www.symantec.com/security_response/

m. Search Tenable Network Security http://nessus.org/plugins/index.php?view=search
n. Tipping Point Zero Day Initiative http://www.zerodayinitiative.com/advisories

o. Search US-CERT http://www.kb.cert.org/vuls/html/search
p. Search Vigil@nce http://vigilance.fr/

