
Security Target for L4Re Secure Separation
Kernel CC 1.0.1

BSI Certification ID: BSI-DSZ-CC-1177

Version 2.1400

Kernkonzept GmbH

Buchenstr. 16b

01097 Dresden

Germany

Copyright © 2021-2025 by Kernkonzept GmbH

Security Target for L4Re Secure Separation Kernel CC 1.0.1

Prior Work

This document is derived from the ST for Infodas MOS. This original ST is copyright Infodas
GmbH and Kernkonzept GmbH.

Version 2.1400 Classification: company-confidential 3 of 61
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1

Table of contents
1 Introduction...7

1.1 Security Target Identification...7

1.2 TOE Identification...7

1.3 TOE Overview...7

1.3.1 TOE Type...8

1.3.2 Intended Method of Use...8

1.3.3 Major Security Features...9

1.3.4 Product Types...9

1.3.5 Required Hardware and Software..9

1.4 TOE Description..10

1.4.1 System Architecture...10

1.4.2 Major Security Features...13

1.4.3 Communication Proxies...17

1.4.4 TOE Boundaries...20

2 Conformance Claims...22

2.1 Conformance with CC Parts 2 and 3...22

2.2 Conformance with Protection Profiles...22

3 Security Problem Definition..23

3.1 Threats..23

3.1.1 Assets...23

3.1.2 Threat Agents...23

3.1.3 Threats countered by the TOE...23

3.2 Organizational Security Policies..24

3.3 Assumptions...24

4 Security Objectives..25

4.1 Security Objectives for the TOE..25

4.2 Security Objectives for the Operational Environment...25

4.3 Rationale for Security Objectives..25

5 Extended Components Definition...27

6 Security Requirements...28

6.1 Security Functional Requirements...28

6.1.1 User Data Protection (FDP)...28

4 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1

6.1.2 Security Management (FMT)...38

6.1.3 Identification and Authentication (FIA)...39

6.1.4 Privacy (FPR)...39

6.2 Rationale for Security Functional Requirements...39

6.2.1 Coverage..39

6.2.2 Sufficiency...41

6.2.3 SFR Dependencies...43

6.3 Security Assurance Requirements...45

6.4 Security Assurance Requirements Rationale...46

6.5 Security Assurance Requirements Dependency Analysis..46

7 TOE Summary Specification...47

7.1 Separation of Compartments...47

7.2 Information Flow Control..49

7.3 System Management..50

7.4 SFR to TSS References..50

8 Terms and Definitions..52

9 Abbreviations...59

10 References...61

Version 2.1400 Classification: company-confidential 5 of 61
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1

Index of Tables
Table 1: Assets..23

Table 2: Coverage of Security Objectives for the TOE..26

Table 3: Coverage of Security Objectives for the TOE environment...26

Table 4: Objects..33

Table 5: Mapping of SFRs to Security Objectives...41

Table 6: SFR Sufficiency Analysis...43

Table 7: SFR Dependencies..45

Table 8: Security Assurance Requirements..46

Table 9: SFR to TSS References..51

Illustration Index
Figure 1: Schematic architecture of the hardware platform, TOE and user partitions.......................11

Figure 2: Configuration examples with proxies...18

Figure 3: Proxy policies..19

6 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Introduction

1 Introduction
The purpose of this Security Target (ST) is to define the evaluated and certified properties of the
L4Re Secure Separation Kernel CC 1.0.1. Throughout this document, the L4Re Secure Separation
Kernel CC 1.0.1 will be abbreviated as L4Re SSK. Further, we want to give potential users the
confidence that the properties of L4Re SSK can be used along with other application software to
build an integrated TOE (Target of Evaluation), consisting of the L4Re SSK and the user’s own
software components.

1.1 Security Target Identification
Title: Security Target for L4Re Secure Separation Kernel CC 1.0.1

Version: 2.1400

Status: company-confidential

Publication Date: 2025-02-08

Authors: Kernkonzept GmbH

BSI Certification ID: BSI-DSZ-CC-1177

CC-Version: 3.1 Revision 5

Keywords: Microkernel, Operating System, Separation Kernel, Hypervisor, Open Source, L4Re
Operating System Framework

1.2 TOE Identification
The TOE is the L4Re Secure Separation Kernel CC 1.0.1, abbreviated as L4Re SSK throughout this
document.

1.3 TOE Overview
The TOE is the L4Re Secure Separation Kernel CC 1.0.1 (L4Re SSK). L4Re SSK is a distribution
of the open-source L4Re Operating System Framework. As such it is based on the L4Re
Microkernel. The L4Re Microkernel is a 3rd-generation microkernel with a state-of-the-art
capability-based mandatory access-control security model. It allows the separation of applications
into different security domains, information flow control, and access-controlled dynamic
assignment of resources and communication channels. Further the L4Re Microkernel supports static
workloads alongside dynamic workloads, which allows to start, restart and shutdown applications
during runtime, as well as re-assigning resources.

L4Re SSK is configured to act as a separation kernel, to provide the security features claimed in this
ST. The TOE supports native applications as well as virtual machines (VMs). Access to every
resource including but not limited to memory, hardware devices and CPU cores is protected by
capabilities. Applications and VMs can only access a resource if they possess a capability with
suitable permissions for that resource.

A capability is an unforgeable token of authority which is managed and protected by the L4Re
Microkernel. It consists of a reference to a resource and access permissions. An application may
invoke a function of a certain resource by sending a message referencing that resource’s capability

Version 2.1400 Classification: company-confidential 7 of 61
Copyright © 2021-2025 by Kernkonzept

Introduction Security Target for L4Re Secure Separation Kernel CC 1.0.1

as the destination of that message. With capabilities L4Re SSK allows the efficient implementation
of the principle-of-least-authority (POLA).

On the basis of the capability-based access control, the TOE allows to control the information flow
between single applications or groups of applications, called compartments hereafter. The term
compartment refers to one initial application together with all applications that are started directly
and indirectly by this initial application. Initial applications are defined by L4Re SSK’s start-up
configuration.

Within the L4Re SSK an application is a possibly multi-threaded program, where all threads of one
application share the same access rights. Applications can be developed with a separate SDK which
is not part of the TOE.

1.3.1 TOE Type
The TOE type is a separation-kernel operating system.

1.3.2 Intended Method of Use
L4Re SSK requires a start-up configuration provided by means of a script (written in Lua) to the
application loader Ned. The script starts the initial applications and equips them with capabilities.
The initial capability distribution defines the permissions of the initial applications, allocates
devices to them and sets up the initially shared resources, especially the initial capability and data
channels. Depending on permissions, each initial application may start additional applications.
L4Re SSK is able to enforce separation properties between all applications, regardless of how they
are started. However, this ST only claims separation properties between compartments.

The evaluated configuration for L4Re SSK sets forth rules how to create resources and devices as
well as how to assign them to compartments. Other Lua configurations are not allowed and may
lead to a system that violates one or more of the security features outlined in the following sections.

To realize a product based on L4Re SSK an integrator must choose a platform that meets the TOE
requirements, see Section 1.3.5, and a set of initial applications, each representing one
compartment, to be started on L4Re SSK. The integrator must decide which compartments shall
have access to which platform devices and about the communication channels between the
compartments. For this purpose the integrator may use any number (including zero) of the optional
TOE components. The intended compartment configuration must be checked for consistency and
realizability with respect to the rules described in L4Re Configuration Guidance. Additionally, it
must be checked if the required separation properties between the compartments are enforced. To
achieve the desired communication channels and separation properties it may be necessary to
design and implement product specific communication proxies. The integrator must decide about
how to protect the integrity of the L4Re SSK installation on the platform and how to roll out
updates in response to L4Re SSK security advisories with an appropriate rollback prevention. This
may involve an appropriate key management process to be implemented by the integrator. Finally
the integrator must create a L4Re SSK configuration adhering to the L4Re Configuration Guidance
and install the TOE based software stack on the platform, see also Section 1.4.2.3.

8 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Introduction

1.3.3 Major Security Features

1.3.3.1 Information Flow Control

L4Re SSK implements mandatory, capability-based access control. Each object controlled or
implemented by L4Re SSK is represented by a capability. The communication channels available
between applications can effectively be controlled by the initial capability distribution. Additional
details are provided in Section 1.4.2.1.

1.3.3.2 Separation of Applications and Compartments

L4Re SSK ensures the separation of applications by enforcing capability-based, mandatory access
control for all applications. An application can only access a resource if it possesses a capability.

Additional details are provided in Section 1.4.2.2.

1.3.3.3 System Management

L4Re SSK is an operating system that is intended to ensure the separation of applications while
permitting flexible workloads and the reconfiguration of the system during run time. Further details
are provided in Section 1.4.2.3.

1.3.4 Product Types
Using the security features outlined in Section 1.4.2 together with trusted applications (which are
not part of the TOE), a variety of products can be realized on the basis of the TOE, such as data
diodes, secure exchange gateways, secure VPN gateways or secure endpoint devices. This is not a
complete list of products and other solutions such as secure cloud workloads and safety applications
can be realized with the TOE.

1.3.5 Required Hardware and Software
The TOE requires hardware systems with the following components – additional hardware is
considered a form factor which does not affect the security functionality of the TOE:

• x86_64 Intel CPU with any microarchitecture starting from Broadwell up to and including
Meteor Lake and, additionally, with support for VT-x with EPT, and Intel IOMMU. If
available, the latest microcode update must be applied by the BIOS.

• ARMv8 CPU: NXP LX2160A with support for ARM virtualization

The following assumptions about the execution environment are made:

• The TOE installation is protected against unauthorized modifications.

• If the exploitation of covert channels via an L1/L2 cache or TLB shall be prevented, L4Re
SSK must be configured to execute the compartments to be separated on different CPU
cores that do not share a common L1/L2 cache and TLB (for more details see the guidance
listed in Section 1.4.4.2).

• ARM virtualization and Intel virtualization (VT-x) are allowed, but there will be made no
claims about security requirements in this Security Target. There are three variants of L4Re
SSK available, one per supported platform and configuration:

◦ LX2160A with support for the SMMU

Version 2.1400 Classification: company-confidential 9 of 61
Copyright © 2021-2025 by Kernkonzept

Introduction Security Target for L4Re Secure Separation Kernel CC 1.0.1

◦ Intel 64 with support for VT-x and the IOMMU

◦ Intel 64 with support for the IOMMU but without support for VT-x

The binaries are included in the corresponding archives of the TOE (see Section 1.4.4.2).

1.4 TOE Description
This section provides a general description of the TOE, including physical boundaries, security
functions, and relevant TOE documentation and references.

1.4.1 System Architecture
The L4Re Secure Separation Kernel CC 1.0.1 is configured to work as a separation kernel. The
L4Re SSK is a microkernel-based operating system where the functionality is split among the
operating system kernel and multiple user land applications. This design (called the microkernel
principle) provides benefits over traditional monolithic designs. Only the L4Re Microkernel runs in
the most privileged CPU mode where it provides the basic services needed for isolating user-land
applications from each other as well as to implement use-case specific services and policies in those
applications. This system architecture combined with the state-of-the-art capability-based
mandatory access control allows L4Re SSK to efficiently implement the Principle of Least
Authority (POLA) which enables Zero Trust. The L4Re Microkernel guarantees address-space
separation (see Section 1.4.2.2) between all user land TOE components as well as temporal
isolation.

L4Re SSK implements the middle ware which provides the mechanisms and services that an OEM
needs to build its own product or solution for an end user. For that the OEM must instantiate so
called user partitions or compartments according to the configuration guidance provided with L4Re
SSK. Please see Figure 1 for a schematic architecture of the hardware platform, the TOE and
example user partitions.

10 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Introduction

A user partition for example can be a virtual machine that hosts a virtualized Linux guest operating
system or native applications. The L4Re Operating System Framework offers a wide variety of
applications apart from components belonging to the TOE. Additionally, the L4Re Operating
System Framework provides a software development kit for developing customized L4Re
applications, for instance customized cryptographic components. However, the security features
claimed in this Security Target are solely provided by the TOE and the underlying hardware
platform.

The TOE comprises of:

L4Re Microkernel The L4Re Microkernel provides Tasks, Threads, and a capability-based
access control mechanism to implement the separation types described in
Section 1.4.2.2. It provides basic mechanisms like CPU scheduling, IPC, and
resource delegation. The L4Re Microkernel always runs in a higher-
privileged CPU mode than the user-level components of the TOE.

Sigma0 Sigma0 is also called the root pager and is a special application running on
the L4Re Microkernel. It is responsible for the resolution of page faults of
Moe (the root task, see below). It provides capabilities to memory (usually
RAM), MMIO, and I/O ports (x86 only) on a first-come first-served basis.
This component is a user-level component and runs in a less-privileged CPU

Version 2.1400 Classification: company-confidential 11 of 61
Copyright © 2021-2025 by Kernkonzept

Figure 1: Schematic architecture of the hardware platform, TOE and user partitions.
This is a schematic architecture. Between the hardware platform and the user
partitions (light blue) runs the TOE. The components in light orange are optional
and may be used depending on an OEM's use case. Each box denotes address space
separation between the individual components. The processes inside user partition 3
are not separated by the L4Re Microkernel in the sense of this ST but they run in
different address spaces as far as the guest operating system ensures this.

Introduction Security Target for L4Re Secure Separation Kernel CC 1.0.1

mode.

Moe The root task. Moe is responsible for starting the initial application (Ned)
and it provides essential services for all non-privileged components (except
for Sigma0). Moe eagerly acquires all memory (RAM) from Sigma0 and
makes it available to other applications. This component is a user-level
component and runs in a less-privileged CPU mode.

Ned Ned is responsible for starting all initial applications including Io. It sets up
the initial communication channels according to a configuration provided as
Lua scripts in boot modules. This component is a user-level component and
runs in a less-privileged CPU mode.

Io Io is the device and platform manager. It provides secure access to platform
devices and I/O resources. Lua scripts that are provided as boot modules
define virtual device trees (called virtual bus = vbus) to which Io maps
physical platform devices. The mapping may include the filtering or
exclusion of device features in order to ensure proper separation. Each
virtual bus is represented by a capability that only provides access to the
devices of the corresponding device tree. This restricts the access to devices
according to the capability distribution set up by Ned. This component is a
user-level component and runs in a less-privileged CPU mode.

Two optional L4Re applications are part of the TOE. They are so called communication proxies (see
Section 1.4.3). If the use case doesn’t require the functionality of these two applications they can be
removed from the system configuration.

virtio-net-switch The virtual network switch connects multiple clients with a virtual network
connection. It uses virtio as the transport mechanism. Each virtual switch port
implements the host-side of a virtio network device.
The virtual network switch can be setup to feature exactly one monitor port.
All traffic passing through the switch is mirrored to the monitor port but a
client connected via the monitor port cannot send data through this port. An
optional packet filter can be configured and implemented to filter data sent to
the monitor port.

NVMe server The NVMe server is a driver for PCI Express NVMe controllers. It is capable
of exposing entire disks (i.e. NVMe namespaces) (by serial number and
namespace identifier) or individual partitions (by their partition UUID) of a
storage device to clients via the Virtio block interface.
The server consists of two parts. The first one is the hardware driver itself that
takes care of the communication with the underlying hardware and interrupt
handling. The second part implements a virtual block device and is
responsible to communicate with clients. The virtual block device translates
commands it receives into NVMe requests and issues them to the hardware
driver.

12 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Introduction

Apart from the components belonging to the TOE, the L4Re Operating System Framework offers a
variety of other components that can be used inside compartments, for instance virtual machines as
provided by Uvmm, a virtual machine monitor supporting fully virtualized guests. Additionally, the
L4Re Operating System Framework provides a software development kit for developing
customized L4Re applications, for instance customized cryptographic components. The security
features claimed in this Security Target are solely provided by the TOE and the underlying hardware
platform.

1.4.2 Major Security Features
L4Re SSK implements capability-based, mandatory access control. An application can only access
a resource if it possesses a capability referencing that resource. Here, resources include all
architecturally visible hardware resources (e.g. memory pages, hardware interrupts), all system
services provided by the L4Re SSK (e.g. threads, data objects, communication channels, memory
allocators) and all services implemented by applications running on L4Re SSK. An acting entity
that possesses a given capability can perform operations on that capability by invoking the
capability. The allowed operations to be exercised on a capability depend on the type of the
capability, i. e., which object the capability references, and the capability’s access permissions.

The security domains in L4Re SSK are the applications. For each application, L4Re SSK manages a
private capability space and a collection of threads that execute in that application. A thread is an
executable piece of code and is, therefore, considered the subject, which is also called the acting
entity. The L4Re SSK object to manipulate an application is called task. Tasks and threads are also
objects that can be controlled using their respective capabilities.

L4Re SSK features kernel resource management and IOMMU support to protect the TOE and all
applications from malicious or malfunctioning DMA-capable devices or device drivers. Kernel
resource management limits the amount of kernel objects that an application can create and,
thereby, can prevent a single application from monopolizing all kernel memory.

Details of the major security features are specified in the following sections.

1.4.2.1 Information Flow Control

L4Re SSK supports three different kinds of communication channels between applications:

Capability channel Capability channels permit the transfer of capabilities. The typical
example is an IPC-gate that allows to transfer capabilities and data.

Bidirectional data channel Shared memory and semaphores allow to transfer data and signals in
both directions but do not permit the transfer of capabilities. As a
special case, shared access to a physical device is considered as a
bidirectional data channel in this document.

Unidirectional data
channel

Semaphores and IRQs with restricted permissions do only permit to
trigger signals but not to receive signals or to transfer capabilities.

An application that possesses a capability for a capability channel may attempt to send any of its
own capabilities over that channel. The application at the other end of the channel will receive
copies of the transmitted capabilities if it had agreed to receive capabilities before. The permissions
at the receiver are those of the sender, possibly reduced by a permission mask specified by the

Version 2.1400 Classification: company-confidential 13 of 61
Copyright © 2021-2025 by Kernkonzept

Introduction Security Target for L4Re Secure Separation Kernel CC 1.0.1

sender and the capability channel. A capability channel thus permits to set up additional
communication channels.

Inter process communication (IPC) by invoking communication objects permits capability transfer
by default. However, each IPC partner can prevent the capability transfer. This is obvious for the
sender but also possible for the receiver by suitably configuring receive windows. Using this
mechanism, TOE components protect themselves against unwanted capability transfers from other
L4Re applications. L4Re permits to effectively restrict and control capability transfers and
communication between tasks. On one hand, sender and receiver can prevent the capability transfer
during IPC as stated above.

On the other hand, capability transfer between applications is only possible via thread, task, and
IPC-Gate capabilities. Therefore, by an appropriate distribution of these capabilities, capability
transfer can be allowed/disallowed without relying on the tasks outside the TOE. Nevertheless, it is
still possible to communicate without capability transfer via shared memory, semaphores, IRQs,
devices, or I/O ports. L4Re SSK allows the creation of such data channels between tasks which are
solely based on shared memory, semaphores, IRQs, devices, or I/O ports. All these data channels
require some shared capability. For instance, for shared memory the involved applications must at
least both possess a memory capability referencing the same memory frame. Therefore, via
controlling capability channels, L4Re SSK also permits the control of communication channels.

Capabilities for memory pages and —on x86— I/O ports as well as the capabilities for certain
special objects are created during L4Re SSK startup. For all other objects, a new capability
referencing the object is generated when the object itself is created and given to the creator of the
object. For example, when a new task is created, the capability referencing that task with full access
permissions is created. For a second example, when additional main memory is allocated, a
capability referencing the new dataspace with full access permissions is created.1 After creation of a
new object, only the application that created the object possesses a capability referencing the new
object. That application can of course share the new capability with other applications, including
L4Re SSK services, via existing capability channels. When an object is destroyed, all capabilities
referencing that object are destroyed as well.

An application can only create objects if it possesses a capability referencing some object that offers
object creation as function. Such an object is called Factory in L4Re SSK. L4Re SSK provides two
initial factories that are required by each application. The first one is the kernel factory which is
implemented by the L4Re Microkernel. It allows to create kernel objects such as tasks, threads, IPC
gates or semaphores. The second one is the user factory which is implemented by Moe in L4Re
SSK.

1.4.2.2 Separation of Applications and Compartments

The TOE provides three different kinds of separation between applications or compartments.

Address-space separation Address-space separation is the default minimal separation of
applications. Except for explicitly configured shared memory, each
application has access to its private memory only. Each application
also has its own (private) capability space, whose integrity is protected
by the TOE. Limited by access control, applications can share their
own capabilities with other applications. Each application can

1 A Dataspace is a user-level object that encapsulates a chunk of memory.

14 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Introduction

effectively protect itself against receiving capabilities or overwriting
slots in its capability space when being granted access rights.

Capability separation Applications can be configured such that they can freely exchange any
data but cannot exchange capabilities. The data can be exchanged via
shared memory or via special communication channels (e. g.,
semaphores) that cannot transfer capabilities. Capability separation is
useful if exchange of data between two compartments is permitted but
the integrity of the compartments should be protected by the TOE, for
instance, because one does not trust the involved compartments to
correctly use the TOE features to protect their integrity themselves.

Strong separation Applications and compartments can also be configured such that they
can exchange neither data nor capabilities using the features of the
TOE. Strong separation restricts only the direct transfer of data or
information between two compartments, that is, if two strongly
separated compartments are both connected to a third compartment,
then they may exchange data via the third compartment (see section
1.4.3)

The TOE does not enforce the absence of side channels or hidden channels for compartments that
enjoy any of the previous separation properties and this ST does not claim that such channels do not
exist between separated compartments. However, the TOE provides means to restrict the execution
of any compartment to a specified subset of CPU cores to limit side and covert channels in
hardware. An integrator may, for instance, decide to let two compartments execute in a time-shared
manner on the same CPU core, if both compartments belong to the same security domain. However,
the integrator may also decide to pin two compartments to separate cores to eliminate side and
covert channels via shared L1/L2 caches, TLBs and other CPU resources.

The only system call in L4Re SSK is object invocation, which calls objects in the L4Re
Microkernel with an object specific payload. IPC is built by invoking a communication object in the
L4Re Microkernel. Using this communication object, messages, capabilities and access rights can
be transferred to other threads. A thread may use each capability of its application as target of an
object invocation. A thread may also wait for incoming IPC messages from other threads that have
access to a capability referencing the receiving thread or a resource it implements. The sending
thread may add arbitrary capabilities of its application to the IPC message2. If the IPC-receiving
thread sets up its state to receive capabilities, the capabilities in the message are transferred
(mapped) to the receiver. Depending on the invoked function, the IPC message may need to contain
certain capabilities as required arguments. In order to prevent unintended exchange of capabilities
and thereby unintended sharing of resources between two applications, the system integrator must
chose an initial configuration in which the two applications are not connected via a capability
channel and where they cannot exchange capabilities via a third, untrusted application.

The following resources are fully controlled by L4Re SSK:

Memory resources During startup L4Re SSK creates a memory capability for each page of main
memory. L4Re SSK configures the hardware memory-management unit
(MMU) such that each application can only access those memory frames for

2 IPC message storage size limits apply.

Version 2.1400 Classification: company-confidential 15 of 61
Copyright © 2021-2025 by Kernkonzept

Introduction Security Target for L4Re Secure Separation Kernel CC 1.0.1

which it possesses appropriate memory capabilities. To grant access to
memory, memory capabilities can be transferred via capability channels to
different applications. To manage regions of memory more conveniently,
L4Re SSK provides the abstraction of dataspaces. The free memory (RAM)
is managed by Moe. Every application with an appropriate Moe capability
can create a new dataspace from the free memory available to this application
that is guaranteed to be disjoint from all existing dataspaces.

Cores L4Re SSK controls all cores available in the system. Acting entities (threads)
can be assigned to cores. It is permissible to define an n:m relationship where
zero or more acting entities are assigned to one core. Yet, only one thread is
executed on one core at any given time. During a context switch, the CPU
resources, such as general purpose registers, are saved for the current thread
and re-loaded for the newly scheduled thread. Conversely, one acting entity is
allowed to be scheduled on one or more cores but only on one core at a time.
L4Re SSK does not automatically migrate acting entities between cores.
However, migration can be implemented in an application outside of the TOE
using the APIs provided by L4Re SSK. As migration is explicit, covert
channels can be controlled by pinning acting entities to specific cores.

Physical devices Access to all physical devices of the system is managed by L4Re SSK via
vbus capabilities. Each vbus capability provides access to all devices
contained in its associated set of devices. A vbus capability permits to
enumerate the devices available on this virtual bus, to get access to the
device's resources (i.e. interrupts, MMIO regions, I/O ports) and to configure
DMA memory for a particular device. Applications without a vbus capability
cannot access any physical devices. By using appropriately configured device
sets in conjunction with capability separation and strong separation, an
integrator can achieve that certain devices are inaccessible, that certain
applications have exclusive access to a certain device, or that devices are
shared between certain applications.

The scheduling of threads in the TOE is strictly priority-based. This allows the execution of
multiple threads on one CPU if not excluded by the configuration.

1.4.2.3 Configuration and System Management

The system integrator defines the behavior of a system using the L4Re SSK. The system integrator
is a user who has access to a set of configuration files while L4Re SSK is non-operational. Since
L4Re SSK is non-operational whenever the system integrator accesses the configuration files, L4Re
SSK does not control the role of the system integrator.

L4Re SSK ensures the separation of applications while permitting flexible workloads and the
reconfiguration of the system during run time. All the functionality necessary for reconfiguration is
governed by capabilities, in particular the creation and the start of new applications, the creation of
capability and communication channels and connecting existing applications via new channels. By
choosing an appropriate initial capability distribution, the integrator can limit this functionality to a
particular subset of the applications or disable it completely.

16 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Introduction

In L4Re SSK the Lua scripting language is used to express the initial configuration. This gives the
system integrator the power and flexibility of a programming language to express the required
system configuration. The permitted configurations are limited by the rule set in the L4Re
Configuration Guidance. This configuration guidance also contains the necessary documentation on
how to write these Lua scripts.

The configuration is split into at least two different scripts that are processed by the Ned and Io
components during boot time. The first script can be compared to an init script in e.g. a Linux
system. It describes how the initial applications should be started and how the initial applications
can communicate with each other. This script is processed by Ned. The second script is processed
by Io. It defines all vbus’es and associates a device set with each vbus thereby expressing the
allocation of hardware devices to those compartments that have access to a vbus capability. On
platforms where the system firmware doesn't provide the system’s devices via the Advanced Power
and Configuration Interface (ACPI) the hardware device tree also needs to be expressed using a Lua
script and passed on to Io.

In order to configure a system based on L4Re SSK an integrator needs to decide which
compartments should run on top of L4Re SSK, which of those should be able to exchange
capabilities or data in an arbitrary run of the system and which compartments should have access to
the available hardware devices.

Following the rules in the configuration guidance, the integrator can configure an initial
configuration of compartments and communication channels. L4Re SSK will then enforce the
separation properties (described in Section 1.4.2.2) in any run of the system. The compartments
running on L4Re SSK do not have access to the Lua scripts.

Certain configurations cannot be realized with L4Re SSK. For instance, if the integrator does not
trust any of the applications A, B and C, then a configuration in which A and B as well as B and C
can exchange data but A and C must not be able to exchange data is impossible, because the
untrusted B can always forward data. The integrator may solve such problems by using
communication proxies with certain properties (see Section 1.4.3 below) and ensuring that all
communication between A and B as well as B and C is routed through such a proxy.

As a final step of configuring L4Re SSK, the system integrator needs to assemble a boot image
consisting of L4Re SSK, the compiled binaries of the applications that shall run on L4Re SK and
the configuration scripts. The boot image must be installed on the target system such that its
integrity is protected against unauthorized modifications.

1.4.2.4 Secure Boot

L4Re SSK supports secure boot on x86 via GRUB2 and either UEFI or coreboot, see the L4Re
Secure Boot Guidance3. However, this feature is not claimed in this ST. The integrator is
responsible for ensuring that any installation of the TOE is appropriately protected against
unauthorized modifications.

1.4.3 Communication Proxies

3 Available on request.

Version 2.1400 Classification: company-confidential 17 of 61
Copyright © 2021-2025 by Kernkonzept

Introduction Security Target for L4Re Secure Separation Kernel CC 1.0.1

a) initial configuration b) final configuration c) generic proxy configuration

Figure 2: Configuration examples with proxies.
Bold double arrows depict capability channels, double lines depict shared memory. Part a) shows an
initial configuration in which the compartments A and C are strongly separated. Part b) shows a
later configuration, in which B has established shared memory between A and C. Part c) shows a
generic proxy P serving all Ai.

Using the fine-grained control over the capability distribution and the different communication
channels combined with customized L4Re SSK applications, a system integrator can realize a wide
variety of products based on the TOE. Consider an initial configuration with three compartments A,
B and C, where A and B as well as B and C are connected with a capability channel, see Figure 2a.
In this initial configuration A and C are strongly separated in the sense of Section 1.4.2.2. However,
the separation of A and C for the remainder of the run time depends on the behaviour of B. B could,
for example, exchange memory capabilities with A and C to establish shared memory between A
and C, downgrading their separation to capability separation, see Figure 2b. In such a situation,
where two or more compartments A1, A2, …, An only have access to a communication channel to a
dedicated, extra compartment P and where the long term separation of the Ai depends on P, P is
called a communication proxy, see Figure 2c.

A communication proxy P connecting n compartments Ai as in the previous paragraph can
implement the following policies.

• strong separation without data exchange: The proxy P does neither establish any
communication channels between the Ai nor does it forward any data from one compartment
to another one. Note that a proxy P implementing strong separation may exchange certain
capabilities with each of the connected compartments Ai, for instance to establish separate
regions of shared memory for fast communication with some or all of the Ai. See Figure 3a
for an example with two compartents A and B.

• strong separation with data exchange according to an explicitly configured policy: As
before, the proxy P does not establish any communication channels between the Ai.
However, it forwards data between the connected compartments Ai according to a policy
implemented in P. For instance, P may forward data only after encryption or decryption or it
may forward data only in a certain direction. See Figure 3b.

• capability separation: The proxy P establishes bidirectional data channels between all the
Ai but does not establish any capability channel between any of the Ai. See Figure 3c.

• no separation: The proxy may establish arbitrary communication channels between the
connected compartments or forward data in arbitrary ways. See Figure 3d.

18 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

A

B

C A

B

C

P

...A1 A2 An

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Introduction

a) strong separation without data exchange b) strong separation with data exchange
from B to A

c) capability separation d) no separation

Figure 3: Proxy policies.
The pictures show the final configuration of a proxy P serving the compartments A and B, which
started in an initial configuration as shown in Figure 2a. Bold double arrows depict capability
channels, double lines depict shared memory, double dashed lines depict separation and a single
arrow depicts data exchange. Part a shows strong separation without data exchange. Here the proxy
P strictly separates its clients internally, such that no communication between A and B is possible.
Part b shows strong separation with data exchange in one direction. Here the proxy P forwards data
from B to A but not vice versa. Part c shows capability separation, where the proxy establishes
shared memory between A and B, such that A and B can communicate without control of the proxy.
Part d shows no separation, where the proxy establishes a capability channel between A and B, such
that A and B can exchange capabilities without control of the proxy.

From the point of information flow control, a proxy implementing strong separation with free data
exchange between all connected compartments, a proxy implementing capability separation, and a
configuration without a proxy but with a bidirectional data channel between all compartments are
all equivalent. Depending on the connected compartments, one solution might however be easier to
implement.

L4Re SSK contains two communication proxies that can optionally be used.

• NVMe server: The NVMe server implements strong separation without data exchange. It
can be used to provide persistent storage to several strongly separated compartments. Each
compartment is assigned a separate partition, that no other compartment has access to.

• virtio-net-switch: The virtio-net-switch implements a virtual network switch based on
virtio. It implements strong separation with free data exchange between all connected
compartments.

In addition to these two communication proxies, L4Re SSK provides the Development Guidance
for a Compartment Communication Proxy based on L4Re, that specifies sufficient conditions for a
proxy to implement one of the previously enumerated policies. The guidance plus the separate

Version 2.1400 Classification: company-confidential 19 of 61
Copyright © 2021-2025 by Kernkonzept

A B

P P

BA

A B

P

A B

P

Introduction Security Target for L4Re Secure Separation Kernel CC 1.0.1

L4Re Operating System Framework SDK can be used to implement and certify additional
communication proxies.

1.4.4 TOE Boundaries

1.4.4.1 Logical Boundary

The major security features of the TOE are described in Section 1.4.2.

1.4.4.2 Physical Boundary

The TOE is the L4Re SSK. In Figure 1, each orange box is within the TOE physical boundary. All
parts with different colors belong to the TOE environment (CPUs, RAM, firmware such as a BIOS,
devices, L4Re applications, etc.). Consequently, no hardware belongs to the TOE.

The TOE also includes the TOE User Manuals. A list of the TOE User Manuals is given below.

There are three variants of the TOE. One for the supported ARM board and two for x86, one with
and one without support for virtualization (VT-x). Hence, the TOE is provided through the
following compressed zip-archives:

Type Name Version Form of delivery

Software l4re_ssk_cc_lx2160a.zip 1.0.1 Compressed zip archive
for LX2160A with SMMU

Software l4re_ssk_cc_x86_virt.zip 1.0.1 Compressed zip archive
for x86 with VT-x enabled

Software l4re_ssk_cc_x86_novirt.zip 1.0.1 Compressed zip archive
for x86 with VT-x disabled

‍Documentation l4re_ssk_cc_customer_doc.zip 1.0.1 Compressed zip archive of
TOE documentation

‍Documentation l4re_ssk_cc_interface_and_usa
ge_documentation.zip

1.0.1 Compressed zip archive
containing the L4Re
Interface and Usage
Documentation; separately
available

These zip-archives can be identified by the following Git-object hashes.

Name Git-object hash

l4re_ssk_cc_lx2160a.zip f2b9256e72b2317acc51cd72e8743edb42c75f37

l4re_ssk_cc_x86_virt.zip 057aff5ed3a4a4ba8f642e47298f28e9997c9464

l4re_ssk_cc_x86_novirt.zip 433edf0f54fd869d515ec8f6524de48060583657

l4re_ssk_cc_customer_doc.zip 778beee2302e1364bcc1e7ad77ce6de5c42f2000

20 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Introduction

l4re_ssk_cc_interface_and_usage_
documentation.zip

9ed67efec7e28d5b5ce4bd8d9e050cdd4d984566

The TOE User Manuals in the documentation archive are provided as PDF files through:

Type Name Version Short description

Document L4Re Configuration Guidance.pdf 14 L4Re Configuration
Guidance

Document Development Guidance for a
Compartment Communication Proxy
based on L4Re.pdf

7 Development Guidance
for a Compartment
Communication Proxy
based on L4Re

The TOE is delivered to the customer either via remote access to the respective directory or as
download, in a way preserving authenticity, confidentiality and integrity.

1.4.4.3 Configurations

The TOE configuration enforcing the System Security Policy (SSP) is defined via a set of
configuration files written in Lua. The configuration data uniquely defines the SSP consisting of the
configuration choices made by the integrator regarding resources and devices and their allocation to
compartments. The SSP defines compartments, sets their resources and devices, and defines the
allowed communication channels.

1.4.4.4 Security Policy Model

The security policy for the TOE is defined by the security functional requirements in Chapter 6. The
following is a list of the subjects and objects referenced by the policy.

Subjects:

• A thread executing as part of an application, more general an application or compartment.

Named objects: See objects in Table 4.

TSF data consists of:

• Configuration data: data determined in accordance with the configuration guidance and used
by the TSF to enforce the SSP.

• Run-time data such as security attributes.

User data consists of:

• All data maintained by compartments with the named objects assigned to the compartment.

• Executables to be executed in a compartment.

Version 2.1400 Classification: company-confidential 21 of 61
Copyright © 2021-2025 by Kernkonzept

Conformance Claims Security Target for L4Re Secure Separation Kernel CC 1.0.1

2 Conformance Claims

2.1 Conformance with CC Parts 2 and 3
This Security Target is CC Part 2 conformant and CC Part 3 conformant, with a claimed Evaluation
Assurance Level of EAL4, augmented by ALC_FLR.3.

The Common Criteria [CC] version 3.1 revision 5 are the basis for this conformance claim.

2.2 Conformance with Protection Profiles
This Security Target does not claim conformance to any Protection Profile.

22 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Security Problem Definition

3 Security Problem Definition

3.1 Threats
Threats to be countered by the TOE are characterized by the combination of an asset being subject
to a threat, a threat agent and an adverse action.

3.1.1 Assets
Assets to be protected are:

Asset Name Description Security Properties to be
Preserved

Memory RAM or ROM memory Confidentiality, integrity,
availability

CPU cores Set of CPU cores allocated to each
compartment and configured by the
integrator

Integrity

TSF data Configuration data: data used by the TSF
to enforce the System Security Policy
(SSP, Section 1.4.4.3)
Run-time data such as security attributes.

Confidentiality, integrity

Device A device with memory mapped I/O or I/O
ports may be a real device or a virtualized
device. A real or virtualized device may
only be shared between compartments
when this is deliberately configured.
Remapping of a device to a different
compartment can only be allowed if the
device looses its entire state during a
power-cycle or the two compartments are
not strongly separated .

Confidentiality, integrity,
availability

Table 1: Assets

3.1.2 Threat Agents
Threat agents are subjects within an untrusted compartment.

3.1.3 Threats countered by the TOE
T.DISCLOSURE A threat agent reads an asset of which the property confidentiality

shall be maintained according to Table 1.

T.MODIFICATION A threat agent writes an asset for which the property integrity shall be
maintained according to Table 1.

Version 2.1400 Classification: company-confidential 23 of 61
Copyright © 2021-2025 by Kernkonzept

Security Problem Definition Security Target for L4Re Secure Separation Kernel CC 1.0.1

T.DEPLETION By consuming resources of which the property availability shall be
maintained according to Table 1 a threat agent makes these resources
unavailable to the TOE itself and/or to tasks/compartments
using/owning them.

3.2 Organizational Security Policies
Organizational security policies are not defined.

3.3 Assumptions
The specific conditions below are assumed to exist in the TOE environment.

A.ENVIRONMENT The underlying hardware, firmware and bootloader needed by the
TOE to guarantee secure operations fulfil the requirements, as
explained in the TOE User Manuals and stated in Section 1.3.5. They
are working correctly and have no undocumented or unintended
security critical side effect on the functions of the TOE.

A.PHYSICAL The IT environment provides the TOE with appropriate physical
security that is commensurate with the value of the IT assets protected
by the TOE.

A.NOEVIL The integrators are trustworthy, act according to the guidance
documentation and are sufficiently qualified for this task.

24 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Security Objectives

4 Security Objectives
The following sections describe the security objectives, which are concise, abstract statements of
the intended solution to the problem posed in the security problem definition (see Chapter 3). The
set of security objectives for a TOE form a high-level solution to this security problem. It is divided
into two part-wise solutions: the security objectives for the TOE, and the security objectives for the
TOE’s operational environment.

4.1 Security Objectives for the TOE
The following objectives are defined for the TOE.

O.CONFIDENTIALITY For each asset that requires confidentiality protection according to
Table 1, the TOE shall preserve its confidentiality.

O.INTEGRITY For each asset that requires integrity protection according to Table 1,
the TOE shall preserve its integrity.

O.AVAILABILITY For resources assigned to tasks / compartments and to TSF data that
requires availability protection according to Table 1, the TOE shall
preserve their availability.

4.2 Security Objectives for the Operational Environment
The following objectives are to be met by the operational environment of the TOE.

OE.HARDWARE The underlying hardware, firmware and bootloader needed by the
TOE to guarantee secure operations fulfil the requirements, as
explained in the TOE User Manuals and stated in Section 1.3.5. They
are working correctly and have no undocumented or unintended
security critical side effect on the functions of the TOE.

OE.PHYSICAL The IT environment provides the TOE with appropriate physical
security that is commensurate with the value of the IT assets protected
by the TOE.

OE.NOEVIL The integrators are trustworthy, act according to the guidance
documentation, and are sufficiently qualified for this task.

4.3 Rationale for Security Objectives
The following tables provide a mapping of security objectives to the threats and assumptions,
illustrating that each security objective covers at least one threat or assumption and that each of
those is covered by at least one security objective.

Threat / OSP Rationale

T.DISCLOSURE T.DISCLOSURE is countered by O.CONFIDENTIALITY as the TOE
will protect the assets against unauthorized read accesses.

T.MODIFICATION T.MODIFICATION is countered by O.INTEGRITY as the TOE will

Version 2.1400 Classification: company-confidential 25 of 61
Copyright © 2021-2025 by Kernkonzept

Security Objectives Security Target for L4Re Secure Separation Kernel CC 1.0.1

Threat / OSP Rationale

protect the assets against unauthorized modification accesses.

T.DEPLETION T.DEPLETION is countered by O.AVAILABILITY as the TOE will
actively keep the resources operation alive and available for tasks /
compartments using/owning them.

Table 2: Coverage of Security Objectives for the TOE

Threat / Assumption Rationale

A.ENVIRONMENT A.ENVIRONMENT is directly upheld by OE.HARDWARE.

A.PHYSICAL The assumption on the IT environment to provide the TOE with
appropriate physical security that is commensurate with the value of the IT
assets protected by the TOE is covered by:

• OE.PHYSICAL requiring that the IT environment provides the
TOE with appropriate physical security, commensurate with the
value of the IT assets protected by the TOE.

A.NOEVIL The assumption on the IT environment that the integrators are trustworthy,
act according to the guidance documentation and are sufficiently qualified
for this task is covered by:

• OE.NOEVIL requiring that the personnel configuring the TOE and
those installing and operating the TOE are trustworthy, act
according to the TOE guidance, and are sufficiently qualified for
this task.

Table 3: Coverage of Security Objectives for the TOE environment

26 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Extended Components Definition

5 Extended Components Definition
There are no extended components in this ST.

Version 2.1400 Classification: company-confidential 27 of 61
Copyright © 2021-2025 by Kernkonzept

Security Requirements Security Target for L4Re Secure Separation Kernel CC 1.0.1

6 Security Requirements
This section defines security functional requirements (SFRs) and security assurance requirements
(SARs), which apply for the TOE.

The following styles of marking operations are applied:

• Assignments and selections are marked in bold face font.

• Iterations are marked by appending a suffix to the SFR identification.

• Refinements indicating additions are marked in bold and italic face font.

• Refinements indicating removals are marked as crossed out.

6.1 Security Functional Requirements

6.1.1 User Data Protection (FDP)

6.1.1.1 FDP_ACC.2/ME Complete Access Control – Memory

FDP_ACC.2.1/ME The TSF shall enforce the memory access control policy on

• subjects: compartments,

• objects: memory

and all operations among subjects and objects covered by the SFP.

FDP_ACC.2.2/ME The TSF shall ensure that all operations between any subject controlled by
the TSF and any object controlled by the TSF are covered by an access
control SFP.

6.1.1.2 FDP_ACC.2/CC Complete Access Control – CPU Core

FDP_ACC.2.1/CC The TSF shall enforce the CPU access control policy on

• subjects: compartments,

• objects: CPU cores

and all operations among subjects and objects covered by the SFP.

FDP_ACC.2.2/CC The TSF shall ensure that all operations between any subject controlled by
the TSF and any object controlled by the TSF are covered by an access
control SFP.

Application Note: This access control policy concerns objects where the access control is not
managed via capabilities.

6.1.1.3 FDP_ACC.2/DE Complete Access Control – Device

FDP_ACC.2.1/DE The TSF shall enforce the device access control policy on

• subjects: compartments,

• objects: PCI devices

and all operations among subjects and objects covered by the SFP.

28 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Security Requirements

FDP_ACC.2.2/DE The TSF shall ensure that all operations between any subject controlled by
the TSF and any object controlled by the TSF are covered by an access
control SFP.

Application Note: On the LX2160A platform, PCI devices are not supported by L4Re SSK.

6.1.1.4 FDP_ACC.2/OB Complete Access Control – Objects

FDP_ACC.2.1/OB The TSF shall enforce the objects access control policy on

• subjects: compartments,

• objects: objects of Table 4

and all operations among subjects and objects covered by the SFP.

FDP_ACC.2.2/OB The TSF shall ensure that all operations between any subject controlled by
the TSF and any object controlled by the TSF are covered by an access
control SFP.

Object Description Relevance for the assets

Memory pages Memory pages can be obtained via
dataspaces and can only be accessed if
appropriate memory capabilities are
present in the respective task.
Memory pages are part of the ROM or
RAM memory defined by dataspace
objects.

Memory

Tasks A tuple consisting of a set of threads and a
capability space. The threads are those
threads that run “inside” this task. The
capability space contains all capabilities
that are accessible to the threads of this
task, including capabilities for memory,
I/O ports, memory mapped devices, and
capabilities referring to software objects,
such as, dataspaces.

TSF data, Devices, Memory,

Threads Management object for an executable
piece of code including the necessary
control information, such as instruction
pointer, stack pointer, and other CPU
register content. Threads are the only
subjects or acting entities. The Thread
object can manage native L4Re threads as
well as virtual CPUs in fully or
paravirtualized guests.

CPU cores

Moe-Scheduler The Scheduler interface allows a client to CPU cores

Version 2.1400 Classification: company-confidential 29 of 61
Copyright © 2021-2025 by Kernkonzept

Security Requirements Security Target for L4Re Secure Separation Kernel CC 1.0.1

Object Description Relevance for the assets

manage CPU resources. The API provides
functions to query scheduler information,
check the online state of CPUs, query CPU
idle time and to start threads on defined
CPU sets.

Kernel factory The kernel factory can be used to create
the following types of kernel objects:

• Tasks
• Threads
• Kernel Factory
• IPC-Gates
• Semaphores
• Virtual Machines
• DMA spaces
• IRQs

Memory, Device, CPU cores,
TSF data

IPC-Gate IPC-Gates are used to create secure
communication channels between threads
in different compartments. An IPC gate
object can be created using the Factory
interface. With
l4_ipc_gate_bind_thread() a
thread is bound to an IPC gate which then
receives all messages sent to that IPC gate.
The definition of these communication
channels is part of the SSP which is
determined by the configuration data.

TSF data

IRQ The IRQ interface provides access to
abstract interrupts provided by the
microkernel. Interrupts may be

• hardware interrupts provided by
the platform interrupt controller,

• virtual device interrupts provided
by the microkernel’s virtual
devices (e.g., virtual serial or trace
buffer) or

• virtual interrupts that can be
triggered by user programs (IRQs)

IRQ objects can be created using a kernel
factory.

TSF data, Device

I/O ports (for x86) Hardware on Intel x86 systems may use Device

30 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Security Requirements

Object Description Relevance for the assets

I/O ports in addition to MMIO. Such
hardware can only be accessed if
appropriate I/O port capabilities are
present in the respective task providing
access to I/O ports the hardware is
assigned to.

Semaphore Using a semaphore, tasks can implement a
synchronization operation. This is the
interface for kernel-provided semaphore
objects. The object provides the classical
functions up() and down() for counting
the semaphore, where down() blocks as
long as the counter is 0.

TSF data, Device

Kernel DMA space Kernel DMA spaces are used internally in
the TOE to manage IOMMU page tables.
Applications may create kernel DMA
spaces via the kernel factory but cannot
use them to manipulate the IOMMU.
Applications must use Moe DMA spaces
to configure DMA memory.

Device, Memory

VM VM objects provide access to stage 2 or
nested page tables to configure guest
physical memory for HW-virtualized
guests.

Memory

SMC (for ARM) The SMC object controls access to the
Arm Trustzone.

Memory

Dataspace (Moe
object)

Interface for memory-like objects.
Dataspaces are a central abstraction
provided by L4Re. A dataspace is an
abstraction for anything that is available
via usual memory access instructions. A
dataspace can be a file, as well as the
memory-mapped registers of a device, or
anonymous memory, such as a heap.

Memory

Dma_space (Moe
object)

A Moe-Dma_space represents DMA
accessible memory of a DMA capable
device. Whenever a device needs direct
access to parts of a dataspace, that part of
the dataspace must be mapped to the DMA
address space that is assigned to that
device. A Moe-DMA_space can wrap

Device, Memory

Version 2.1400 Classification: company-confidential 31 of 61
Copyright © 2021-2025 by Kernkonzept

Security Requirements Security Target for L4Re Secure Separation Kernel CC 1.0.1

Object Description Relevance for the assets

several kernel DMA spaces.

Factory (Moe object) A factory object of Moe can be used to
create the following objects in Moe:

• Dataspace
• Dma_space
• Factory (of Moe)
• Namespace
• Rm
• Scheduler
• Log

Memory, Device, CPU cores,
TSF data

Log (Moe object) Analogous to the kernel’s Vlog object with
some convenience functions added, e.g.,
colors and multiplexing of several clients.

TSF data

Namespace (Moe
object)

This is a basic abstraction for managing a
mapping from human-readable names to
capabilities. In particular, a name can also
be mapped to a capability that refers to
another name space object. By this means
name spaces can be constructed
hierarchically.

TSF data

Region_map (Moe
object)

The central purpose of the region-map API
is to provide means to manage the virtual
memory address space of an L4 task. A
region-map object implements two
protocols. The first protocol is the kernel
page-fault protocol, to resolve page faults
for threads running in an L4 task. The
second protocol is the region-map protocol
itself, that allows to attach a dataspace
object to a region of the virtual address
space.

Memory

Scheduler (Moe
object)

The scheduler object of Moe allows a
client to manage CPU resources. The API
provides functions to query scheduler
information, check the online state of
CPUs, query CPU idle time and to start
threads on defined CPU sets.

CPU cores

L4Re ITAS The L4Re In-Task Service (ITAS) is the
startup code that is run when an L4Re
application is started and which serves as

Memory

32 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Security Requirements

Object Description Relevance for the assets

pager and exception handler at runtime.

Objects created
based on Ned Lua
config (Ned object)

Objects which are created in the Ned Lua
config and passed to tasks outside the
TOE.

Memory, Device, CPU cores

Vbus as defined in
the Io Lua config (Io
object)

The virtual bus (Vbus) is a hierarchical
(tree) structure of device nodes where each
device has a set of resources attached to it.
Each virtual bus provides an Icu (Interrupt
handler) for interrupt handling.
The Vbus interface allows a client to find
and query devices present on his virtual
bus. After obtaining a device handle for a
specific device the client can enumerate its
resources.
A Vbus as defined in the Io Lua config
speaks also the dataspace protocol (for
device memory), the inhibitor protocol and
the event protocol.

Device, TSF data

Vicu (Io object) Interface for registering IRQs to device
interrupts found on the Vbus.

Device

Platform_control (Io
object)

The Platform_control object may be given
out in the Ned config to enable to suspend
or shutdown outside the TOE.

TSF data

Table 4: Objects
Application Note: This access control policy concerns objects where the access control is

managed via memory capabilities, I/O port capabilities, and L4Re object
capabilities.

Table 4 only contains objects that can leave the TOE in one of the permitted
configurations.

6.1.1.5 FDP_ACF.1/ME Security Attribute based Access Control – Memory

FDP_ACF.1.1/ME The TSF shall enforce the memory access control policy to objects based
on the following:

• subject security attributes: compartments with unambiguous
reference,

• objects security attributes: memory ranges referenced by physical
address spaces.

FDP_ACF.1.2/ME The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed: A task in a
compartment can only access the memory that is assigned to it.

Version 2.1400 Classification: company-confidential 33 of 61
Copyright © 2021-2025 by Kernkonzept

https://l4re.org/doc/group__l4__icu__api.html

Security Requirements Security Target for L4Re Secure Separation Kernel CC 1.0.1

FDP_ACF.1.3/ME The TSF shall explicitly authorise access of subjects to objects based on the
following additional rules: The kernel-user memory holding the user
thread control blocks (UTCBs), the VCPU state, the extended VCPU
state and allocated, but not used kernel-user memory is always
accessible to every thread of the corresponding task.

FDP_ACF.1.4/ME The TSF shall explicitly deny access of subjects to objects based on the
following additional rules: none.

Application Note: Establishment of a shared memory segment between two compartments
does not violate capability separation. Assigning non-ECC RAM memory
ranges that are physically on the same RAM chip to different compartments
is allowed with capability separation.

6.1.1.6 FDP_ACF.1/CC Security Attribute based Access Control – CPU Core

FDP_ACF.1.1/CC The TSF shall enforce the CPU access control policy to objects based on
the following:

• subject security attributes: compartments with unambiguous
reference,

• object security attributes: CPU cores with unambiguous CPU core
reference that remains unchanged across reboots.

FDP_ACF.1.2/CC The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed: A thread in a
compartment is only scheduled on the assigned CPU cores.

FDP_ACF.1.3/CC The TSF shall explicitly authorise access of subjects to objects based on the
following additional rules: none.

FDP_ACF.1.4/CC The TSF shall explicitly deny access of subjects to objects based on the
following additional rules: If two compartments c₁ and c₂ shall be
strongly separated, then:

• c₁ and c₂ have CPUs assigned that are present on different sockets
that do not share L1 and L2 caches, branch predictors, and TLB
caches.

Application Note: Capability separation is ensured by assigning CPU cores provided by one
CPU socket to different compartments. Assigning CPU hyperthreads
provided by one CPU core to different compartments is compatible with
capability separation.

6.1.1.7 FDP_ACF.1/DE Security Attribute based Access Control - Device

FDP_ACF.1.1/DE The TSF shall enforce the device access control policy to objects based on
the following:

• subjects security attributes: compartments with unambiguous
reference,

34 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Security Requirements

• object security attributes: PCI devices referenced with their PCI
device identifier4.

FDP_ACF.1.2/DE The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed: A task in a
compartment is only allowed to access the assigned PCI device
referenced by the PCI device identifier.

FDP_ACF.1.3/DE The TSF shall explicitly authorise access of subjects to objects based on the
following additional rules: none.

FDP_ACF.1.4/DE The TSF shall explicitly deny access of subjects to objects based on the
following additional rules: If two compartments c₁ and c₂ shall be
strongly separated, then:

• if PCI-ACS is available, then no PCI device may be
simultaneously assigned to c₁ and c₂ and PCI-ACS must be
configured to prevent direct communication of devices assigned to
c₁ with devices assigned to c₂; otherwise

• if PCI-ACS is not available, then PCI devices assigned to c₁ and
PCI devices assigned to c₂ must not share the same port of the PCI
root complex.

Application Note: A “PCI device” can be function 0 of a single-function, a function of a multi-
function (multi-function bit set in type header field) or a virtual function of a
virtual-function device (PCI SR-IOV).

If two compartments are each assigned different virtual functions of a
virtual-function PCI device, then these two compartments are not strongly
separated.

When several independent functions are integrated into a single device, it
will be referred to as a multi-function device. Each function on a multi-
function device has its own configuration space. If two compartments have
different functions of the same multi-function device assigned then these
two compartments are strongly separated under the following properties:

• the functions are implemented inside the PCI root complex (root
complex integrated devices) or,

• the functions do not share hardware resources that could be used for
direct communication.

Otherwise the compartments are not strongly separated. The system
integrator has to document the assumptions which imply strong separation if
independent functions of a multi-function device are assigned to different
compartments.

On the LX2160A platform, PCI devices are not supported by L4Re SSK.

4 The device identifier is defined hereafter by the tuple Bus:Device.Function, where Bus is the PCI Bus number,
Device the PCI Device number, and Function the PCI Function number.

Version 2.1400 Classification: company-confidential 35 of 61
Copyright © 2021-2025 by Kernkonzept

Security Requirements Security Target for L4Re Secure Separation Kernel CC 1.0.1

6.1.1.8 FDP_ACF.1/OB Security Attribute based Access Control – Objects

FDP_ACF.1.1/OB The TSF shall enforce the objects access control policy to objects based on
the following:

• subjects security attributes: capability present in the capability
array of the calling task belonging to a compartment,

• object security attribute: capability to which the object of Table 4
points, permissions of the capability

FDP_ACF.1.2/OB The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed: If a subject
owns the capability, it can communicate with the object the capability
points to. The type of communication depends on the permissions of the
capability.

FDP_ACF.1.3/OB The TSF shall explicitly authorise access of subjects to objects based on the
following additional rules: none.

FDP_ACF.1.4/OB The TSF shall explicitly deny access of subjects to objects based on the
following additional rules: none.

Application Note: The allowed operations to be exercised on a capability depend on the type of
the capability, i.e. which object the capability represents, and the capability’s
permissions. During IPC, the permissions can be transferred from the sender
to receiver along with the capability depending on the wants of the sender
and the permissions of the channel.

For memory capabilities, the available permissions are read, write and
execute as far as the underlying hardware supports those. IO port
capabilities only have an implicit combined read-write permission.

Five different permissions for L4Re object capabilities are supported:

• read: Provides access to the capability. Implicit permission; if the
read permission is revoked, the capability is removed.

• write: Object specific permission

• special: Access permission that guards object creation in factories
and kernel internal links that could prevent object deletion.

• delete: Permission for object deletion.

• server: Permission for the server functionality of IPC gates

In addition, there exists the weak capability, which is not really a traditional
permission, but behaves like one. The L4Re Microkernel deletes the
referenced object when the last non-weak capability is deleted or unmapped.

6.1.1.9 FDP_IFC.2 Complete Information Flow Control

FDP_IFC.2.1 The TSF shall enforce the capability information flow control policy on

• subjects: compartments,

36 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Security Requirements

• information: capability referencing an object as of Table 4
controlled by the TOE, information transferred with operation on
capability

and all operations that cause that information to flow to and from subjects
covered by the SFP.

FDP_IFC.2.2 The TSF shall ensure that all operations that cause any information in the
TOE to flow to and from any subject in the TOE are covered by an
information flow control SFP.

6.1.1.10 FDP_IFF.1 Simple Security Attributes

FDP_IFF.1.1 The TSF shall enforce the capability information flow control policy
based on the following types of subject and information security attributes:

• subject security attributes: compartments with unambiguous
reference,

• information security attributes: reference to passive subject/object
reference the capability applies to, assignment of capability to
active subject allowed to perform operations on capability,
operations defined for capability.

FDP_IFF.1.2 The TSF shall permit an information flow between a controlled subject and
controlled information via a controlled operation if the following rules hold:

• the active subject possessing a capability is able to perform the
defined operations on the capability to transfer data to/from the
passive subject/object the capability applies to,

• a capability on a passive subject allows the active subject to
transfer a copy of a capability in its possession to that passive
subject.

FDP_IFF.1.3 The TSF shall enforce the following additional rules: The TOE allows the
definition of a data channel between subjects that denies the
transmission of capabilities.

FDP_IFF.1.4 The TSF shall explicitly authorise an information flow based on the
following rules: none.

FDP_IFF.1.5 The TSF shall explicitly deny an information flow based on the following
rules: none.

6.1.1.11 FDP_RIP.1 Subset residual information protection

FDP_RIP.1.1 The TSF shall ensure that any previous information content of a resource is
made unavailable upon the allocation of the resource to the following
objects:

• general purpose CPU registers,

• floating point CPU registers,

Version 2.1400 Classification: company-confidential 37 of 61
Copyright © 2021-2025 by Kernkonzept

Security Requirements Security Target for L4Re Secure Separation Kernel CC 1.0.1

• mathematical extension CPU registers pertaining to SSSE3, AVX,
AVX2,

• TLB cache lines,

• CPU branch predictor,

• memory

6.1.2 Security Management (FMT)

6.1.2.1 FMT_MSA.3/ME Static Attribute Initialisation – Memory

FMT_MSA.3.1/ME The TSF shall enforce the memory access control policy to provide
restrictive default values for security attributes that are used to enforce the
SFP.

FMT_MSA.3.2/ME The TSF shall allow the nobody to specify alternative initial values to
override the default values when an object or information is created.

6.1.2.2 FMT_MSA.3/CC Static Attribute Initialisation – CPU Core

FMT_MSA.3.1/CC The TSF shall enforce the CPU access control policy to provide restrictive
default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/CC The TSF shall allow the nobody to specify alternative initial values to
override the default values when an object or information is created.

6.1.2.3 FMT_MSA.3/DE Static Attribute Initialisation – Device

FMT_MSA.3.1/DE The TSF shall enforce the device access control policy to provide
restrictive default values for security attributes that are used to enforce the
SFP.

FMT_MSA.3.2/DE The TSF shall allow the nobody to specify alternative initial values to
override the default values when an object or information is created.

6.1.2.4 FMT_MSA.3/OB Static Attribute Initialisation – Objects

FMT_MSA.3.1/OB The TSF shall enforce the objects access control policy to provide
restrictive default values for security attributes that are used to enforce the
SFP.

FMT_MSA.3.2/OB The TSF shall allow the nobody to specify alternative initial values to
override the default values when an object or information is created.

6.1.2.5 FMT_MSA.3/CAP Static Attribute Initialisation – Capability Information Flow
Control

FMT_MSA.3.1/CAP The TSF shall enforce the capability information flow control policy to
provide restrictive default values for security attributes that are used to
enforce the SFP.

FMT_MSA.3.2/CAP The TSF shall allow the nobody to specify alternative initial values to
override the default values when an object or information is created.

38 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Security Requirements

6.1.2.6 FMT_MTD.1/CAP Management of TSF Data – Capability

FMT_MTD.1.1/CAP The TSF shall restrict the ability to provide the capabilities to the task
possessing the capability.

6.1.2.7 FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1 The TSF shall be capable of performing the following management
functions:

• management of the capability information flow control.

6.1.3 Identification and Authentication (FIA)

6.1.3.1 FIA_UID.2 User Identification

FIA_UID.2.1 The TSF shall require each user compartment to be successfully identified
before allowing any other TSF-mediated actions on behalf of that user
compartment.

6.1.4 Privacy (FPR)

6.1.4.1 FPR_UNO.1 Unobservability

FPR_UNO.1.1 The TSF shall ensure that compartments without access to the following
objects are unable to observe the operation all operations on

• memory,

• PCI devices,

• CPU resources,

• objects of Table 4

 by compartments with access to these objects.

6.2 Rationale for Security Functional Requirements

6.2.1 Coverage
The following table provides a mapping of the SFRs to the security objectives, showing that each
security functional requirement addresses at least one security objective.

Security functional requirements Objectives

FDP_ACC.2/ME O.CONFIDENTIALITY
O.INTEGRITY
O.AVAILABILITY

FDP_ACC.2/CC O.INTEGRITY

FDP_ACC.2/DE O.CONFIDENTIALITY
O.INTEGRITY

Version 2.1400 Classification: company-confidential 39 of 61
Copyright © 2021-2025 by Kernkonzept

Security Requirements Security Target for L4Re Secure Separation Kernel CC 1.0.1

Security functional requirements Objectives

O.AVAILABILITY

FDP_ACC.2/OB O.CONFIDENTIALITY
O.INTEGRITY
O.AVAILABILITY

FDP_ACF.1/ME O.CONFIDENTIALITY
O.INTEGRITY
O.AVAILABILITY

FDP_ACF.1/CC O.INTEGRITY

FDP_ACF.1/DE O.CONFIDENTIALITY
O.INTEGRITY
O.AVAILABILITY

FDP_ACF.1/OB O.CONFIDENTIALITY
O.INTEGRITY
O.AVAILABILITY

FDP_IFC.2 O.CONFIDENTIALITY

FDP_IFF.1 O.CONFIDENTIALITY

FDP_RIP.1 O.CONFIDENTIALITY

FMT_MSA.3/ME O.CONFIDENTIALITY
O.INTEGRITY

FMT_MSA.3/CC O.CONFIDENTIALITY
O.INTEGRITY

FMT_MSA.3/DE O.CONFIDENTIALITY
O.INTEGRITY

FMT_MSA.3/OB O.CONFIDENTIALITY
O.INTEGRITY

FMT_MSA.3/CAP O.CONFIDENTIALITY
O.INTEGRITY

FMT_MTD.1/CAP O.AVAILABILITY

FMT_SMF.1 O.AVAILABILITY

FIA_UID.2 O.CONFIDENTIALITY
O.INTEGRITY

FPR_UNO.1 O.CONFIDENTIALITY

40 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Security Requirements

Table 5: Mapping of SFRs to Security Objectives

6.2.2 Sufficiency
The following table provides justification for each security objective for the TOE, showing that the
security functional requirements are suitable to meet and achieve the security objectives.

Version 2.1400 Classification: company-confidential 41 of 61
Copyright © 2021-2025 by Kernkonzept

Security Requirements Security Target for L4Re Secure Separation Kernel CC 1.0.1

Security Objectives for
the TOE

Rationale

O.CONFIDENTIALITY The memory access control policy defined in FDP_ACC.2/ME and
FDP_ACF.1/ME makes the memory non-read-accessible to non-
authorized entities.
The device access control policy defined in FDP_ACC.2/DE and
FDP_ACF.1/DE makes devices non-accessible to non-authorized
entities.
The objects access control policy defined in FDP_ACC.2/OB and
FDP_ACF.1/OB makes objects of Table 4 non-accessible to non-
authorized entities.
The clearing of shared resources upon reallocation ensures the
confidentiality of data as claimed by FDP_RIP.1.
The SFRs FMT_MSA.3/ME, FMT_MSA.3/CC, FMT_MSA.3/DE,
FMT_MSA.3/OB, FMT_MSA.3/CAP, contribute in fulfilling this
objective by providing management functions for the attributes
associated to the respective policy.
FIA_UID.2 ensures that compartments are identified.
FDP_IFF.1, FDP_IFC.2 ensure that capability information flows are
governed with the capability system offered by the TOE.
FPR_UNO.1 ensures that compartments without access to objects
maintained by the TOE (except CPU cores) cannot observe the
operation on these objects by compartments having access.

O.INTEGRITY The memory access control policy defined in FDP_ACC.2/ME and
FDP_ACF.1/ME makes the memory non-read-accessible to non-
authorized entities.
The CPU core access control policy defined in FDP_ACC.2/CC and
FDP_ACF.1/CC makes the CPU cores only accessible to authorized
entities.
The device access control policy defined in FDP_ACC.2/DE and
FDP_ACF.1/DE makes devices non-accessible to non-authorized
entities.
The objects access control policy defined in FDP_ACC.2/OB and
FDP_ACF.1/OB makes objects of Table 4 non-accessible to non-
authorized entities.
The SFRs FMT_MSA.3/ME, FMT_MSA.3/CC, FMT_MSA.3/DE,
FMT_MSA.3/OB, FMT_MSA.3/CAP, contribute in fulfilling this
objective by providing management functions for the attributes
associated to the respective policy.
FIA_UID.2 ensures that compartments are identified.

O.AVAILABILITY This objective is addressed as the access to the memory is controlled
by FDP_ACC.2/ME and FDP_ACF.1/ME and then no

42 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Security Requirements

Security Objectives for
the TOE

Rationale

uncontrolled/unauthorized access can be performed over the memory
for making them unavailable for the compartments.
This objective is addressed as the access to the devices is controlled by
FDP_ACC.2/DE and FDP_ACF.1/DE and then no
uncontrolled/unauthorized access can be performed over the device for
making them unavailable for the compartments.
This objective is addressed as the access to the objects is controlled by
FDP_ACC.2/OB and FDP_ACF.1/OB and then no
uncontrolled/unauthorized access can be performed over the objects of
Table 4 for making them unavailable for the compartments.
The SFR FMT_MTD.1/CAP restricts the provisioning of capabilities
to tasks possessing the capability.
FMT_SMF.1 provides management functionality to ensure that tasks
and threads are available.

Table 6: SFR Sufficiency Analysis

6.2.3 SFR Dependencies
The following table provides the SFR dependency analysis.

SFR Dependencies Dependency Coverage in ST

FDP_ACC.2/ME FDP_ACF.1 Yes, by FDP_ACF.1/ME

FDP_ACC.2/CC FDP_ACF.1 Yes, by FDP_ACF.1/CC

FDP_ACC.2/DE FDP_ACF.1 Yes, by FDP_ACF.1/DE

FDP_ACC.2/OB FDP_ACF.1 Yes, by FDP_ACF.1/OB

FDP_ACF.1/ME FDP_ACC.1
FMT_MSA.3

Yes, by FDP_ACC.2/ME (hierarchical)
Yes, by FMT_MSA.3/ME

FDP_ACF.1/CC FDP_ACC.1
FMT_MSA.3

Yes, by FDP_ACC.2/CC (hierarchical)
Yes, by FMT_MSA.3/CC

FDP_ACF.1/DE FDP_ACC.1
FMT_MSA.3

Yes, by FDP_ACC.2/DE (hierarchical)
Yes, by FMT_MSA.3/DE

FDP_ACF.1/OB FDP_ACC.1
FMT_MSA.3

Yes, by FDP_ACC.2/OB (hierarchical)
Yes, by FMT_MSA.3/OB

FDP_IFC.2 FDP_IFF.1 Yes

FDP_IFF.1 FDP_IFC.1 Yes, by FDP_IFC.2 (hierarchical)

Version 2.1400 Classification: company-confidential 43 of 61
Copyright © 2021-2025 by Kernkonzept

Security Requirements Security Target for L4Re Secure Separation Kernel CC 1.0.1

SFR Dependencies Dependency Coverage in ST

FMT_MSA.3 Yes

FDP_RIP.1 No dependencies No dependencies

FMT_MSA.3/ME FMT_MSA.1
FMT_SMR.1

FMT_MSA.1: No. This SFR not applicable, as the
TSF does not protect its management. This is also
not required considering that nobody can change
the default values.
FMT_SMR.1: No. As no management of the
default value is defined, the dependency to
FMT_SMR.1 is unresolved.

FMT_MSA.3/CC FMT_MSA.1
FMT_SMR.1

FMT_MSA.1: No. This SFR not applicable, as the
TSF does not protect its management. This is also
not required considering that nobody can change
the default values.
FMT_SMR.1: No. As no management of the
default value is defined, the dependency to
FMT_SMR.1 is unresolved.

FMT_MSA.3/DE FMT_MSA.1
FMT_SMR.1

FMT_MSA.1: No. This SFR not applicable, as the
TSF does not protect its management. This is also
not required considering that nobody can change
the default values.
FMT_SMR.1: No. As no management of the
default value is defined, the dependency to
FMT_SMR.1 is unresolved.

FMT_MSA.3/OB FMT_MSA.1
FMT_SMR.1

FMT_MSA.1: No. This SFR not applicable, as the
TSF does not protect its management. This is also
not required considering that nobody can change
the default values.
FMT_SMR.1: No. As no management of the
default value is defined, the dependency to
FMT_SMR.1 is unresolved.

FMT_MSA.3/CAP FMT_MSA.1
FMT_SMR.1

FMT_MSA.1: No. This SFR not applicable, as the
TSF does not protect its management. This is also
not required considering that nobody can change
the default values.
FMT_SMR.1: No. As no management of the
default value is defined, the dependency to
FMT_SMR.1 is unresolved.

FMT_MTD.1/CAP FMT_SMR.1
FMT_SMF.1

FMT_SMR.1: No. The management of
capabilities is made possible when the active
subject possesses a capability. Using the capability

44 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Security Requirements

SFR Dependencies Dependency Coverage in ST

mechanism defined with FDP_IFC.2 and
FDP_IFF.1, the management of capabilities is
controlled.
FMT_SMF.1: Yes

FMT_SMF.1 No dependencies. No dependencies.

FIA_UID.2 No dependencies. No dependencies.

FPR_UNO.1 No dependencies. No dependencies

Table 7: SFR Dependencies

6.3 Security Assurance Requirements
The security assurance requirements (SARs) for the TOE are the Evaluation Assurance Level 4
components, augmented by ALC_FLR.3, as specified in [CC] Part 3. No operations are applied to
any of the assurance components.

These components are listed in Table 8.

Security
assurance class

Security assurance requirement Source

ADV
Development

ADV_ARC.1 Security architecture description [CC] Part 3
ADV_FSP.4 Complete functional specification [CC] Part 3
ADV_IMP.1 Implementation representation of the TSF [CC] Part 3
ADV_TDS.3 Basic modular design [CC] Part 3

AGD Guidance
documents

AGD_OPE.1 Operational user guidance [CC] Part 3
AGD_PRE.1 Preparative procedures [CC] Part 3

ALC Life-cycle
support

ALC_CMC.4 Production support, acceptance procedures
and automation

[CC] Part 3

ALC_CMS.4 Problem tracking CM coverage [CC] Part 3
ALC_DEL.1 Delivery procedures [CC] Part 3
ALC_DVS.1 Identification of security measures [CC] Part 3
ALC_FLR.3 Systematic flaw remediation [CC] Part 3
ALC_LCD.1 Developer defined life-cycle model [CC] Part 3
ALC_TAT.1 Well-defined development tools [CC] Part 3

ASE Security
Target
evaluation

ASE_CCL.1 Conformance claims [CC] Part 3
ASE_ECD.1 Extended components definition [CC] Part 3
ASE_INT.1 ST introduction [CC] Part 3
ASE_OBJ.2 Security objectives [CC] Part 3

Version 2.1400 Classification: company-confidential 45 of 61
Copyright © 2021-2025 by Kernkonzept

Security Requirements Security Target for L4Re Secure Separation Kernel CC 1.0.1

ASE_REQ.2 Derived security requirements [CC] Part 3
ASE_SPD.1 Security problem definition [CC] Part 3
ASE_TSS.1 TOE summary specification [CC] Part 3

ATE Tests ATE_COV.2 Analysis of coverage [CC] Part 3
ATE_DPT.1 Testing: basic design [CC] Part 3
ATE_FUN.1 Functional testing [CC] Part 3
ATE_IND.2 Independent testing - sample [CC] Part 3

AVA
Vulnerability
Assessment

AVA_VAN.3 Focused vulnerability analysis [CC] Part 3

Table 8: Security Assurance Requirements

6.4 Security Assurance Requirements Rationale
EAL 4 has been considered appropriate for the threats defined in the security problem definition.

The augmentation with ALC_FLR.3 has been chosen to provide greater assurance regarding the
developer’s continuous flaw remediation processes.

6.5 Security Assurance Requirements Dependency Analysis
The set of SARs included in this ST is the one associated to the EAL4 assurance package, whose
internal dependencies are satisfied, augmented by ALC_FLR.3.

ALC_FLR.3 depends on: No dependencies.

Therefore, all the dependencies for the selected set of SARs are satisfied.

46 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 TOE Summary Specification

7 TOE Summary Specification
The following section explains how the security functions in this security target are implemented.
The different TOE and product platform security functions cover the various SFRs listed in the
previous section. The security functions address the objects given in Table 4.

7.1 Separation of Compartments
The microkernel-based L4Re Operating System Framework, of which the product that contains the
TOE is a distribution, is capable of exclusively assigning physical as well as virtual resources to the
compartments. Such exclusively assigned resources cannot be used as communication channel
between compartments. Communication between compartments is only possible using shared
resources dedicated to this purpose. The initial resource assignment is statically defined during
boot-time based on the configuration. Additional data and capability channels can be established via
the already existing capability channels. These newly created channels will not alter the boot-time
defined communication matrix, i.e. compartments that are allowed to exchange capabilities can
establish additional data and capability channels with each other. Compartments that initially do not
have any capability channel defined have no ability to directly establish a data or capability channel
with each other at run-time. Such compartments can only use the data channels defined in the initial
configuration, if there are any. Because communication between compartments is only possible
using the defined data and capability channels, capability separation as well as strong separation can
be achieved for any pair of compartments.

Capability separation of the compartments allows the communication via well-defined data
channels established according to the boot-time defined communication matrix. Compartments that
shall be strongly separated from each other have to be capability-separated and must neither possess
a direct data channel nor share a device. If configured at boot-time, such compartments may
exchange data only via a proxy, in case the proxy permits this. The NVMe Server, for instance, does
not permit any communication between its clients, thus enforcing the separation between them.
Note that timing side channels and covert channels via caches or other shared CPU resources are
not addressed by the capability separation or strong separation. If desired, the initial configuration
can enforce the execution of different compartments on different CPUs or dies to limit such
channels.

The TOE provides two communication proxies, which may be used to connect separated
compartments for certain application scenarios. Additionally, the evaluation includes a developer
guide documenting all necessary constraints to be observed by developers when implementing a
proxy with a protocol that is considered to be suitable for the business logic of the compartments.
Although the guide documenting such development constraints is part of the evaluation, the proxies
developed based on this guide are not covered by this evaluation and its results. Using this
developer guide, one may, for instance, develop a proxy that passes data only in one direction for a
data diode based on the TOE.

Compartments are assigned resources during boot time. Resources can be passed to other
compartments at runtime only via capability channels. Each assigned resource remains with the
respective compartments for the lifetime of the system, with the possible exception of memory.5

5 Memory is managed by dataspace objects, which are created, owned and managed by Moe. A compartment can
destroy a dataspace during runtime in order to give up its assigned memory in that dataspace. In such a case, Moe
assumes control over the memory pages in that dataspace and sanitizes the memory before assigning it to other
compartments.

Version 2.1400 Classification: company-confidential 47 of 61
Copyright © 2021-2025 by Kernkonzept

TOE Summary Specification Security Target for L4Re Secure Separation Kernel CC 1.0.1

The resource assignment includes exclusive access to resources, such as PCI devices, as well as
access to resources shared with other compartments, such as memory.

Resources with exclusive access can be utilized by compartments without interference from the
TOE after the assignment during boot. Access to shared resources, on the other hand, is controlled
by the TOE to ensure domain separation of the compartments from each other. This includes the
clearing of residual information upon reallocation of a shared resource to another compartment,
such as CPU registers, TLB cache lines, memory, and the CPU branch predictor. PCI- and non-PCI-
devices can be reassigned only by booting the TOE with a different configuration. In such cases the
integrator must ensure to properly reset the devices to their initial state according to the rules listed
below.

The resource management is implemented by the TOE by ensuring that all resources of the
hardware platform as well as TOE resources are maintained by the TOE. This covers all hardware
resources visible to the TOE and its controlled entities as well as all TOE software objects such as
threads, memory objects, communication channels, memory allocators. The following hardware
resources are controlled by the TOE and can be assigned to compartments:

• (RAM) memory

• CPU resources, such as cores and time

• PCI devices under the following condition:

◦ For PCI devices that permit persistent firmware updates, the integrator must ensure that
they are either always assigned to the same compartment or reassigned only to a
compartment that is not strongly separated from the previously assigned compartment.
There are no restriction on non-persistent firmware updates.

◦ No firmware is loaded before the TOE has started (e.g. during device enumeration by the
BIOS).

• Non-PCI-devices, if they fulfil the following properties:

◦ MMIO ranges must not share a physical page with another device.

◦ I/O ports are not shared with another device.

◦ Devices for which device-to-device communication cannot be ruled out may establish a
data channel and must thus always be assigned to compartments that are not strongly
separated. For any two devices assigned to strongly separated compartments direct
device-to-device communication must be impossible.

◦ If the device permits persistent firmware updates, the integrator must ensure that the
device is either always assigned to the same compartment or reassigned only to a
compartment that is not strongly separated from the previously assigned compartment.
There are no restriction on non-persistent firmware updates.

◦ No firmware is loaded before the TOE has started (e.g. during device enumeration by the
BIOS).

Note that on the LX2160A platform, PCI devices are not supported by L4Re SSK.

Assigning CPU cores to different compartments is allowed with strong separation. Assigning a
CPU core's hardware threads to different compartments is compatible with strong separation. It is
the responsibility of the configurator to judge whether the resulting covert channels can be tolerated

48 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 TOE Summary Specification

in the end product. If not, it is the responsibility of the configurator to create a configuration where
the covert channels can be tolerated.

Once the TOE assigns a PCI device to a compartment, this compartment has complete and full
control over that PCI device. To guarantee that this device access cannot be abused to violate the
security policy of the TOE, the following mechanisms are defined:

• If PCI-ACS is available, then the TOE uses PCI-ACS to ensure that a PCI device does not
have unwanted access to other PCI devices. PCI-ACS can be configured to prevent the
direct communication between PCI devices that share the same port of the PCI root
complex. Hence, it is possible to assign different PCI devices to different strongly separated
compartments, even if the PCI devices share the same port of the PCI root complex.

• If PCI-ACS is not available, then PCI devices that share the same port of the PCI root
complex may only be assigned to one compartment in each pair of compartments that shall
be strongly separated.

• The BIOS of the underlying execution environment must ensure that during PCI device
enumeration, no PCI device BIOS is started in privileged mode.

In addition, the TOE allows the assignment of the objects listed in Table 4 to compartments.

The memory of the system is subdivided to form dataspace objects. The kernel-user memory
holding the user thread control blocks (UTCBs), the VCPU state, the extended VCPU state and
allocated, but not used kernel-user memory is always accessible to every thread of the task for
which this kernel-user memory was allocated. Except for kernel-user memory, no kernel memory is
shared with deprivileged tasks. Establishment of a shared memory segment between two
compartments does not violate capability separation. Assigning non-ECC RAM memory ranges that
are physically on the same RAM chip to different compartments is allowed with capability
separation.

Scheduling in L4Re SSK is always preemptive and core-local and uses a fixed-priority round-robin
algorithm. On a given core, the scheduler always selects the thread with highest priority. Threads of
equal priority are scheduled round-robin. Therefore, integrators can always guarantee that critical
threads cannot be starved by assigning an appropriate priority to them.

7.2 Information Flow Control
The TOE implements a strict object-oriented structure. All hardware as well as software resources
are modelled as objects and can only be referenced via capabilities, which are L4Re SSK managed,
unforgeable tokens of authority containing access rights. L4Re tasks including compartments
perform operations on these objects by invoking a system call referencing the capability and the
operation to be performed with the respective object. Capabilities are only valid within the security
domain (i.e., an application) they were mapped to by the microkernel.

Capabilities can be transferred to other security domains via capability channels, which are
represented by well-defined interfaces offered by the TOE. The configurator can make the transfer
of capabilities between any pair of compartments impossible by choosing an initial configuration, in
which these compartments are not connected by a capability channel. In typical configurations
capability channels between compartments exist only when one of the two connected compartments
is trusted. For instance, clients of virtio servers are connected with the server with a capability
channel, because the virtio protocol requires the exchange of certain capabilities.

Version 2.1400 Classification: company-confidential 49 of 61
Copyright © 2021-2025 by Kernkonzept

TOE Summary Specification Security Target for L4Re Secure Separation Kernel CC 1.0.1

7.3 System Management
The TOE configuration is defined with several Lua scripts. The configuration allows the definition
of either hardware-resource-backed or software objects. In addition, the configuration defines the
subjects, that is, the compartments, and assigns the created objects to these subjects.

The Lua scripts are interpreted by the Ned and Io components of the TOE during boot-time, which
ensures that the defined objects and subjects are created and that the assignment of objects to
subjects is configured. The assignment is achieved by providing the capability of the object to the
subject that shall be able to interact with the object.

The TOE does not provide management interfaces that allow system configuration at run-time. The
allocation of resources shared with other non-TOE compartments or entities is determined by the
Lua script at boot-time and not modifiable at run-time. (Remark: In principle L4Re supports any
dynamic reconfiguration. However, compartments are defined here as the initial applications
created by ned. Therefore, one cannot create an additional compartment at runtime or create a
capability channel between two capability-separated compartments.)

A compartment can only get access to a particular device, if this is permitted in the initial
configuration, i.e., if the device is assigned to the compartment. The rules in the preceding section
allow this only if the device cannot violate any properties claimed in this ST, regardless of the
configuration of the device. Compartments are therefore free to change the configuration of the
devices they got assigned.

L4Re SSK supports secure boot on certain x86 platforms, however, this feature is not claimed in
this ST. The environment of the TOE has to ensure that the TOE installation is protected against
unauthorized modifications. The integrator must follow processes for installation and version
update that guarantee the integrity of the installation and prevent version rollback. The Lua scripts
and other configuration data are part of the boot image and are therefore integrity protected together
with the installation.

7.4 SFR to TSS References
The following table describes how each TOE security function covers the SFRs.

SFR Coverage in TSS

FDP_ACC.2/ME Separation of Compartments documented in Section 7.1.

FDP_ACC.2/CC Separation of Compartments documented in Section 7.1.

FDP_ACC.2/DE Separation of Compartments documented in Section 7.1.

FDP_ACC.2/OB Separation of Compartments documented in Section 7.1.

FDP_ACF.1/ME Separation of Compartments documented in Section 7.1.

FDP_ACF.1/CC Separation of Compartments documented in Section 7.1.

FDP_ACF.1/DE Separation of Compartments documented in Section 7.1.

FDP_ACF.1/OB Separation of Compartments documented in Section 7.1.

FDP_IFC.2 Information Flow Control documented in Section 7.2.

50 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 TOE Summary Specification

SFR Coverage in TSS

FDP_IFF.1 Information Flow Control documented in Sections 7.1 and 7.2.

FDP_RIP.1 Separation of Compartments documented in Section 7.1.

FMT_MSA.3/ME Separation of Compartments documented in Sections 7.1 and 7.3.

FMT_MSA.3/CC Separation of Compartments documented in Sections 7.1 and 7.3.

FMT_MSA.3/DE Separation of Compartments documented in Sections 7.1 and 7.3.

FMT_MSA.3/OB Separation of Compartments documented in Sections 7.1 and 7.3.

FMT_MSA.3/CAP Information Flow Control documented in Sections 7.2 and 7.3.

FMT_MTD.1/CAP Security management is documented in Section 7.3.

FMT_SMF.1 Security management is documented in Section 7.3.

FIA_UID.2 Supports the Separation of Compartments documented in Section 7.1 as
well as Information Flow Control documented in Section 7.2.

FPR_UNO.1 Separation of Compartments documented in Section 7.1.

Table 9: SFR to TSS References

Version 2.1400 Classification: company-confidential 51 of 61
Copyright © 2021-2025 by Kernkonzept

Terms and Definitions Security Target for L4Re Secure Separation Kernel CC 1.0.1

8 Terms and Definitions
ACS:

Access Control Services (ACS) is a set of control and capability registers used to implement access
control over routing within a PCI Express component. The here-mentioned capabilities refer to
different types of access control.

Address space:

An address space defines a range of discrete addresses.

Address-space separation:

Address-space separation is the default minimal separation of applications. Except for explicitly
configured shared memory, each application has access to its private memory only. Each application
has its own (private) capability space, whose integrity is protected by the TOE. Limited by access
control, applications can share their own capabilities with other applications. Each application can
effectively protect itself against receiving capabilities or overwriting slots in its capability space
when being granted access rights.

Application:

An application is associated to an executable binary. Generally, an application can be a stand-alone
one, compiled from a system programming language or an OS called “guest operating system”. A
complex L4Re application may consist of several tasks that each contains several threads.
Applications are assigned to compartments. The build of such applications binaries and any
guidance how they are build are not part of the TOE except for:

• warnings in the TOE guidance that capabilities shall not be shared

• the guidance how to create a communication proxy

For further information on the build of applications please contact Kernkonzept.

Bootloader:

see “Firmware”.

Capability:

A capability is a tuple consisting of a reference to an object of Table 4 and permissions.
Applications can only invoke or use features of objects for which they posses a suitable capability.
All system calls contain at least one capability argument, which names the target of this system call.
The available features depend on the permissions, for instance, a memory capability without the
write permission only provides read only access to that memory.

52 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Terms and Definitions

For memory capabilities, the available permissions are read, write and execute as far as the
underlying hardware supports those. IO port capabilities only have an implicit combined read-write
permission.

Five different permissions for capabilities are supported:

• read: Provides access to the capability. Implicit permission; if the read permission is
revoked, the capability is removed.

• write: Object specific permission

• special: Access permission that guards object creation in factories and kernel internal links
that could prevent object deletion.

• delete: Permission for object deletion.

• server: Permission for the server functionality of IPC gates

In addition, there exists the weak capability, which is not really a traditional permission, but
behaves like one. The L4Re Microkernel deletes the referenced object when the last non-weak
capability is deleted or unmapped.

Capabilities are stored in capability spaces inside tasks in kernel-protected memory. Capabilities
can be transferred to other tasks, which means that the receiving task obtains a new capability
referring to the same object, possibly with reduced permissions.

Capability channel:

A capability channel is a communication channel that allows the transfer of capabilities from the
sending task to the receiving task. A capability channel is always based on a task, thread, or IPC
gate capability.

Capability mediation:

Capability mediation is a property whereby the TSF provides the possibility to transfer capabilities
via capability channels.

Capability separation:

Two compartments are capability-separated if they have no means to exchange capabilities; neither
directly nor with the help of other compartments. Compartments with capability separation
therefore allow the exchange of user data via system integrator defined data channels. These data
communication channels cover the types listed below. Note, some of these communication channels
may offer separation functionality (like the SR-IOV functionality listed below). However, those
separation mechanisms are not controlled and enforced by the TOE, which implies that this ST
cannot claim that they are effective. Hence, they are viewed as potentially allowing communication
without being prevented by the TOE.

While capability separation forbids exchange of capabilities, it still allows for example the
following data channels:

• Establishment of a shared memory segment between two compartments.

Version 2.1400 Classification: company-confidential 53 of 61
Copyright © 2021-2025 by Kernkonzept

Terms and Definitions Security Target for L4Re Secure Separation Kernel CC 1.0.1

• Assigning different PCI devices attached to a PCIe bus part that does not traverse the PCI
root complex to different compartments.

• Assigning different PCI functions provided by one PCI device to different compartments. As
an extension, this statement also covers SR-IOV devices where the different PCI device
functions are separated by the SR-IOV functionality enforced by the PCI device itself.

• Assigning physical CPU cores to different compartments.

• Assigning CPU hyperthreads provided by one CPU core to different compartments.

• Assigning non-ECC RAM memory ranges which are physically on the same RAM chip to
different compartments.

Capability space:

The capability space contains all capabilities that are accessible to the threads of this task, including
capabilities for memory, I/O ports, memory mapped devices, and capabilities referring to software
objects, such as dataspaces.

Communication channel:

A communication channel may exist between two tasks and is based on a shared resource. For
example, a piece of memory can be used for a communication channel if two tasks have appropriate
memory capabilities in order to read/write that piece of memory. A communication channel can be a
capability as well as a data channel.

Compartment:

The collection of applications consisting of one initial application together with all applications
started by this initial application. Typically, an initial application does not start additional
applications.

Configuration data:

The configuration data defines a set of rules on how the TOE behaves. The default configuration is
the valid start configuration. Any communication between compartments has to be explicitly
allowed by the integrator in the configuration data. See also System Security Policy.

Covert channel:

A covert channel is a communication channel that allows a process to transfer information in a
manner that violates the system’s security policy.

54 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Terms and Definitions

(Bi-/Unidirectional) data channel:

Bidirectional data channels are shared memory, semaphores and IRQs which allow to transfer data
and signals in both directions but do not permit the transfer of capabilities. As a special case, shared
access to a physical device is considered as a bidirectional data channel in this document.

Unidirectional data channels are semaphores and IRQs with restricted permissions which do only
permit to trigger signals but not to receive signals or to transfer capabilities.

Firmware:

Firmware is a hardware-specific software which is written in the non-volatile memory of the
hardware that initializes the hardware after the power on and that (fully or partially) loads the TOE
into RAM memory and hands over the full control to the TOE. Secure boot has to be implemented
by the bootloader (see Section 1.3.5).

Hardware:

Hardware is the physical part of the TOE operational environment on which the TOE is executed.
Usually, hardware is a board with several components such as CPUs and I/O devices (e.g. serial
interfaces, network adapters) etc. This ST considers firmware as part of the hardware.

Integrator:

The integrator is a user who has access to the Lua scripts while L4Re SSK is non-operational, i.e.
when it is offline. Typically, the integrator either has physical access to the hardware to access the
Lua scripts or is in another way given access to the boot image or boot partition. Since L4Re SSK is
non-operational whenever the integrator accesses the Lua scripts, L4Re SSK does not control the
role of the integrator. The integrator is in particular responsible for the configuration of the system.
For the use case of a communication proxy, the system integrator must ensure that a particular
proxy implementation is configured as intended by the developer.

IOMMU:

By an input/output memory management unit (IOMMU) device-visible virtual addresses are
mapped to physical addresses. IOMMU allows the use of DMA-capable hardware in virtual
environments by DMA or interrupt remapping.

IPC:

IPC is a communication protocol to exchange messages within a compartment or between
compartments synchronously. The communication objects are IPC messages.

IPC-Gate:

IPC-Gates are used to create secure communication channels between threads in different
compartments.

Version 2.1400 Classification: company-confidential 55 of 61
Copyright © 2021-2025 by Kernkonzept

Terms and Definitions Security Target for L4Re Secure Separation Kernel CC 1.0.1

IRQ:

An interrupt request (IRQ) is an interrupt which may be a hardware interrupt provided by the
platform interrupt controller, a virtual device interrupt provided by the microkernel’s virtual devices
(virtual serial or trace buffer) or a virtual interrupt that can be triggered by user programs (IRQs).

L4Re micro hypervisor:

see “L4 microkernel”.

L4Re object:

L4Re objects referenced by capabilities are the ones listed in Table 4 except memory pages and I/O
ports. A given object can be referenced by one or more capabilities, but each capability references
exactly one object.

L4 microkernel:

The L4 microkernel (also called Fiasco.OC microkernel) is here used as a hypervisor, the L4Re
micro hypervisor.

L4Re In-Task Service:

The startup code that is run when an L4Re application is started and which serves as pager and
exception handler at runtime.

PCIe branch:

A PCIe branch is a branch starting in the same PCI port of the PCI root complex.

PCI root complex:

A PCI root complex connects the CPU and memory subsystem to the PCI device. It may support
several PCI ports. Each PCI port is connected to an endpoint PCI device or else to a switch that then
forms a sub-hierarchy interconnecting many PCI devices. The root complex transmits packets out of
its ports and also receives packets into its ports which it then forwards to memory or the CPU.

(Communication) Proxy:

A (communication) proxy is a compartment that allows two or more other compartments to set up
communication channels while ensuring certain separation properties. Note that a proxy can only
maintain separation properties between compartments but cannot enforce them. Therefore, it is
crucial that compartments that shall be separated are actually separated after the startup of the
system. This has to be ensured by the system integrator.

56 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Terms and Definitions

Semaphore:

A semaphore is an abstract data type used to control the access to a common resource by multiple
tasks. Using a semaphore, tasks can implement a synchronization operation.

SMMU:

The ARM System Memory Management Unit (SMMU) specification outlines an IOMMU
architecture for ARM processors.

Strong separation:

We call two compartments strongly separated if they are capability-separated and cannot exchange
information without passing it through a proxy – if configured at boot-time in accordance with the
guidance. Note that a trusted compartment may have the capabilities to cause the exchange of
capabilities/information between capability-separated/strongly separated compartments; however, it
is assumed that a trusted compartment does not actually do that without intention of the system
integrator. A further exception are trusted multi-function PCI devices where different functions of
that device can be assigned to different strongly separated compartments while these compartments
retain their strong separation.

Note that timing side channels are not addressed by the capability separation or strong separation.

Subject:

In this ST the term subject is used for a thread in a compartment, for a task, or for a compartment as
a whole depending on the context.

System Security Policy (SSP):

The configuration data uniquely defines the System Security Policy consisting of the configuration
choices made by the integrator regarding resources and devices and their allocation to
compartments. The SSP defines compartments, sets their resources and devices, and defines the
allowed communication channels. The TOE configuration enforcing the SSP is defined by means of
a Lua script.

Task:

A task is a tuple consisting of a set of threads and a capability space. The associated threads are
those ones that run “inside” this task. The capability space contains all capabilities that are
accessible to the threads of this task, including capabilities for memory, I/O ports, memory mapped
devices, and capabilities referring to software objects, such as dataspaces.

Version 2.1400 Classification: company-confidential 57 of 61
Copyright © 2021-2025 by Kernkonzept

Terms and Definitions Security Target for L4Re Secure Separation Kernel CC 1.0.1

Thread:

A thread is an executable piece of code including the necessary control information, such as
instruction pointer, stack pointer, and other CPU register content. In a compartment there can be
multiple threads and each thread is uniquely assigned to its compartment.

Trusted/Untrusted compartment:

A compartment is called trusted if it is ensured, e.g., by implementing an appropriate specification,
that the compartment does not inadvertently, i.e., without intention of the integrator, invalidate
certain separation properties. A compartment that is not trusted is called untrusted. In particular,
each instance of a proxy constitutes its own untrusted compartment.

Trusted multi-function PCI device:

A trusted multi-function PCI device is e.g. a multi-function PCI device whose implementation can
be inspected or which has been authorized by a trusted authority.

User Thread Control Block (UTCB):

The User Thread Control Block (UTCB) is a data structure defined by the L4 microkernel and
located on kernel-provided memory. Each thread gets a unique UTCB assigned when it is bound to
a task.

VirtIO-Net:

VirtIO-Net is the para-virtualization solution used for networking.

VT-x:

Intel®’s technology for virtualization on the x86 platform.

58 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 Abbreviations

9 Abbreviations
Abbreviation Description

ACS Access Control Services

AMT/ME Active Management
Technology/Management Engine

API Application Programming Interface

AVX Advanced Vector Extensions

BIOS Basic Input/Output System

CC Common Criteria

CPU Central Processing Unit

DMA Direct Memory Access

EAL Evaluation Assurance Level

EPT Intel® Extended Page Tables

I/O MMU
(IOMMU)

Input/Output Memory Management Unit

IPC Inter Process Communication

IRQ Interrupt Request

‍ITAS In-Task Service

L4Re L4 Runtime-Environment

L4Re SSK L4Re Secure Separation Kernel CC 1.0.1

MMU Memory Management Unit

MMIO Memory-mapped I/O

NVMe Non-Volatile Memory (NVM) Express

PCI Peripheral Component Interconnect

PCIe PCI Express

PIO Programmed Input/Output

PP Protection Profile

RAM Random Access Memory

ROM Read-Only Memory

RTC Real-Time Clock

SAR Security Assurance Requirement

SDK Software Development Kit

SFP Security Function Policy

Version 2.1400 Classification: company-confidential 59 of 61
Copyright © 2021-2025 by Kernkonzept

Abbreviations Security Target for L4Re Secure Separation Kernel CC 1.0.1

SFR Security Functional Requirement

SMM System Management Mode

SMMU ARM System MMU

SR-IOV Single Root Input/Output Virtualization

SSP System Security Policy

SSSE Supplement Streaming SIMD Extension

ST Security Target

TOE Target of Evaluation

TLB Translation Lookaside Buffer

TSF TOE Security Function

TSFI TSF Interface

TSP TOE Security Policy

UTCB User Thread Control Block

VM Virtual machine

VT-x Intel® Virtualization Technology for x86
processors

60 of 61 Classification: company-confidential Version 2.1400
Copyright © 2021-2025 by Kernkonzept

Security Target for L4Re Secure Separation Kernel CC 1.0.1 References

10 References
CC: Common Criteria for Information Technology Security Evaluation, 3.1 Revision 5, April 2017

Version 2.1400 Classification: company-confidential 61 of 61
Copyright © 2021-2025 by Kernkonzept

	1 Introduction
	1.1 Security Target Identification
	1.2 TOE Identification
	1.3 TOE Overview
	1.3.1 TOE Type
	1.3.2 Intended Method of Use
	1.3.3 Major Security Features
	1.3.3.1 Information Flow Control
	1.3.3.2 Separation of Applications and Compartments
	1.3.3.3 System Management

	1.3.4 Product Types
	1.3.5 Required Hardware and Software

	1.4 TOE Description
	1.4.1 System Architecture
	1.4.2 Major Security Features
	1.4.2.1 Information Flow Control
	1.4.2.2 Separation of Applications and Compartments
	1.4.2.3 Configuration and System Management
	1.4.2.4 Secure Boot

	1.4.3 Communication Proxies
	1.4.4 TOE Boundaries
	1.4.4.1 Logical Boundary
	1.4.4.2 Physical Boundary
	1.4.4.3 Configurations
	1.4.4.4 Security Policy Model

	2 Conformance Claims
	2.1 Conformance with CC Parts 2 and 3
	2.2 Conformance with Protection Profiles

	3 Security Problem Definition
	3.1 Threats
	3.1.1 Assets
	3.1.2 Threat Agents
	3.1.3 Threats countered by the TOE

	3.2 Organizational Security Policies
	3.3 Assumptions

	4 Security Objectives
	4.1 Security Objectives for the TOE
	4.2 Security Objectives for the Operational Environment
	4.3 Rationale for Security Objectives

	5 Extended Components Definition
	6 Security Requirements
	6.1 Security Functional Requirements
	6.1.1 User Data Protection (FDP)
	6.1.1.1 FDP_ACC.2/ME Complete Access Control – Memory
	6.1.1.2 FDP_ACC.2/CC Complete Access Control – CPU Core
	6.1.1.3 FDP_ACC.2/DE Complete Access Control – Device
	6.1.1.4 FDP_ACC.2/OB Complete Access Control – Objects
	6.1.1.5 FDP_ACF.1/ME Security Attribute based Access Control – Memory
	6.1.1.6 FDP_ACF.1/CC Security Attribute based Access Control – CPU Core
	6.1.1.7 FDP_ACF.1/DE Security Attribute based Access Control - Device
	6.1.1.8 FDP_ACF.1/OB Security Attribute based Access Control – Objects
	6.1.1.9 FDP_IFC.2 Complete Information Flow Control
	6.1.1.10 FDP_IFF.1 Simple Security Attributes
	6.1.1.11 FDP_RIP.1 Subset residual information protection

	6.1.2 Security Management (FMT)
	6.1.2.1 FMT_MSA.3/ME Static Attribute Initialisation – Memory
	6.1.2.2 FMT_MSA.3/CC Static Attribute Initialisation – CPU Core
	6.1.2.3 FMT_MSA.3/DE Static Attribute Initialisation – Device
	6.1.2.4 FMT_MSA.3/OB Static Attribute Initialisation – Objects
	6.1.2.5 FMT_MSA.3/CAP Static Attribute Initialisation – Capability Information Flow Control
	6.1.2.6 FMT_MTD.1/CAP Management of TSF Data – Capability
	6.1.2.7 FMT_SMF.1 Specification of Management Functions

	6.1.3 Identification and Authentication (FIA)
	6.1.3.1 FIA_UID.2 User Identification

	6.1.4 Privacy (FPR)
	6.1.4.1 FPR_UNO.1 Unobservability

	6.2 Rationale for Security Functional Requirements
	6.2.1 Coverage
	6.2.2 Sufficiency
	6.2.3 SFR Dependencies

	6.3 Security Assurance Requirements
	6.4 Security Assurance Requirements Rationale
	6.5 Security Assurance Requirements Dependency Analysis

	7 TOE Summary Specification
	7.1 Separation of Compartments
	7.2 Information Flow Control
	7.3 System Management
	7.4 SFR to TSS References

	8 Terms and Definitions
	9 Abbreviations
	10 References

