

Security Target Junos OS 19.3R1 for MX10003 and EX9253

Juniper Networks, Inc.

Version 1.8

March 10, 2021

Prepared for: Juniper Networks, Inc. 1133 Innovation Way Sunnyvale, CA 94089 www.juniper.net

Version 1.8 Page 1 of 47

Abstract

This document provides the basis for an evaluation of a specific Target of Evaluation (TOE), Junos OS 19.3R1 for MX10003 and EX9253. This Security Target (ST) is conformant to the requirements of Collaborative Protection Profile for Network Devices v2.1 [NDcPP2.1].

This ST does not claim conformance to and neither is this version of the TOE conformant to the NIAP Extended Package for MACsec Ethernet Encryption Version 1.2 (pp_ndcpp_macsec_ep_v1.2).

References

[CC1]	Common Criteria for Information Technology Security Evaluation, Part 1: Introduction and General Model, CCMB-2017-04-001, Version 3.1 Revision 5, April 2017
[CC2]	Common Criteria for Information Technology Security Evaluation, Part 2: Security
	Functional Components, CCMB-2017-04-002, Version 3.1 Revision 5, April 2017.
[CC3]	Common Criteria for Information Technology Security Evaluation, Part 3: Security
	Assurance Components, CCMB-2017-04-003, Version 3.1 Revision 5, April 2017
[CEM]	Common Methodology for Information Technology Security Evaluation, Evaluation
	Methodology, CCMB-2017-04-004, Version 3.1, Revision 5, April 2017.
[CC_Add]	CC and CEM Addenda, Exact Conformance, Selection-Based SFRs, Optional SFRs, CCDB-
	2017-05-xxx, Version 0.5, May 2017
[NDcPP2.1]	Collaborative Protection Profile for Network Devices (NDcPP), Version 2.1, 24-
	September-2018
[SD]	Supporting Document, Evaluation Activities for Network Device cPP, September-2018, version 2.1

Version 1.8 Page 2 of 47

Table of Contents

1	Intro	oduct	tion	5
	1.1	ST r	eference	5
	1.2	TOE	Reference	5
	1.3	Abo	ut this document	5
	1.4	Doc	ument Conventions	5
	1.5	TOE	Overview	6
	1.6	TOE	Description	6
	1.6.2	1	Overview	6
	1.6.2	2	Physical boundary	7
	1.6.3	3	Logical Scope of the TOE	8
	1.6.4	4	Non-TOE hardware/software/firmware	9
	1.6.5	5	Summary of out scope items	10
2	Conf	form	ance Claims	11
	2.1	CC (Conformance Claim	11
	2.2	PP C	Conformance claim	11
	2.3	Con	formance Rationale	11
	2.4	Tech	nnical Decisions	11
3	Secu	ırity l	Problem Definition	14
	3.1	Thre	eats	14
	3.2	Assı	umptions	15
	3.3	Orga	anizational Security Policies	17
4	Secu	ırity (Objectives	18
	4.1	Secu	urity Objectives for the TOE	18
	4.2	Secu	urity Objectives for the Operational Environment	18
	4.3	Secu	urity Objectives rationale	19
5	Secu	ırity l	Functional Requirements	20
	5.1	Secu	urity Audit (FAU)	20
	5.1.2	1	Security Audit Data generation (FAU_GEN)	20
	5.1.2	2	Security audit event storage (Extended – FAU_STG_EXT)	22
	5.2	Cryp	otographic Support (FCS)	22
	5.2.2	1	Cryptographic Key Management (FCS_CKM)	22
	5.2.2	2	Cryptographic Operation (FCS_COP)	
	5.2.3	3	FCS_RBG_EXT.1 Random Bit Generation	24
	5.2.4	4	Cryptographic Protocols (Extended - FCS_SSHS_EXT)	24
	5.3	Iden	ntification and Authentication (FIA)	25
	5.3.2	1	Authentication Failure Management (FIA_AFL)	25

	5.3.	Password Management (Extended – FIA_PMG_EXT)	25
	5.3.	3 User Identification and Authentication (Extended – FIA_UIA_EXT)	26
	5.3.	4 User authentication (FIA_UAU) (Extended – FIA_UAU_EXT)	26
	5.4	Security Management (FMT)	26
	5.4.	1 Management of functions in TSF (FMT_MOF)	26
	5.4.	2 Management of TSF Data (FMT_MTD)	27
	5.4.	Specification of Management Functions (FMT_SMF)	27
	5.4.	4 Security management roles (FMT_SMR)	27
	5.5	Protection of the TSF (FPT)	28
	5.5.	Protection of TSF Data (Extended – FPT_SKP_EXT)	28
	5.5.	2 Protection of Administrator Passwords (Extended – FPT_APW_EXT)	28
	5.5.	3 TSF testing (Extended – FPT_TST_EXT)	28
	5.5.	4 Trusted Update (FPT_TUD_EXT)	28
	5.5.	5 Time stamps (Extended – FPT_STM_EXT))	29
	5.6	TOE Access (FTA)	29
	5.6.	TSF-initiated Session Locking (Extended – FTA_SSL_EXT)	29
	5.6.	Session locking and termination (FTA_SSL)	29
	5.6.	TOE access banners (FTA_TAB)	29
	5.7	Trusted path/channels (FTP)	29
	5.7.	1 Trusted Channel (FTP_ITC)	29
	5.7.	2 Trusted Path (FTP_TRP)	30
6	Secu	urity Assurance Requirements	31
7	TOE	Summary Specification	32
	7.1	Security Audit	32
	7.2	Cryptographic Support	34
	7.2.	1 Algorithms and zeroization	34
	7.2.	2 SSH	37
	7.3	Identification and Authentication	41
	7.4	Security Management	43
	7.5	Protection of the TSF	44
	7.6	TOE Access	45
	7.7	Trusted path/Trusted Channels	45
8	Glos	ssary	46

1 Introduction

1. This section identifies the Security Target (ST), Target of Evaluation (TOE), Security Target organization, document conventions, and terminology. It also includes an overview of the evaluated products.

1.1 ST reference

ST Title Security Target Junos OS 19.3R1 for MX10003 and EX9253

ST Revision 1.8

ST Draft Date March 10, 2021 Author Juniper Networks, Inc.

cPP/EP Conformance [NDcPP2.1]

1.2 TOE Reference

TOE Title Junos OS 19.3R1 for MX10003 and EX9253

TOE Firmware Junos OS 19.3R1

1.3 About this document

2. This Security Target follows the following format:

Section	Title	Description
1	Introduction	Provides an overview of the TOE and defines the hardware and firmware that make up the TOE as well as the physical and logical
		boundaries of the TOE
2	Conformance Claims	Lists evaluation conformance to Common Criteria versions, Protection Profiles, or Packages where applicable
3	Security Problem Definition	Specifies the threats, assumptions and organizational security policies that affect the TOE
4	Security Objectives	Defines the security objectives for the TOE/operational environment and provides a rationale to demonstrate that the security objectives satisfy the threats
5	Security Functional Requirements	Contains the functional requirements for this TOE
6	Security Assurance Requirements	Contains the assurance requirements for this TOE
7	TOE Summary Specification	Identifies the IT security functions provided by the TOE and also identifies the assurance measures targeted to meet the assurance requirements
8	Glossary	Identifies the terminology used in the ST.

Table 1 Document Organization

1.4 Document Conventions

- 3. This document follows the same conventions as those applied in [NDcPP2.1] in the completion of operations on Security Functional Requirements, namely:
 - Unaltered SFRs are stated in the form used in [CC2] or their extended component definition (ECD);
 - Refinement made in the ST: the refinement text is indicated with **bold text** and strikethroughs;
 - Selection completed in the ST: the selection values are indicated with <u>underlined text</u>

Version 1.8 Page 5 of 47

e.g. "[selection: disclosure, modification, loss of use]" in [CC2] or an ECD might become "disclosure" (completion;

- Assignment completed in the ST: indicated with italicized text;
- Assignment completed within a selection in the ST: the completed assignment text is indicated with <u>italicized and underlined text</u>

e.g. "[selection: change_default, query, modify, delete, [assignment: other operations]]" in [CC2] or an ECD might become "change_default, select_tag" (completion of both selection and assignment);

Iteration: indicated by adding a string starting with "/" (e.g. "FCS_COP.1/Hash").

1.5 TOE Overview

- 4. The Target of Evaluation (TOE) is Juniper Networks, Inc. Junos OS 19.3R1 executing on MX-Series 3D Universal Edge Router MX10003 and EX9200-Series Ethernet Switch EX9253. The supported next generation Routing Engines are:
 - RE-S-1600x8 for MX10003
 - EX9253-RE2 for EX9253
- 5. MX10003 and EX9253 appliances are secure network devices that protect themelves largely by offering only a minimal logical interface to the network and attached nodes. They are powered by the Junos OS firmware, Junos OS 19.3R1, which is a special purpose OS that provides no general purpose computing capability. Junos OS provides both management and control functions as well as all IP routing.
- 6. The appliances primarily support the definition of, and enforce, information flow policies among network nodes. All information flow from one network node to another passes through an instance of the TOE. Information flow is controlled on the basis of network node addresses and protocol. In support of the information flow security functions, the TOE ensures that security-relevant activity is audited and provides the tools to manage all of the security functions.

1.6 TOE Description

1.6.1 Overview

- 7. The portfolio of MX Series 3D Universal Edge Routers includes a wide range of physical and virtual platforms that share a common architecture and feature set. Juniper Networks MX10003 routing appliance is a complete routing system that supports a variety of high-speed interfaces (only Ethernet is within scope of the evaluation) for medium/large networks and network applications. Juniper Networks MX routers share common Junos firmware, features, and technology for compatibility across platforms.
- 8. The EX9200-Series line of programmable, flexible and scalable modular Ethernet core switches simplifies the deployment of cloud applications, virtualized servers and rich media collaboration tools across campus and data center environments. The EX9253 Ethernet Switch enables collaboration and provides simple and secure access to mission critical applications. In the data center, the EX9253 simplifies network architectures and network operations to better align the network with today's dynamic business environments.
- 9. The appliances are physically self-contained, housing the firmware and hardware necessary to perform all routing functions. The architecture components of the appliances are:
 - Switch fabric the switch fabric boards/modules provide a highly scalable, non-blocking, centralized switch fabric matrix through which all network data passes.

Version 1.8 Page 6 of 47

- Routing Engine (Control Board) the Routine Engine (RE) runs the Junos firmware and provides Layer 3 routing services and Layer 2 switching services. The RE also provides network management for all operations necessary for the configuration and operation of the TOE and controls the flow of information through the TOE, including support for appliance interface control and control plane functions such as chassis component, system management and user access to the appliance.
- Layer 2 switching services (EX9200-Series only), Layer 3 switching/routing services and network management for all operations necessary for the configuration and operation of the TOE and controls the flow of information through the TOE.
- The Packet Forwarding Engine (PFE) provides all operations necessary for transit packet forwarding. This is provided by the Modular Port Concentrators on the MX-Series appliances and Line Cards on the EX9200-Series appliances:
 - The EX9200-Series line cards support an extensive set of Layer 2 and Layer 3 services that can be deployed in any combination of L2- L3 applications.
- Power power supply bays to provide complete flexibility for provisioning and redundancy.
 The power supplies connect to the midplane, which distributes the different output voltages
 produced by the power supplies to the appliance components, depending on their voltage
 requirements.
- 10. The RE and PFE perform their primary tasks independently, while constantly communicating through a high-speed internal link. This arrangement provides streamlined forwarding and routing control and the capability to run Internet-scale networks at high speeds.
- 11. The appliances support numerous routing and switching standards for flexibility and scalability.
- 12. The functions of the appliances can all be managed through the Junos firmware, either from a connected terminal console or via a network connection. Network management is secured using the SSH protocol. All management, whether from a user connecting to a terminal or from the network, requires successful authentication. In the evaluated deployment the TOE is managed and configured via Command Line Interface, either via a directly connected console or over the network secured using the SSH protocol.

1.6.2 Physical boundary

13. The TOE is the Junos OS 19.3R1 firmware running on the appliance chasses listed in Table 2. Hence, the TOE is contained within the physical boundary of the specified appliance chassis, as shown in Figure 1. The physical boundary of the TOE is the entire chassis of the appliance (see Table 2 below).

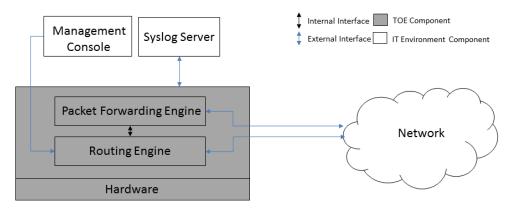


Figure 1 MX10003 and EX9253 TOE Boundary

Version 1.8 Page 7 of 47

- 14. The TOE interfaces are comprised of the following:
 - a) Network interfaces which pass traffic
 - b) Management interface through which handle administrative actions.

Model	Routing Engine	Processor	Firmware
MX10003	RE-S-1600x8	Intel Xeon E5-2608L	lunes OS 10 2D1
EX9253	EX9253-RE2	Intel Xeon E5-2608L	Junos OS 19.3R1

Table 2 TOE Chassis Details

- 15. The MX-series appliance support numerous combinations and permutations of line cards in the network ports. The interface options supported for each MX series routing appliance are described in the following reference documents:
 - https://www.juniper.net/documentation/en_US/releaseindependent/junos/information-products/pathway-pages/mxseries/mx10003/mx10003-hwguide.pdf
 - https://www.juniper.net/documentation/en_US/releaseindependent/junos/information-products/pathway-pages/exseries/ex9250/ex9253.html
- 16. Separate jinstall images are provided for MX-series and EX9200, namely:
 - MX10003: junos-vmhost-install-mx-x86-64-19.3R1.8.tgz
 - EX9253: junos-vmhost-install-ex92xx-x86-64-19.3R1.8.tgz
- 17. The firmware version reflects the detail reported for the components of the Junos OS when the "show version" command is executed on the appliance.
- 18. The guidance documents included as part of the TOE are:
 - [ECG] Junos OS Common Criteria Configuration Guide for MX10003 and EX9253 Devices, Release 19.3R1

1.6.3 Logical Scope of the TOE

19. The logical boundary of the TOE includes the following security functionality:

Security Functionality	Description
Security Audit	Auditable events are stored in the syslog files on the appliance and can be sent to an external log server (via Netconf over SSH). Auditable events include start-up and shutdown of the audit functions, authentication events, and all events listed in Table 10. Audit records include the date and time, event category, event type, username, and the outcome of the event (success or failure). Local syslog storage limits are configurable and are monitored. If the storage limit is reached the oldest logs will be overwritten.
Cryptographic Support	The TOE provides an SSH server to support protected communications for administrators to establish secure sessions and to connect to external syslog servers. The TOE requires that applications exchanging information with it are successfully authenticated prior to any exchange (i.e. applications connecting over SSH).

Version 1.8 Page 8 of 47

Identification and	The TOE includes cryptographic modules that provide the underlying cryptographic services, including key management and protection of stored keys, algorithms, random bit generation and crypto-administration. The TOE supports Role Based Access Control. All users
Authentication	must be authenticated to the TOE prior to being granted access to any management actions. The TOE supports password based authentication and public key based authentication. Based on the assigned role, a user is granted a set of privileges to access the system. Administrative users must provide unique identification and authentication data before any administrative access to the system is granted. Authentication data entered and stored on the TOE is protected.
Security Management	The TOE provides a Security Administrator role that is responsible for: • the configuration and maintenance of cryptographic elements related to the establishment of secure connections to and from the evaluated product • the regular review of all audit data; • initiation of trusted update function; • all administrative tasks (e.g., creating the security policy). The devices are managed through a Command Line Interface (CLI). The CLI is accessible through local (serial) console connection or remote administrative (SSH) session.
Protection of the TSF	The TOE protects all passwords, pre-shared keys, symmetric keys and private keys from unauthorized disclosure. Passwords are stored in encrypted format. Passwords are stored using sha256 or sha512. The TOE executes self-tests during initial start-up to ensure correct operation and enforcement of its security functions. An administrator can install software updates to the TOE. The TOE internally maintains the date and time.
TOE Access	Prior to establishing an administration session with the TOE, a banner is displayed to the user. The banner messaging is customizable. The TOE will terminate an interactive session after a period of inactivity. A user can terminate their local CLI session and remote CLI session by entering exit at the prompt.
Trusted Path/Trusted Channel	The TOE supports SSH v2 for secure communication to Syslog server. The TOE supports SSH v2 (remote CLI) for secure remote administration.

Table 3 Logical Scope of TOE

1.6.4 Non-TOE hardware/software/firmware

- 20. The TOE relies on the provision of the following items in the network environment:
 - Syslog server supporting SSHv2 connections to send audit logs;
 - SSHv2 client for remote administration;
 - Serial connection client for local administration.

Version 1.8 Page 9 of 47

1.6.5 Summary of out scope items

- Use of telnet, since it violates the Trusted Path requirement set (see Section 5.7.2)
- Use of FTP, since it violates the Trusted Path requirement set (see Section 5.7.2)
- Use of SNMP, since it violates the Trusted Path requirement set (see Section 5.7.2)
- Use of SSL, including management via J-Web, JUNOScript and JUNOScope, since it violates the Trusted Path requirement set (see Section 5.7.2)
- Use of CLI account super-user and linux root account.

Version 1.8 Page 10 of 47

2 Conformance Claims

2.1 CC Conformance Claim

21. The TOE and ST are compliant with the Common Criteria (CC) Version 3.1, Revision 5, dated: April 2017.

This TOE is conformant to:

- Common Criteria for Information Technology Security Evaluations Part 1, Version 3.1, Revision 5, April 2017
- Common Criteria for Information Technology Security Evaluations Part 2, Version 3.1, Revision 5, April 2017: Part 2 extended
- Common Criteria for Information Technology Security Evaluations Part 2, Version 3.1, Revision 5, April 2017: Part 3 conformant

2.2 PP Conformance claim

- 22. This TOE is conformant to:
 - [NDcPP2.1] Collaborative Protection Profile for Network Devices (NDcPP), Version 2.1, 24-September-2018
- 23. This ST does **not** claim conformance to and neither is this version of the TOE conformant to the NIAP Extended Package for MACsec Ethernet Encryption Version 1.2 (pp_ndcpp_macsec_ep_v1.2).

2.3 Conformance Rationale

24. This Security Target provides exact conformance to Version 2.1 of the Collaborative Protection Profile for Network Devices (NDcPP). The security problem definition, security objectives and security requirements in this Security Target are all taken from the Protection Profile and extended package performing only operations defined there.

2.4 Technical Decisions

25. This section identifies all NIAP Technical Decisions that are applicable to this TOE:

NIAP Technical Decisions (TDs)		
Technical Decisions	Applicable	Exclusion Rationale (if applicable)
TD0538: NIT Technical Decision for Outdated	Yes	
link to allowed-with list		
TD 0536: NIT Technical Decision for Update	Yes	
Verification Inconsistency		
TD0535: NIT Technical Decision for Clarification	Yes	
about digital signature algorithms for		
FTP_TUD.1		
TD0533: NIT Technical Decision for FTP_ITC.1	Yes	
with signed downloads		
TD 0532: NIT Technical Decision for Use of	Yes	
seeds with higher entropy		
TD0531: NIT Technical Decision for Challenge-	Yes	
Response for Authentication		
TD0530: NIT Technical Decision for	No	No FCS_TLSC_EXT.1 claimed
FCS_TLSC_EXT.1.1 5e test clarification		

Version 1.8 Page 11 of 47

[
TD0529: NIT Technical Decision for OCSP and	No	TOE does not claim certificate
Authority Information Access extension		authentication of firmware
		updates
TD0528: NIT Technical Decision for Missing EAs	No	FCS_NTP_EXT.1.4 not claimed
for FCS_NTP_EXT.1.4		
TD0484: NIT Technical Decision for Interactive	Yes	
sessions in FTA_SSL_EXT.1 & FTA_SSL.3		
TD0483: NIT Technical Decision for	Yes	
Applicability of FPT_APW_EXT.1		
TD0482: NIT Technical Decision for	Yes	
Identification of usage of cryptographic		
schemes		
TD0481: NIT Technical Decision for	No	No FCS_(D)TLSC_EXT claimed
FCS_(D)TLSC_EXT.X.2 IP addresses in reference		
identifiers		
TD0480: NIT Technical Decision for Granularity	Yes	
of audit events	163	
TD0478: NIT Technical Decision for Application	No	TOE does not claim certificate
• •	NO	
Notes for FIA_X509_EXT.1 iterations		authentication of firmware
		updates
TD0477: NIT Technical Decision for Clarifying	Yes	
FPT_TUD_EXT.1 Trusted Update		
TD0475: NIT Technical Decision for Separate	Yes	
traffic consideration for SSH rekey		
TD0453: NIT Technical Decision for Clarify	No	No FCS_SSHC_EXT.1 claimed
authentication methods SSH clients can use to		
authenticate SSH se ¹		
TD0452: NIT Technical Decision for	No	No FCS_(D)TLSC_EXT claimed
FCS_(D)TLSC_EXT.X.2 IP addresses in reference		
identifiers		
TD0451: NIT Technical Decision for ITT Comm	No	No FCS_TLSS_EXT claimed.
UUID Reference Identifier		
TD0450: NIT Technical Decision for RSA-based	No	No FCS_TLSS_EXT or
ciphers and the Server Key Exchange message		FCS DTLSS EXT claimed.
TD0449: NIT Technical Decision for	Yes	
Identification of usage of cryptographic	. 55	
schemes		
TD0448: NIT Technical Decision for	Yes	
Documenting Diffie-Hellman 14 groups	103	
	Voc	
TD0447: NIT Technical Decision for Using	Yes	
'diffie-hellman-group-exchange-sha256' in		
FCS_SSHC/S_EXT.1.7	V	
TD0425: NIT Technical Decision for Cut-and-	Yes	
paste Error for Guidance AA		
TD0424: NIT Technical Decision for NDcPP v2.1	Yes	
Clarification - FCS_SSHC/S_EXT.1.5		
TD0423: NIT Technical Decision for	No	TLS protocol and X.509 certificate
clarification about application of		support is not being claimed
Rfi#201726rev2		

-

Version 1.8 Page 12 of 47

¹ Presumed to be "... to authenticate SSH servers" but the wording is precisely as taken from the NIAP web site

TD0412: NIT Technical Decision for	Yes	
FCS_SSHS_EXT.1.5 SFR and AA discrepancy		
TD0411: NIT Technical Decision for	No	FCS_SSHC_EXT.1 is not being
FCS_SSHC_EXT.1.5, Test 1 - Server and client		claimed
side seem to be confused	.,	
TD0410: NIT technical decision for Redundant	Yes	
assurance activities associated with		
FAU_GEN.1		
TD0409: NIT decision for Applicability of	Yes	Blocking due to authentication
FIA_AFL.1 to key-based SSH authentication		failures applies to password-
		based authentication, not key-
		based authentication.
TD0408: NIT Technical Decision for local vs.	Yes	
remote administrator accounts		
TD0407: NIT Technical Decision for handling	No	Not a cloud deployment
Certification of Cloud Deployments		
TD0402: NIT Technical Decision for RSA-based	Yes	
FCS_CKM.2 Selection		
TD0401: NIT Technical Decision for Reliance on	No	TOE does not depend on the
external servers to meet SFRs		Authentication Server to satisfy
		FIA requirements
TD0400: NIT Technical Decision for FCS_CKM.2	Yes	
and elliptic curve-based key establishment		
TD0399: NIT Technical Decision for Manual	No	TOE does not claim certificate
installation of CRL (FIA_X509_EXT.2)		authentication of firmware
		updates
TD0398: NIT Technical Decision for	Yes	
FCS_SSH*EXT.1.1 RFCs for AES-CTR		
TD0397: NIT Technical Decision for Fixing AES-	Yes	
CTR Mode Tests		
TD0396: NIT Technical Decision for	No	FCS_TLSC_EXT.1 is not being
FCS_TLSC_EXT.1.1, Test 2		claimed
TD0395: NIT Technical Decision for Different	No	TLS protocol is not being claimed.
Handling of TLS1.1 and TLS1.2		

Table 4 Technical Decisions

Version 1.8 Page 13 of 47

3 Security Problem Definition

^{26.} The security problem definition has been taken from [NDcPP v2.1] and is reproduced here for the convenience of the reader.

3.1 Threats

Threat	Threat Definition
T.UNAUTHORIZED_ADMINISTRATOR _ACCESS	Threat agents may attempt to gain Administrator access to the network device by nefarious means such as masquerading as an Administrator to the device, masquerading as the device to an Administrator, replaying an administrative session (in its entirety, or selected portions), or performing man-in-the-middle attacks, which would provide access to the administrative session, or sessions between network devices. Successfully gaining Administrator access allows malicious actions that compromise the security functionality of the device and the network on which it resides.
T.WEAK_CRYPTOGRAPHY	Threat agents may exploit weak cryptographic algorithms or perform a cryptographic exhaust against the key space. Poorly chosen encryption algorithms, modes, and key sizes will allow attackers to compromise the algorithms, or brute force exhaust the key space and give them unauthorized access allowing them to read, manipulate and/or control the traffic with minimal effort.
T.UNTRUSTED_COMMUNICATION _CHANNELS	Threat agents may attempt to target network devices that do not use standardized secure tunneling protocols to protect the critical network traffic. Attackers may take advantage of poorly designed protocols or poor key management to successfully perform man-in-the-middle attacks, replay attacks, etc. Successful attacks will result in loss of confidentiality and integrity of the critical network traffic, and potentially could lead to a compromise of the network device itself.
T.WEAK_AUTHENTICATION _ENDPOINTS	Threat agents may take advantage of secure protocols that use weak methods to authenticate the endpoints – e.g., shared password that is guessable or transported as plaintext. The consequences are the same as a poorly designed protocol, the attacker could masquerade as the Administrator or another device, and the attacker could insert themselves into the network stream and perform a man-in-the-middle attack. The result is the critical network traffic is exposed and there could be a loss of confidentiality and integrity, and potentially the network device itself could be compromised.

Version 1.8 Page 14 of 47

Threat	Threat Definition
T.UPDATE_COMPROMISE	Threat agents may attempt to provide a compromised update of the software or firmware which undermines the security functionality of the device. Non-validated updates or updates validated using non-secure or weak cryptography leave the update firmware vulnerable to surreptitious alteration.
T.UNDETECTED_ACTIVITY	Threat agents may attempt to access, change, and/or modify the security functionality of the network device without Administrator awareness. This could result in the attacker finding an avenue (e.g., misconfiguration, flaw in the product) to compromise the device and the Administrator would have no knowledge that the device has been compromised.
T.SECURITY_FUNCTIONALITY _COMPROMISE	Threat agents may compromise credentials and device data enabling continued access to the network device and its critical data. The compromise of credentials include replacing existing credentials with an attacker's credentials, modifying existing credentials, or obtaining the administrator or device credentials for use by the attacker.
T.PASSWORD_CRACKING	Threat agents may be able to take advantage of weak administrative passwords to gain privileged access to the device. Having privileged access to the device provides the attacker unfettered access to the network traffic, and may allow them to take advantage of any trust relationships with other network devices.
T.SECURITY_FUNCTIONALITY _FAILURE	An external, unauthorized entity could make use of failed or compromised security functionality and might therefore subsequently use or abuse security functions without prior authentication to access, change or modify device data, critical network traffic or security functionality of the device.

Table 5 Threats

3.2 Assumptions

27. This section describes the assumptions made in identification of the threats and security requirements for network devices. The network device is not expected to provide assurance in any of these areas, and as a result, requirements are not included to mitigate the threats associated.

Assumption	Assumption Definition	
A.PHYSICAL_PROTECTION	The network device is assumed to be physically protected in	
	its operational environment and not subject to physical	
	attacks that compromise the security and/or interfere with	
	the device's physical interconnections and correct	
	operation. This protection is assumed to be sufficient to	
	protect the device and the data it contains. As a result, the	
	cPP will not include any requirements on physical tamper	
	protection or other physical attack mitigations. The cPP will	
	not expect the product to defend against physical access to	

Version 1.8 Page 15 of 47

Assumption	Assumption Definition
•	the device that allows unauthorized entities to extract data,
	bypass other controls, or otherwise manipulate the device.
A.LIMITED_FUNCTIONALITY	The device is assumed to provide networking functionality
	as its core function and not provide functionality/services
	that could be deemed as general purpose computing. For
	example the device should not provide computing platform
	for general purpose applications (unrelated to networking
	functionality).
A.NO_THRU_TRAFFIC_PROTECTION	A standard/generic network device does not provide any
	assurance regarding the protection of traffic that traverses
	it. The intent is for the network device to protect data that
	originates on or is destined to the device itself, to include
	administrative data and audit data. Traffic that is traversing
	the network device, destined for another network entity, is
	not covered by the cPP. It is assumed that this protection
	will be covered by cPPs and PP-Modules for particular types
	of network devices (e.g., firewall).
A.TRUSTED_ADMINISTRATOR	The Security Administrator(s) for the network device are
	assumed to be trusted and to act in the best interest of
	security for the organization. This includes being
	appropriately trained, following policy, and adhering to
	guidance documentation. Administrators are trusted to
	ensure passwords/credentials have sufficient strength and
	entropy and to lack malicious intent when administering the
	device. The network device is not expected to be capable
	of defending against a malicious Administrator that actively
	works to bypass or compromise the security of the device.
	For TOEs supporting X.509v3 certificate-based
	authentication, the Security Administrator(s) are expected
	to fully validate (e.g. offline verification) any CA certificate
	(root CA certificate or intermediate CA certificate) loaded
	into the TOE's trust store (aka 'root store', ' trusted CA Key
	Store', or similar) as a trust anchor prior to use (e.g. offline
A DECLILAD LIDDATES	verification). The network device firmware and software is assumed to
A.REGULAR_UPDATES	
	be updated by an Administrator on a regular basis in
	response to the release of product updates due to known vulnerabilities.
A ADMINI COEDENITIALS SECURE	
A.ADMIN_CREDENTIALS_SECURE	The administrator's credentials (private key) used to access
	the network device are protected by the platform on which
A DESIDIAL INFORMATION	they reside. The Administrator must ensure that there is no
A.RESIDUAL_INFORMATION	
	unauthorized access possible for sensitive residual
	information (e.g. cryptographic keys, keying material, PINs,
	passwords etc.) on networking equipment when the
	equipment is discarded or removed from its operational
Table 6 Assumptions	environment.

Table 6 Assumptions

Version 1.8 Page 16 of 47

3.3 Organizational Security Policies

28. An organizational security policy is a set of rules, practices, and procedures imposed by an organization to address its security needs. For the purposes of this cPP a single policy is described in the section below.

Policy Name	Policy Definition
P.ACCESS_BANNER	The TOE shall display an initial banner describing restrictions of use, legal agreements, or any other appropriate information to which users consent by accessing the TOE.

Table 7 Organizational Security Policies

Version 1.8 Page 17 of 47

4 Security Objectives

29. The security objectives have been taken from [NDcPP v2.1] and are reproduced here for the convenience of the reader.

4.1 Security Objectives for the TOE

30. The security objectives for the TOE are trivially determined through the inverse of the statement of threats presented in [NDcPP v2.1] Section 4.1.

4.2 Security Objectives for the Operational Environment

31. The security objectives have been taken from [NDcPP v2.1] and are reproduced here for the convenience of the reader.

Environment Security Objective	IT Environment Security Objective Definition	
OE.PHYSICAL	Physical security, commensurate with the value of the TOE and the data it contains, is provided by the environment.	
OE.NO_GENERAL_PURPOSE	There are no general-purpose computing capabilities (e.g., compilers or user applications) available on the TOE, other than those services necessary for the operation, administration and support of the TOE.	
OE.NO_THRU_TRAFFIC_PROTECTION	The TOE does not provide any protection of traffic that traverses it. It is assumed that protection of this traffic will be covered by other security and assurance measures in the operational environment.	
OE.TRUSTED_ADMIN	TOE Administrators are trusted to follow and apply all administrator guidance in a trusted manner.	
	For TOEs supporting X.509v3 certificate-based authentication, the Security Administrator(s) are assumed to monitor the revocation status of all certificates in the TOE's trust store and to remove any certificate from the TOE's trust store in case such certificate can no longer be trusted.	
OE.UPDATES	The TOE firmware and software is updated by an Administrator on a regular basis in response to the release of product updates due to known vulnerabilities.	
OE.ADMIN_CREDENTIALS_SECURE	The Administrator's credentials (private key) used to access the TOE must be protected on any other platform on which they reside.	
OE.RESIDUAL_INFORMATION	The Security Administrator ensures that there is no unauthorized access possible for sensitive residual information (e.g. cryptographic keys, keying material, PINs, passwords etc.) on networking equipment when the equipment is discarded or removed from its operational environment.	

Table 8 Security Objectives for Operational Environment

Version 1.8 Page 18 of 47

4.3 Security Objectives rationale

32. As these objectives for the TOE and operational environment are the same as those specified in [NDcPP2.1], the rationale provided in the prose of [NDcPP2.1] Sect. 4 is wholly applicable to this security target as the statements of threats, assumptions, OSPs and security objectives provided in this security target are the same as those defined in the collaborative Protection Profile this ST claims conformance.

Version 1.8 Page 19 of 47

5 Security Functional Requirements

33. All security functional requirements are taken from the [NDcPP2.1]. The SFRs are presented in accordance with the conventions described in [NDcPP2.1] Section 6.1, and section 1.4 of this document. As this TOE is not distributed, none of the security functional requirements relating to distributed TOEs are applicable.

5.1 Security Audit (FAU)

5.1.1 Security Audit Data generation (FAU_GEN)

5.1.1.1 FAU_GEN.1 Audit data generation

FAU_GEN.1 Audit data generation²

FAU_GEN.1.1 The TSF shall be able to generate an audit record of the following auditable events:

- a) Start-up and shut-down of the audit functions;
- b) All auditable events for the <u>not specified</u> level of audit; and
- c) All administrative actions comprising:
 - Administrative login and logout (name of user account shall be logged if individual user accounts are required for Administrators).
 - Changes to TSF data related to configuration changes (in addition to the information that a change occurred it shall be logged what has been changed).
 - Generating/import of, changing, or deleting of cryptographic keys (in addition to the action itself a unique key name or key reference shall be logged).
 - Resetting passwords (name of related user account shall be logged).
 - [no other actions];
- d) Specifically defined auditable events listed in Table 9.

ST Application Note:

If the list of "administrative actions" appears to be incomplete, the assignment in the selection should be used to list additional administrative actions which are audited.

FAU_GEN.1.2 The TSF shall record within each audit record at least the following information:

- a) Date and time of the event, type of event, subject identity, and the outcome (success or failure) of the event; and
- b) For each audit event type, based on the auditable event definitions of the functional components included in the ST, *information specified in column three of Table 9*.

Requirement	Auditable Events	Additional Audit Record
		Contents
FAU_GEN.1	None	None
FAU_GEN.2	None	None
FAU_STG_EXT.1	None	None
FAU_STG.1	None	None
FCS_CKM.1	None	None
FCS_CKM.2	None	None
FCS_CKM.4	None	None
FCS_COP.1/DataEncryption	None	None
FCS_COP.1/SigGen	None	None

² Specified in [NDcPP2.1].

Version 1.8 Page 20 of 47

FCS_COP.1/Hash	None	None
FCS_COP.1/KeyedHash	None	None
FCS RBG EXT.1	None	None
FIA AFL.1	Unsuccessful login attempts	Origin of the attempt (e.g., IP
_	limit is met or exceeded.	address).
FIA_PMG_EXT.1	None	None
FIA_UIA_EXT.1	All use of identification and	Origin of the attempt (e.g., IP
	authentication mechanism.	address)
FIA_UAU_EXT.2	All use of identification and	Origin of the attempt (e.g., IP
	authentication mechanism.	address)
FIA_UAU.7	None	None
FMT_MOF.1/ManualUpdate	Any attempt to initiate a	None
	manual update	
FMT_MTD.1/CoreData	None	None
FMT_SMF.1	All management activities of	None
	TSF data	
FMT_SMR.2	None	None
FPT_SKP_EXT.1	None	None
FPT_APW_EXT.1	None	None
FPT_TST_EXT.1	None	None
FPT_TUD_EXT.1	Initiation of update; result of	None.
	the update attempt (success	
	or failure)	
FPT_STM_EXT.1	Discontinuous changes to	For discontinuous changes to
	time - either Administrator	time: The old and new values
	actuated or changed via an	for the time. Origin of the
	automated process. (Note	attempt to change time for
	that no continuous changes	success and failure (e.g., IP
	to time need to be logged.	address).
	See also application note on	
	FPT_STM_EXT.1)	
FTA_SSL_EXT.1 (if "terminate	The termination of a local	None.
the session" is selected)	interactive session by the	
	session locking mechanism.	
FTA_SSL.3	The termination of a remote	None
	session by the session locking	
	mechanism.	
FTA_SSL.4	The termination of an	None
FT. 740.4	interactive session.	
FTA_TAB.1	None	None
FTP_ITC.1	Initiation of the trusted	Identification of the initiator
	channel.	and target of failed trusted
	Termination of the trusted	channels establishment
	channel.	attempt.
	Failure of the trusted channel	
ETD TDD 4/4-1	functions.	Naga
FTP_TRP.1/Admin	Initiation of the trusted path.	None.
	Termination of the trusted	
	path.	
	Failure of the trusted path	
	functions.	

Version 1.8 Page 21 of 47

FCS_SSHS_EXT.1	Failure to establish an SSH	Reason for failure
	session	
FMT_MOF.1/Functions	None.	None.
FMT_MOF.1/Services	None.	None
FMT_MTD.1/CryptoKeys	None.	None.

Table 9 FAU_GEN.1 Security Functional Requirements and Auditable Events

5.1.1.2 FAU_GEN.2 User identity association

FAU_GEN.2 User identity association

FAU_GEN.2.1 For audit events resulting from actions of identified users, the TSF shall be able to associate each auditable event with the identity of the user that caused the event.

5.1.2 Security audit event storage (Extended – FAU_STG_EXT)

5.1.2.1 FAU_ STG_EXT.1 Protected Audit Event Storage

FAU STG EXT.1 Protected Audit Event Storage

FAU_STG_EXT.1.1 The TSF shall be able to transmit the generated audit data to an external IT entity using a trusted channel according to FTP_ITC.1.

ST Application Note

Transfer of the audit data to the external server is performed automatically (without further Security Administrator intervention) in the evaluated deployment.

FAU_STG_EXT.1.2 The TSF shall be able to store generated audit data on the TOE itself.

[

TOE shall consist of a single standalone component that stores audit data locally].

FAU_STG_EXT.1.3 The TSF shall [overwrite previous audit records according to the following rule: [oldest log is overwritten]] when the local storage space for audit data is full.

5.1.2.2 FAU_STG.1 Protected audit trail storage (Optional)

FAU_STG.1 Protected audit trail storage

FAU_STG.1.1 The TSF shall protect the stored audit records in the audit trail from unauthorised deletion.

FAU_STG.1.2 The TSF shall be able to <u>prevent</u> unauthorised modifications to the stored audit records in the audit trail.

5.2 Cryptographic Support (FCS)

5.2.1 Cryptographic Key Management (FCS_CKM)

5.2.1.1 FCS_CKM.1 Cryptographic Key Generation (Refinement)

FCS_CKM.1 Cryptographic Key Generation

FCS_CKM.1.1 The TSF shall generate **asymmetric** cryptographic keys in accordance with a specified cryptographic key generation algorithm: [

- RSA schemes using cryptographic key sizes of 2048-bit or greater that meet the following: FIPS PUB 186-4, "Digital Signature Standard (DSS)", Appendix B.3;
- <u>ECC schemes using "NIST curves" [P-256, P-384, P-521] that meet the following: FIPS PUB</u> 186-4, "Digital Signature Standard (DSS)", Appendix B.4;

Version 1.8 Page 22 of 47

• FFC Schemes using Diffie-Hellman group 14 that meet the following: RFC 3526, Section 3

] and specified cryptographic key sizes [assignment: cryptographic key sizes] that meet the following: [assignment: list of standards].

5.2.1.2 FCS_CKM.2 Cryptographic Key Establishment (Refinement)

FCS_CKM.2 Cryptographic Key Establishment³

FCS_CKM.2.1 The TSF shall **perform** cryptographic **key establishment** in accordance with a specified cryptographic key **establishment** method: [

- <u>Elliptic curve-based key establishment schemes that meet the following: NIST Special Publication 800-56A Revision 2, "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography";</u>
- <u>Key establishment scheme using Diffie-Hellman group 14 that meets the following: RFC 3526, Section 3;</u>

] that meets the following: [assignment: list of standards].

5.2.1.3 FCS_CKM.4 Cryptographic Key Destruction

FCS_CKM.4 Cryptographic Key Destruction⁴

FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method

- For plaintext keys in volatile storage, the destruction shall be executed by a [destruction of reference to the key directly followed by a request for garbage collection];
- For plaintext keys in non-volatile storage, the destruction shall be executed by the invocation of an interface provided by a part of the TSF that [
 - <u>logically addresses the storage location of the key and performs a [single overwrite consisting of [zeroes]]</u>

that meets the following: No Standard.

5.2.2 Cryptographic Operation (FCS_COP)

5.2.2.1 FCS_COP.1 Cryptographic Operation

FCS_COP.1/DataEncryption Cryptographic Operation (AES Data Encryption)

FCS_COP.1.1/DataEncryption The TSF shall perform *encryption/decryption* in accordance with a specified cryptographic algorithm *AES used in [GCM, CBC, CTR] mode* and cryptographic key sizes [128 bits, 256 bits] that meet the following: *AES as specified in ISO 18033-3, [CBC as specified in ISO 10116, CTR as specified in ISO 10116, GCM as specified in ISO 19772].*

FCS_COP.1/SigGen Cryptographic Operation (Signature Generation and Verification)

FCS_COP.1.1/SigGen The TSF shall perform *cryptographic signature services (generation and verification)* in accordance with a specified cryptographic algorithm [

- RSA Digital Signature Algorithm and cryptographic key sizes (modulus) [2048 bits or greater],
- Elliptic Curve Digital Signature Algorithm and cryptographic key sizes [P-256, P-384, P-521 bits]

⁴ Specified in [NDcPP2.1]

Version 1.8 Page 23 of 47

³ Incorporates TD0402

] and cryptographic key sizes [assignment: cryptographic key sizes]

that meet the following: [

- For RSA schemes: FIPS PUB 186-4, "Digital Signature Standard (DSS)", Section 5.5, using PKCS #1 v2.1 Signature Schemes RSASSA-PSS and/or RSASSA-PKCS1v1 5; ISO/IEC 9796-2, Digital signature scheme 2 or Digital Signature scheme 3,
- For ECDSA schemes: FIPS PUB 186-4, "Digital Signature Standard (DSS)", Section 6 and Appendix D, Implementing "NIST curves" [P-256, P-384, P-521]; ISO/IEC 14888-3, Section 6.4

1.

FCS_COP.1/Hash Cryptographic Operation (Hash Algorithm)

FCS_COP.1.1/Hash The TSF shall perform *cryptographic hashing services* in accordance with a specified cryptographic algorithm [SHA-1, SHA-256, SHA-384, SHA-512] and cryptographic key sizes [assignment: cryptographic key sizes] and message digest sizes [160, 256, 384, 512] bits that meet the following: [ISO/IEC 10118-3:2004].

FCS_COP.1/KeyedHash Cryptographic Operation (Keyed Hash Algorithm)

FCS_COP.1.1/KeyedHash The TSF shall perform *keyed-hash message authentication* in accordance with a specified cryptographic algorithm [*HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-512*] and cryptographic key sizes [*160, 256, 384 and 512 bits*] **and message digest sizes** [*160, 256, 512*] **bits** that meet the following: *ISO/IEC 9797-2:2011, Section 7 "MAC Algorithm 2"*.

5.2.3 FCS_RBG_EXT.1 Random Bit Generation

FCS_RBG_EXT.1 Random Bit Generation

FCS_RBG_EXT.1.1 The TSF shall perform all deterministic random bit generation services in accordance with ISO/IEC 18031:2011 using [*HMAC_DRBG (any)*].

FCS_RBG_EXT.1.2 The deterministic RBG shall be seeded by at least one entropy source that accumulates entropy from [[4] software-based noise source] with a minimum of [256 bits] of entropy at least equal to the greatest security strength, according to ISO/IEC 18031:2011 Table C.1 "Security Strength Table for Hash Functions", of the keys and hashes that it will generate.

5.2.4 Cryptographic Protocols (Extended - FCS_SSHS_EXT)

5.2.4.1 FCS_SSHS_EXT.1 SSH Server Protocol

FCS_SSHS_EXT.1 SSH Server Protocol⁵

FCS_SSHS_EXT.1.1 The TSF shall implement the SSH protocol that complies with RFC(s) [4251, 4252, 4253, 4254, 4344, 5656, 6668].

FCS_SSHS_EXT.1.2 The TSF shall ensure that the SSH protocol implementation supports the following authentication methods as described in RFC 4252: public key-based, [password-based].

FCS_SSHS_EXT.1.3 The TSF shall ensure that, as described in RFC 4253, packets greater than [263K] bytes in an SSH transport connection are dropped.

Version 1.8 Page 24 of 47

⁵ Specified in [NDcPP2.1].

FCS_SSHS_EXT.1.4 The TSF shall ensure that the SSH transport implementation uses the following encryption algorithms and rejects all other encryption algorithms: [aes128-cbc, aes256-cbc, aes128-ctr, aes256-ctr]⁶.

FCS_SSHS_EXT.1.5 The TSF shall ensure that the SSH public-key based authentication implementation uses [ssh-rsa, rsa-sha2-256, rsa-sha2-512, ecdsa-sha2-nistp256, ecdsa-sha2-nistp384, ecdsa-sha2-nistp521] as its public key algorithm(s) and rejects all other public key algorithms.

FCS_SSHS_EXT.1.6 The TSF shall ensure that the SSH transport implementation uses [hmac-sha1, hmac-sha2-256, hmac-sha2-512] as its MAC algorithm(s) and rejects all other MAC algorithm(s).

FCS_SSHS_EXT.1.7 The TSF shall ensure that [<u>diffie-hellman-group14-sha1, ecdh-sha2-nistp256</u>] and [<u>ecdh-sha2-nistp384, ecdh-sha2-nistp521</u>] are the only allowed key exchange methods used for the SSH protocol.

FCS_SSHS_EXT.1.8⁷ The TSF shall ensure that within SSH connections the same session keys are used for a threshold of no longer than one hour, and no more than one gigabyte of transmitted data. After either of the thresholds are reached a rekey needs to be performed.

- 5.3 Identification and Authentication (FIA)
- 5.3.1 Authentication Failure Management (FIA_AFL)
- 5.3.1.1 FIA_AFL.1 Authentication Failure Management (Refinement)

FIA_AFL.1 Authentication Failure Management⁸

FIA_AFL.1.1 The TSF shall detect when <u>an Administrator configurable positive integer within [1 to 10]</u> unsuccessful authentication attempts occur related to *Administrators attempting to authenticate remotely using a password.*

FIA_AFL.1.2 When the defined number of unsuccessful authentication attempts has been <u>met</u>, the TSF shall [prevent the offending remote Administrator from successfully establishing remote session using any authentication method that involves a password until an Administrator defined time period has elapsed].

ST Application Note

The Security Administrator can select to unlock the account of another administrator who has failed to authenticate, rather than require the administrator to wait until the delay of an administrator-configured time period has lapsed before another attempt can be made to authenticate.

- 5.3.2 Password Management (Extended FIA_PMG_EXT)
- 5.3.2.1 FIA_PMG_EXT.1 Password Management

FIA_PMG_EXT.1 Password Management⁹

FIA_PMG_EXT.1.1 The TSF shall provide the following password management capabilities for administrative passwords:

Version 1.8 Page 25 of 47

⁶ Incorporates NIAP TD0189, which makes aes-cbc algorithms selectable while also reflecting the more recent operation as specified in [NDcPP2.1], which permits assignment of applicable algorithms. Also reflects Network Device Interpretation #201725, dated 28-Oct-2017.

⁷ Incorporates TD0475.

⁸ Specified in [NDcPP2.1], modified by TD0408, and interpreted in accordance with TD0409 so that blocking only applies after failures in password-based authentication, not in key-based authentication.

⁹ Specified in [NDcPP2.1].

- a) Passwords shall be able to be composed of any combination of upper and lower case letters, numbers, and the following special characters: ["!", "@", "#", "\$", "%", "%", "%", "*", "(", ")", [and all other standard ASCII, extended ASCII and Unicode characters]];
- b) Minimum password length shall be configurable to between [10] and [20] characters.

5.3.3 User Identification and Authentication (Extended - FIA_UIA_EXT)

5.3.3.1 FIA_UIA_EXT.1 User Identification and Authentication

FIA UIA EXT.1 User Identification and Authentication¹⁰

FIA_UIA_EXT.1.1 The TSF shall allow the following actions prior to requiring the non-TOE entity to initiate the identification and authentication process:

- Display the warning banner in accordance with FTA_TAB.1;
- [[ICMP echo]].

FIA_UIA_EXT.1.2 The TSF shall require each administrative user to be successfully identified and authenticated before allowing any other TSF-mediated actions on behalf of that administrative user.

5.3.4 User authentication (FIA_UAU) (Extended - FIA_UAU_EXT)

5.3.4.1 FIA_UAU_EXT.2 Password-based Authentication Mechanism

FIA_UAU_EXT.2 Password-based Authentication Mechanism¹¹

FIA_UAU_EXT.2.1 The TSF shall provide a local [<u>password-based</u>] authentication mechanism to perform local administrative user authentication.

5.3.4.2 FIA_UAU.7 Protected Authentication Feedback

FIA_UAU.7 Protected Authentication Feedback¹²

FIA_UAU.7.1 The TSF shall provide only *obscured feedback* to the administrative user while the authentication is in progress **at the local console**.

- 5.4 Security Management (FMT)
- 5.4.1 Management of functions in TSF (FMT_MOF)
- 5.4.1.1 FMT_MOF.1/ManualUpdate Management of security functions behaviour

FMT_MOF.1/ManualUpdate Management of security functions behaviour

FMT_MOF.1.1/ManualUpdate The TSF shall restrict the ability to <u>enable</u> the functions to *perform manual updates to Security Administrators*.

5.4.1.2 FMT_MOF.1/Services Management of security functions behaviour

FMT_MOF.1/Services Management of security functions behaviour

FMT_MOF.1.1/Services The TSF shall restrict the ability to <u>enable and disable</u> start and stop the functions services to *Security Administrators*.

Version 1.8 Page 26 of 47

¹⁰ Specified in [NDcPP2.1].

¹¹ Specified in [NDcPP2.1].

¹² Specified in [NDcPP2.1].

5.4.1.3 FMT_MOF.1/Functions Management of security functions behaviour

FMT_MOF.1/Functions Management of security functions behaviour

FMT_MOF.1.1/Functions The TSF shall restrict the ability to [modify the behaviour of] the functions [transmission of audit data to an external IT entity, handling of audit data] to Security Administrators.

5.4.2 Management of TSF Data (FMT_MTD)

5.4.2.1 FMT_MTD.1/CoreData Management of TSF Data

FMT_MTD.1/CoreData Management of TSF Data

FMT_MTD.1.1/CoreData The TSF shall restrict the ability to <u>manage</u> the TSF data to Security Administrators.

5.4.2.2 FMT_MTD.1/CryptoKeys Management of TSF data

FMT_MTD.1/CryptoKeys Management of TSF data

FMT_MTD.1.1/CryptoKeys The TSF shall restrict the ability to <u>manage</u> the <u>cryptographic keys</u> to <u>Security Administrators</u>.

5.4.3 Specification of Management Functions (FMT_SMF)

5.4.3.1 FMT_SMF.1 Specification of Management Functions

FMT_SMF.1 Specification of Management Functions¹³

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions:

- Ability to administer the TOE locally and remotely;
- Ability to configure the access banner;
- Ability to configure the session inactivity time before session termination or locking;
- Ability to update the TOE, and to verify the updates using <u>digital signature</u> and <u>[no</u>
 other] capability prior to installing those updates;
- Ability to configure the authentication failure parameters for FIA_AFL.1;

Ability to configure audit behaviour;

- Ability to configure thresholds for SSH rekeying;
- o <u>Ability to re-enable an Administrator account;</u>
- o <u>Ability to set the time which is used for time-stamp].</u>

5.4.4 Security management roles (FMT_SMR)

5.4.4.1 FMT_SMR.2 Restrictions on security roles

FMT_SMR.2 Restrictions on Security Roles

FMT_SMR.2.1 The TSF shall maintain the roles:

• Security Administrator.

FMT_SMR.2.2 The TSF shall be able to associate users with roles.

FMT_SMR.2.3 The TSF shall ensure that the conditions

The Security Administrator role shall be able to administer the TOE locally;

Version 1.8

Page 27 of 47

¹³ Specified in [NDcPP2.1].

 The Security Administrator role shall be able to administer the TOE remotely are satisfied.

5.5 Protection of the TSF (FPT)

- 5.5.1 Protection of TSF Data (Extended FPT_SKP_EXT)
- 5.5.1.1 FPT_SKP_EXT.1 Protection of TSF Data (for reading of all pre-shared, symmetric and private keys)

FPT_SKP_EXT.1 Protection of TSF Data (for reading of all pre-shared, symmetric and private keys)

FPT_SKP_EXT.1.1 The TSF shall prevent reading of all pre-shared keys, symmetric keys, and private keys.

- 5.5.2 Protection of Administrator Passwords (Extended FPT_APW_EXT)
- 5.5.2.1 FPT_APW_EXT.1 Protection of Administrator Passwords

FPT_APW_EXT.1 Protection of Administrator Passwords14

FPT_APW_EXT.1.1 The TSF shall store administrative passwords in non-plaintext form.

FPT_APW_EXT.1.2 The TSF shall prevent the reading of plaintext administrative passwords.

- 5.5.3 TSF testing (Extended FPT_TST_EXT)
- 5.5.3.1 FPT_TST_EXT.1 TSF Testing (Extended)

FPT_TST_EXT.1 TSF testing

FPT_TST_EXT.1.1 The TSF shall run a suite of the following self-tests [<u>during initial start-up (on power on)</u>] to demonstrate the correct operation of the TSF: [

- Power on test,
- File integrity test,
- Crypto integrity test,
- Authentication test,
- Algorithm known answer tests¹⁵].

5.5.4 Trusted Update (FPT_TUD_EXT)

5.5.4.1 FPT_TUD_EXT.1 Trusted Update

FPT TUD EXT.1 Trusted update

FPT_TUD_EXT.1.1 The TSF shall provide *Security Administrators* the ability to query the currently executing version of the TOE firmware/software and [<u>no other TOE firmware/software version</u>].

FPT_TUD_EXT.1.2 The TSF shall provide *Security Administrators* the ability to manually initiate updates to TOE firmware/software and [*no other update mechanism*].

FPT_TUD_EXT.1.3 The TSF shall provide means to authenticate firmware/software updates to the TOE using a [digital signature mechanism] prior to installing those updates.

Version 1.8 Page 28 of 47

¹⁴ Incorporates TD0483

¹⁵ The complete list of algorithm tests is provided in [ECG] "Performing Self-Tests on a Device".

5.5.5 Time stamps (Extended – FPT_STM_EXT))

5.5.5.1 FPT_STM_EXT.1 Reliable Time Stamps

FPT_STM_EXT.1 Reliable Time Stamps

FPT_STM_EXT.1.1 The TSF shall be able to provide reliable time stamps for its own use.

FPT_STM_EXT.1.2 The TSF shall [allow the Security Administrator to set the time].

- 5.6 TOE Access (FTA)
- 5.6.1 TSF-initiated Session Locking (Extended FTA_SSL_EXT)
- 5.6.1.1 FTA_SSL_EXT.1 TSF-initiated Session Locking

FTA_SSL_EXT.1 TSF-initiated Session Locking

FTA_SSL_EXT.1.1 The TSF shall, for local interactive sessions, [

terminate the session]

after a Security Administrator-specified time period of inactivity.

- 5.6.2 Session locking and termination (FTA_SSL)
- 5.6.2.1 FTA_SSL.3 TSF-initiated Termination (Refinement)

FTA_SSL.3 TSF-initiated Termination

FTA_SSL.3.1: The TSF shall terminate **a remote** interactive session after a *Security Administrator-configurable time interval of session inactivity*.

5.6.2.2 FTA_SSL.4 User-initiated Termination (Refinement)

FTA_SSL.4 User-initiated Termination

FTA_SSL.4.1: The TSF shall allow **Administrator**-initiated termination of the **Administrator's** own interactive session.

- 5.6.3 TOE access banners (FTA_TAB)
- 5.6.3.1 FTA_TAB.1 Default TOE Access Banners (Refinement)

FTA_TAB.1 Default TOE Access Banners

FTA_TAB.1.1: Before establishing **an administrative user** session the TSF shall display **a Security Administrator-specified** advisory **notice and consent** warning message regarding use of the TOE.

- 5.7 Trusted path/channels (FTP)
- 5.7.1 Trusted Channel (FTP_ITC)
- 5.7.1.1 FTP_ITC.1 Inter-TSF trusted channel (Refinement)

FTP_ITC.1 Inter-TSF trusted channel

FTP_ITC.1.1 The TSF shall be capable of using [SSH] to provide a trusted communication channel between itself and authorized IT entities supporting the following capabilities: audit server, [no other capabilities] that is logically distinct from other communication channels and provides assured identification of its end points and protection of the channel data from disclosure and detection of modification of the channel data.

Version 1.8 Page 29 of 47

FTP_ITC.1.2 The TSF shall permit <u>the TSF or the authorized IT entities</u> to initiate communication via the trusted channel.

FTP_ITC.1.3 The TSF shall initiate communication via the trusted channel for [no communication].

5.7.2 Trusted Path (FTP_TRP)

5.7.2.1 FTP_TRP.1/Admin Trusted Path (Refinement)

FTP_TRP.1/Admin Trusted Path

FTP_TRP.1.1/Admin The TSF shall **be capable of using [SSH] to** provide a communication path between itself **and authorized** <u>remote</u> **administrators** that provides confidentiality and integrity, that is, logically distinct from other communication paths and provides assured identification of its end points and protection of the communicated data from <u>disclosure and provides detection of modification of the channel data</u>.

FTP_TRP.1.2/Admin The TSF shall permit <u>remote **Administrators**</u> to initiate communication via the trusted path.

FTP_TRP.1.3/Admin The TSF shall require the use of the trusted path for <u>initial Administrator</u> <u>authentication and all remote administration actions</u>.

Version 1.8 Page 30 of 47

6 Security Assurance Requirements

34. The TOE security assurance requirements are taken from [NDcPP2.1] Section 7, as listed in Table 10 below.

Assurance Class	Assurance Component	
Security Target (ASE)	Conformance claims (ASE_CCL.1)	
	Extended components definition (ASE_ECD.1)	
	ST introduction (ASE_INT.1)	
	Security objectives for the operational environment (ASE_OBJ.1)	
	Stated security requirements (ASE_REQ.1)	
	Security Problem Definition (ASE_SPD.1)	
	TOE summary specification (ASE_TSS.1)	
Development (ADV)	Basic functional specification (ADV_FSP.1)	
Guidance documents (AGD)	Operational user guidance (AGD_OPE.1)	
	Preparative procedures (AGD_PRE.1)	
Life cycle support (ALC)	Labelling of the TOE (ALC_CMC.1)	
	TOE CM coverage (ALC_CMS.1)	
Tests (ATE)	Independent testing – conformance (ATE_IND.1)	
Vulnerability assessment (AVA)	Vulnerability survey (AVA_VAN.1)	

Table 10 Security Assurance Requirements

Version 1.8 Page 31 of 47

TOE Summary Specification

7.1 Security Audit

- 35. Junos OS creates and stores audit records for the following events (the detail of content recorded for each audit event is detailed in Table 10 (*FAU_GEN.1*). Auditing is implemented using syslog.
 - Start-up and shut-down of the audit functions
 - Administrative login and logout
 - · Configuration is committed
 - Configuration is changed (includes all management activities of TSF data)
 - Generating/import of, changing, or deleting of cryptographic keys (see below for more detail)
 - Resetting passwords
 - Starting and stopping services
 - All use of the identification and authentication mechanisms
 - Unsuccessful login attempts limit is met or exceeded
 - Any attempt to initiate a manual update
 - Result of the update attempt (success or failure)
 - The termination of a local/remote/interactive session by the session locking mechanism
 - Initiation/termination/failure of the SSH trusted channel to syslog server
 - Initiation/termination/failure of the SSH trusted path with Admin
 - Application of rules configured with the 'log' operation by the packet filtering function
 - Indication of packets dropped due to too much network traffic by the packet filtering function
- 36. In addition the following management activities of TSF data are recorded:
 - configure the access banner;
 - configure the session inactivity time before session termination;
 - configure the authentication failure parameters for FIA_AFL.1;
 - Ability to configure audit behaviour;
 - configure the cryptographic functionality;
 - configure thresholds for SSH rekeying;
 - re-enable an Administrator account;
 - set the time which is used for time-stamps.
- 37. The detail of what events are to be recorded by syslog are determined by the logging level specified the "level" argument of the "set system syslog" CLI command. To ensure compliance with the requirements the audit knobs detailed in [ECG] must be configured.
- 38. As a minimum, Junos OS records the following with each log entry:

Version 1.8 Page 32 of 47

- date and time of the event and/or reaction
- type of event and/or reaction
- subject identity (where applicable)
- the outcome (success or failure) of the event (where applicable).
- 39. In order to identify the key being operated on, the following details are recorded for all administrative actions relating to cryptographic keys (generating, importing, changing and deleting keys):
 - SSH session keys– key reference provided by process id
 - SSH keys generated for outbound trusted channel to external syslog server
 - SSH keys *imported* for outbound trusted channel to external syslog server
 - SSH key configured for SSH public key authentication –the hash of the public key that is to be used for authentication is recorded in syslog
- 40. For SSH (ephemeral) session keys the PID is used as the key reference to relate the key generation and key destruction audit events. The key destruction event is recorded as a session disconnect event. For example, key generation and key destruction events for a single SSH session key would be reflected by records similar to the following:

Sep 27 15:09:36 yeti sshd[6529]: Accepted publickey for root from 10.163.18.165 port 45336 ssh2: RSA SHA256:l1vri77TPQ4VaupE2NMYiUXPnGkqBWIgD5vW0OuglGI

•••

Sep 27 15:09:40 yeti sshd[6529]: Received disconnect from 10.163.18.165 port 45336:11: disconnected by user

Sep 27 15:09:40 yeti sshd[6529]: Disconnected from 10.163.18.165 port 45336

41. SSH keys *generated* for outbound trusted channels are uniquely identified in the audit record by the public key filename and fingerprint. For example:

Sep 27 23:36:49 yeti ssh-keygen [67873]: Generated SSH key file /root/.ssh/id_rsa.pub with fingerprint SHA256:g+7lsR7x4lQb1JT8Q3scfb2sOl8lyccojGdmkmw4dwM

- 42. SSH keys *imported* for use in establishing outbound trusted channels are uniquely identified in the audit record by the hash of the key imported and the username importing (to which the key will be bound).
- 43. It should be noted that SSH keys used for trusted channels are NOT deleted by mgd when SSH is de-configured. Hence, the only time SSH keys used for trusted channels are deleted is when a "request vmhost zeroize" action is performed and the whole appliance is zeroized (which by definition cannot be recorded).
- 44. All events recorded by syslog are timestamped. The clock function of Junos OS provides a source of date and time information for the appliance, used in audit timestamps, which is maintained using the hardware Time Stamp Counter as the clock source. (FAU_GEN.2, FPT_STM.1)
- 45. Syslog can be configured to store the audit logs locally (<code>FAU_STG_EXT.1</code>), and optionally to send them to one or more syslog log servers in real time via Netconf over SSH. (<code>FAU_STG.1</code>, <code>FMT_MOF.1/Functions</code>). Local audit log are stored in /var/log/ in the underlying filesystem. Only a Security Administrator can read log files, or delete log and archive files through the CLI interface or through direct access to the filesystem having first authenticated as a Security Administrator. The syslogs are automatically deleted locally according to configurable limits on storage volume. The default maximum size is 1Gb. The default maximum size can be modified by the user, using the "size" argument for the "set system syslog" CLI command.

Version 1.8 Page 33 of 47

- 46. The Junos OS defines an active log file and a number of "archive" files (10 by default, but configurable from 1 to 1000). When the active log file reaches its maximum size, the logging utility closes the file, compresses it, and names the compressed archive file 'logfile.0.gz'. The logging utility then opens and writes to a new active log file. When the new active log file reaches the configured maximum size, 'logfile.0.gz' is renamed 'logfile.1.gz', and the active log file is closed, compressed, and renamed 'logfile.0.gz'. When the maximum number of archive files is reached and when the size of the active file reaches the configured maximum size, the contents of the oldest archived file are deleted so the current active file can be archived.
- 47. A 1Gb syslog file takes approximately 0.25Gb of storage when archived. Syslog files can acquire complete storage allocated to /var filesystem, which is platform specific. However, when the filesystem reaches 92% storage capacity an event is raised to the administrator but the eventd process (being a privileged process) still can continue using the reserved storage blocks. This allows the syslog to continue storing events while the administrator frees the storage. If the administrator does not free the storage in time and the /var filesystem storage becomes exhausted a final entry is recorded in the log reporting "No space left on device" and logging is terminated. The appliance continues to operate in the event of exhaustion of audit log storage space.

7.2 Cryptographic Support

48. Local console access is gained by connecting an RJ-45 cable between the console port on the appliance and a workstation with a serial connection client.

7.2.1 Algorithms and zeroization

- 49. All FIPS-approved cryptographic functions implemented by the TOE are implemented in the following libraries:
 - OpenSSL for Junos OS 19.3R1 (based on 1.0.2r) JUNOS 19.3R1 MX-OpenSSL
 - LibMD for Junos OS 19.3R1 (the library is created from same sources as OpenSSL version, namely 1.0.2r) - JUNOS 19.3R1 MX-LibMD
 - Kernel for Junos OS 19.3R1 (based on FreeBSD-11 Stable release) JUNOS 19.3R1 MX-Kernel
- 50. The TOE evaluation provides a CAVP validation certificate for all FIPS-approved cryptographic functions implemented by the TOE. CAVP certificate details are provided in Table 12.

Library Implemented	SFRs Supported	Function, Usage, Algorithm, Mode, Key Size	CAVP Certificate Number
JUNOS 19.3R1 MX-Kernel	FCS_RBG_EXT.1	Random bit generation with HMAC-DRBG,	<u>C1467</u>
OR		HMAC-SHA2-256	<u>C1469</u>
JUNOS 19.3R1 MX-OpenSSL			

Version 1.8 Page 34 of 47

JUNOS 19.3R1 MX-OpenSSL	FCS_SSHS_EXT.1	SSH AES Data Encryption/Decryption	<u>C1469</u>
	FCS_COP.1/DataEncry ption	AES-CBC with key sizes 128 bit and 256 bit	
	FCS_COP.1/Hash FCS_COP.1/KeyedHash	AES-CTR with key sizes 128 bit and 256 bit	
	FCS_COP.1/SigGen FCS_CKM.1 FCS_CKM.2	SSH Hashing SHA1, SHA2-256, SHA2-384, SHA2-512 SSH Keyed-hashing HMAC-SHA1, HMAC-SHA-256, HMAC-SHA-512 SSH Signature generation and verification using RSA with a 2048-bit or longer	
		key. SSH signature generation and verification using ECDSA: P-256 w/SHA-256, P-384 w/SHA-384, P-521 w/SHA-512	
		SSH Key generation for ECDH	
		SSH Key generation for RSA	
		SSH RSA Key Agreement including keypair generation.	
		SSH EC Key Agreement including keypair generation using:	
		EC (P-256, SHA-256),ED (P-384, SHA- 384), EE (P-521, SHA-512)	
	FPT_TUD_EXT.1	Trusted Update signature verification using ECDSA	
		P-256 w/SHA-256, P-384 w/SHA-384, P-521 w/SHA-512	
JUNOS 19.3R1 MX-LibMD	FCS_COP.1/Hash FPT_APW_EXT.1 FPT_TST_EXT.1	Cryptographic hashing for password conditioning, password hashing, and self-testing (verifying integrity of system files)	<u>C1468</u>
		HMAC-SHA1, HMAC-SHA2-256 As defined in table 14, below.	
	Results for Cryptographic Servi		

Table 12 CAVP Certificate Results for Cryptographic Services

All random number generation by the TOE is performed in accordance with NIST Special Publication 800-90 using HMAC_DRBG implemented in the OpenSSL library and kernel library (FCS_RBG_EXT.1.1). Additionally, SHA (256,512) is implemented in the LibMD library which is used for password hashing by Junos' MGD daemon. The appliance is to be operated with FIPS mode enabled.

Version 1.8 Page 35 of 47

- 52. The FIPS approved algorithms are applied when the FIPS mode is enabled 16. The relevant FIPS knobs are specified in [ECG]. (FCS_COP.1/DataEncryption, FCS_COP.1/SigGen, FCS_COP.1/Hash, FCS_COP.1/KeyedHash, FCS_RBG_EXT.1, FCS_CKM.1, FMT_SMF.1)
- 53. Asymmetric keys are also generated in accordance with FIPS PUB 186-4 Appendix B.3.3 for RSA Schemes and Appendix B.4.2 for ECC Schemes for SSH communications. The TOE implements Diffie-Hellman group 14, using the modulus and generator specified by Section 3 of RFC3526. (FCS_CKM.2, FCS_CKM.1/ND).
- 54. The following table relates cryptographic algorithms to the protocols by the TOE. The TOE acts as both sender and recipient for MACsec and only as the server for SSH in the supported protocols listed in 13:

Protoco	ol Key Exchange	Authentication	Encryption Algorithms	Data Integrity Algorithms
SSHv2	ecdh-sha2-nistp256 ecdh-sha2-nistp384 ecdh-sha2-nistp521 Diffie-Hellman group 14 (modp 2048)	ssh-rsa rsa-sha2-256 rsa-sha2-512 ecdsa-sha2-nistp256 ecdsa-sha2-nistp384 ecdsa-sah2-nistp521	AES CTR 128 AES CTR 256 AES CBC 128 AES CBC 256	HMAC-SHA-1 HMAC-SHA-256 HMAC-SHA-512

Table 13 Supported Protocols

55. Regardless of the module, the MAC algorithms use the values specified in Table:

	HMAC-SHA-1	HMAC-SHA-256	HMAC-SHA-512
Key Length	160 bits	256 bits	512 bits
Hash function	SHA-1	SHA-256	SHA-512
Block Size	512 bits	512 bits	1024 bits
Output MAC	160 bits	256 bits	512 bits

Table 14 HMAC Values

56. Junos OS handles zeroization for all CSP, plaintext secret and private cryptographic keys according to Table below. (*FCS_CKM.4*).

Version 1.8 Page 36 of 47

¹⁶ The knob "set system fips chassis level 1" will enforce strict compliance to FIPS and enable restrictions on algorithms and keys sizes as required by FIPS requirements.

CSP	Description	Method of storage	Storage location	Zeroization Method
SSH Private Host Key	The first time SSH is configured, the key is generated. Used to identify the host.	Plaintext	File format on SDD)	When the appliance is recommissioned, the config files (including CSP files such as SSH keys) are removed using the "request vmhost zeroize noforwarding" option.
	Loaded into memory to complete session establishment	Plaintext	Memory	Memory free() operation is performed by Junos upon session termination
SSH Session Key	Session keys used with SSH, AES 128, 256, hmac-sha-1, hmac-sha2-256 or hmac- sha2-512 key (160, 256 or 512), DH Private Key (2048 or elliptic curve 256/384/521- bits)	Plaintext	Memory	Memory free() operation is performed by Junos upon session termination
User Password	Plaintext value as entered by user	Plaintext as entered	Processed in Memory	Memory free() operation is performed by Junos upon completion of authentication
		Hashed when stored (HMAC- sha1)	Stored on disk	When the appliance is recommissioned, the config files (including the obfuscated password) are removed using the "request vmhost zeroize noforwarding" option.
RNG State	Internal state and seed key of RNG	Plaintext	Memory	Handled by kernel, overwritten with zero's at reboot.

Table 15 CSP Storage and Zeroization

57. Junos OS does not provide a CLI interface to permit the viewing of keys. Cryptographic keys are protected through the enforcement of kernel-level file access rights, limiting access to the contents of cryptographic key containers to processes with cryptographic rights or shell users with root permission¹⁷. (*FPT_SKP_EXT.1*)

7.2.2 SSH

- Junos OS supports and enforces Trusted Channels that protect the communications between the TOE and a remote audit server from unauthorized disclosure or modification. It also supports Trusted Paths between itself and remote administrators so that the contents of administrative sessions are protected against unauthorized disclosure or modification. (FTP_ITC.1, FTP_TRP.1/Admin)
- 59. Junos OS provides an SSH server to support <u>Trusted Channels</u> using SSHv2 protocol which ensures the confidentiality and integrity of communication with the remote audit server. Export of audit information to a secure, remote server is achieved by setting up an event trace monitor that sends event log messages by using NETCONF over SSH to the remote system event logging server. The remote audit server initiates the connection. The SSHv2 protocol ensures that the data transmitted over a SSH session cannot be disclosed or altered by using the encryption and

Version 1.8 Page 37 of 47

¹⁷ Security Administrators do not have root permission in shell.

integrity mechanisms of the protocol with the FIPS cryptographic module. (*FTP_ITC.1*, *FCS_SSHS_EXT.1*)

- 60. The Junos OS SSH Server also supports <u>Trusted Paths</u> using SSHv2 protocol which ensures the confidentiality and integrity of user sessions. The encrypted communication path between Junos OS SSH Server and a remote administrator is provided by the use of an SSH session. Remote administrators of Junos OS initiate communication to the Junos CLI through the SSH tunnel created by the SSH session. Assured identification of Junos OS is guaranteed by using public key based authentication for SSH. The SSHv2 protocol ensures that the data transmitted over a SSH session cannot be disclosed or altered by using the encryption and integrity mechanisms of the protocol with the FIPS cryptographic module. (*FTP_TRP.1/Admin, FCS_SSHS_EXT.1*)
- The Junos OS SSH server is implemented in accordance with RFCs 4251, 4252, 4253, 4254, 4344, 5656 and 6668. Junos OS provides assured identification of the Junos OS appliance though public key authentication and supports password-based authentication by administrative users (Security Administrator) for SSH connections. The following table identifies conformance to the SSH related RFCs:

Version 1.8 Page 38 of 47

RFC	Summary	TOE implementation of Security
RFC 4251	The Secure Shell	Host Keys: The TOE uses an ECDSA Host Key for SSH v2, with a
	(SSH) Protocol	key size of 256 bits, which is generated on initial setup of the
	Architecture	TOE. It can be de-configured via the CLI and the key will be
		deleted and thus unavailable during connection establishment.
		This key is randomly generated to be unique to each TOE
		instance. The TOE presents the client with its public key and the
		client matches this key against its known_hosts list of keys.
		When a client connects to the TOE, the client will be able to
		determine if the same host key was used in previous
		connections, or if the key is different (per the SSHv2 protocol).
		Junos OS also supports RSA-based key establishment schemes
		with a key size of 2048 bits.
		Policy Issues: The TOE implements all mandatory algorithms and
		methods. The TOE can be configured to accept public-key based
		authentication and/or password-based authentication. The TOE
		does not require multiple authentication mechanisms for users.
		The TOE allows port forwarding and sessions to clients. The TOE
		has no X11 libraries or applications and X11 forwarding is
		prohibited.
		Confidentiality: The TOE does not accept the "none" cipher.
		supports AES-CBC-128, AES-CBC-256, AES-CTR-128, AES-CTR-256
		encryption algorithms for protection of data over SSH and uses
		keys generated in accordance with "ssh-rsa", "rsa-sha2-256",
		"rsa-sha2-512", "ecdsa-sha2-nistp256", "ecdsa-sha2-nistp384"
		or "ecdsa-sha2-nistp521" to perform public-key based device
		authentication. For ciphers whose blocksize >= 16, the TOE
		rekeys every (2^32-1) bytes. The client may explicitly request a
		rekeying event as a valid SSHv2message at any time and the TOE
		will honor this request. Re-keying of SSH session keys can be
		configured using the sshd_config knob. The data-limit must be
		between 51200 and 4294967295 (2^32-1) bytes and the time-
		limit must be between 1 and 1440 minutes. In the evaluated
		deployment the time-limit must be set within 1 and 60 minutes.
		Denial of Service: When the SSH connection is brought down,
		the TOE does not attempt to re-establish it.
		Ordering of Key Exchange Methods: Key exchange is performed
		only using one of the supported key exchange algorithms, which
		are ordered as follows: ecdh-sha2-nistp256, ecdh-sha2-nistp384,
		ecdh-sha2-nistp521 (all specified in RFC 5656), diffie-hellman-
		group14-sha1 (specified in RFC 4253).
		Debug Messages: The TOE sshd server does not support debug
		messages via the CLI.
		End Point Security: The TOE permits port forwarding.
		Proxy Forwarding: The TOE permits proxy forwarding.
		X11 Forwarding: The TOE does not support X11 forwarding.

Version 1.8 Page 39 of 47

RFC	Summary	TOE implementation of Security
RFC 4252	The Secure Shell	Authentication Protocol: The TOE does not accept the "none"
	(SSH) Authentication	authentication method. The TOE implements a timeout period
	Protocol	of 30 seconds for authentication of the SSHv2 protocol and
		provides a limit of three failed authentication attempts before
		sending a disconnect to the client.
		Authentication Requests: The TOE does not accept
		authentication if the requested service does not exist. The TOE
		does not allow authentication requests for a non-existent
		username to succeed – it sends back a disconnect message as it
		would for failed authentications and hence does not allow
		enumeration of valid usernames. The TOE denies "none"
		authentication method and replies with a list of permitted
		authentication methods.
		Public Key Authentication Method: The TOE supports public key
		authentication for SSHv2 session authentication. Authentication
		succeeds if the correct private key is used. The TOE does not
		require multiple authentications (public key and password) for
		users.
		Password Authentication Method: The TOE supports password
		authentication. Expired passwords are not supported and
		cannot be used for authentication.
		Host-Based Authentication: The TOE does not support the
		configuration of host-based authentication methods.
RFC 4253	The Secure Shell	Encryption: The TOE offers the following for encryption of SSH
	(SSH) Transport	sessions: aes128-cbc and aes256-cbc, aes128-ctr, aes256-ctr.
	Layer Protocol	The TOE permits negotiation of encryption algorithms in each
		direction. The TOE does not allow the "none" algorithm for
		encryption.
		Maximum Packet length: Packets greater than 263K bytes in an
		SSH transport connection are dropped and the connection is
		terminated by Junos OS.
		Data Integrity: The TOE permits negotiation of HMAC-SHA1 in
		each direction for SSH transport.
		Key Exchange: The TOE supports diffie-hellman-group14-sha1.
		Key Re-Exchange: The TOE performs a re-exchange when
		SSH_MSG_KEXINIT is received.

Version 1.8 Page 40 of 47

RFC	Summary	TOE implementation of Security
RFC 4254	Secure Shell (SSH) Connection Protocol	Multiple channels: The TOE assigns each channel a number (as detailed in RFC 4251, see above). Data transfers: The TOE supports a maximum window size of 256K bytes for data transfer. Interactive sessions: The TOE only supports interactive sessions that do NOT involve X11 forwarding. Forwarded X11 connections: This is not supported in the TOE. Environment variable passing: The TOE only sets variables once the server process has dropped privileges. Starting shells/commands: The TOE supports starting one of shell, application program or command (only one request per channel). These will be run in the context of a channel, and will not halt the execution of the protocol stack. Window dimension change notices: The TOE will accept notifications of changes to the terminal size (dimensions) from the client. Port forwarding: This is fully supported by the TOE.
RFC4344	Secure Shell (SSH) Transport Layer Encryption Modes	Encryption Modes : The TOE implements the recommended modes aes128-ctr and aes256-ctr (it does not implement the recommended modes aes192-ctr or 3des-ctr, nor does it implement any of the optional modes).
RFC5656	SSH ECC Algorithm Integration	ECDH Key Exchange: The support key exchange methods specified in this RFC are ecdh-sha2-nistp256, ecdh-sha2-nistp384, or ecdh-sha2-nistp521. The client matches the key against its known_hosts list of keys. Hashing: Junos OS supports cryptographic hashing via the SHA-1, SHA-256, SHA-384 and SHA-512 algorithms, provided it has a message digest size of either 256 or 512 bits.Required Curves: All required curves are implemented: ecdh-sha2-nistp256, ecdh-sha2-nistp384, or ecdh-sha2-nistp521. None of the Recommended Curves are supported as they are not included in [NDcPP2.1].
RFC 6668	sha2-Transport Layer Protocol	Data Integrity Algorithms: Both the recommended and optional algorithms hmac-sha1, mac-sha2-256 and hmac-sha2-512 (respectively) are implemented for SSH transport.

Table 16 SSH RFC conformance

62. Certificates are stored in non-volatile flash memory. Access to flash memory requires administrator credentials. A certificate may be loaded via command line (FMT_MTD.1/CryptoKeys).

7.3 Identification and Authentication

- 63. Junos OS enforces binding between human users and subjects. The Security Administrator is responsible for provisioning user accounts, and only the Security Administrator can do so. (FMT_SMR.2, FMT_MTD.1/CoreData)
- 64. Junos users are configured under "system login user" and are exported to the password database '/var/etc/master.passwd'. A Junos user is therefore an entry in the password database. Each entry in the password database has fields corresponding to the attributes of "system login user", including username, (obfuscated) password and login class.

Version 1.8 Page 41 of 47

- 65. The internal architecture supporting Authentication includes an active process, associated linked libraries and supporting configuration data. The Authentication process and library are
 - login()
 - PAM Library module
- 66. Following TOE initialization, the login() process is listening for a connection at the local console. This 'login' process can be accessed through either direct connection to the local console or following successful establishment of a remote management connection over SSH, when a login prompt is displayed.
- 67. This login process identifies and authenticates the user using PAM operations. The login process does two things; it first establishes that the requesting user is whom they claim to be and second provides them with an interactive Junos Command interactive command line interface (CLI).
- Keys file located in the directory '.ssh' in the user's home directory (i.e. '~/.ssh/') and this authentication method will be attempted before any other if the client has a key available (FIA_UIA_EXT.1). The SSH daemon will ignore the authorized keys file if it or the directory '.ssh' or the user's home directory are not owned by the user or are writeable by anyone else.
- 69. For password authentication, <code>login()</code> interacts with a user to request a username and password to establish and verify the user's identity. The username entered by the administrator at the username prompt is reflected to the screen, but no feedback to screen is provided while the entry made by the administrator at the password prompt until the Enter key is pressed (<code>FIA_UAU.7</code>). <code>login()</code> uses PAM Library calls for the actual verification of this data. The password is hashed and compared to the stored value, and success/failure is indicated to <code>login()</code>, (<code>FIA_UIA_EXT.1</code>). PAM is used in the TOE support authentication management, account management, session management and password management. Login primarily uses the session management and password management functionality offered by PAM.
- 70. The retry-options can be configured to specify the action to be taken if the administrator fails to enter valid username/password credentials for password authentication when attempting to authenticate via remote access (*FMT_MTD.1/CoreData*). The retry-options are applied following the first failed login attempt for a given username (*FIA_AFL.1*). The length of delay (5-10 seconds) after each failed attempt is specified by the backoff-factor, and the increase of the delay for each subsequent failed attempt is specified by the backoff-threshold (1-3). The triesbefore-disconnect sets the maximum number of times (1-10) the administrator is allowed to enter a password to attempt to log in to the device through SSH before the connection is disconnected. The lockout-period sets the amount of time in minutes before the administrator can attempt to log in to the device after being locked out due to the number of failed login attempts (1-43,200 minutes). Even when an account is locked for remote access to the TOE, an administrator is always able to login locally through the serial console and the administrator can attempt authentication via remote access after the maximum timeout period of 24 hours.
- 71. The TOE requires users to provide unique identification and authentication data (passwords/public key) before any access to the system is granted. Prior to authentication, the only Junos OS managed responses provided to the administrator are (*FIA_UAU_EXT.2*):
 - Negotiation of SSH session
 - Display of the access banner
 - ICMP echo responses.
- 72. Authentication data for fixed password authentication is a case-sensitive, alphanumeric value.

 The password has a minimum length of 10 characters and maximum length of 20 characters, and

Version 1.8 Page 42 of 47

must contain characters from at least two different character sets (upper, lower, numeric, punctuation), and can be up to 20 ASCII characters in length (control characters are not recommended). Any standard ASCII, extended ASCII and Unicode characters can be selected when choosing a password. (*FIA_PMG_EXT.1*)

7.4 Security Management

- 73. Accounts assigned to the Security Administrator role are used to manage Junos OS in accordance with [NDcPP2.1]. User accounts in the TOE have the following attributes: user identity (user name), authentication data (password) and role (privilege). The Security Administrator is associated with the defined login class "security-admin", which has the necessary permission set to permit the administrator to perform all tasks necessary to manage Junos OS in accordance with the requirements of [NDcPP2.1].(FMT_SMR.2)
- 74. The TOE provides user access either through the system console or remotely over the Trusted Path using the SSHv2 protocol. Users are required to provide unique identification and authentication data before any access to the system is granted. (*FMT_SMR.2, FMT_SMF.1*)
- 75. The Security Administrator has the capability to:
 - Administer the TOE locally via the serial ports on the physical device or remotely over an SSH connection.
 - Initiate a manual update of TOE firmware (FMT_MOF.1/ManualUpdate):
 - Query currently executing version of TOE firmware (FPT_TUD_EXT.1)
 - Verify update using digital signature (FPT_TUD_EXT.1)
 - Manage Functions:
 - Transmission of audit data to an external IT entity, including Start/stop and modify the behaviour of the trusted communication channel to external syslog server (netconf over SSH) and the trusted path for remote Administrative sessions (SSH) (FMT_MOF.1/Functions, FMT_MOF.1/Services, FMT_SMF.1)
 - o Handling of audit data, including setting limits of log file size (FMT_MOF.1/Functions)
 - Manage TSF data (FMT_MTD.1/CoreData)
 - Create, modify, delete administrator accounts, including configuration of authentication failure parameters
 - Reset administrator passwords
 - Re-enable an Administrator account (FIA_AFL.1);
 - Manage crypto keys (FMT_MTD.1/CryptoKeys):
 - SSH key generation (ecdsa, ssh-rsa)
 - Perform management functions (FMT_SMF.1):
 - Configure the access banner (FTA_TAB.1)
 - Configure the session inactivity time before session termination or locking, including termination of session when serial console cable is disconnected (FTA_SSL_EXT.1, FTA_SSL.3)
 - Manage cryptographic functionality (*FCS_SSHS_EXT.1*), including:
 - ssh ciphers
 - hostkey algorithm

Version 1.8 Page 43 of 47

- key exchange algorithm
- hashed message authentication code
- thresholds for SSH rekeying
- Set the system time (FPT_STM_EXT.1)
- 76. Detailed topics on the secure management of Junos OS are discussed in [ECG].

7.5 Protection of the TSF

- 77. Junos OS runs the following set of self-tests during power on to check the correct operation of the Junos OS firmware (*FPT TST EXT.1*):
 - <u>Power on test</u> determines the boot-device responds, and performs a memory size check to confirm the amount of available memory.
 - <u>File integrity test</u> –verifies integrity of all mounted signed packages, to assert that system files have not been tampered with. To test the integrity of the firmware, the fingerprints of the executables and other immutable files are regenerated and validated against the SHA1 fingerprints contains in the manifest file.
 - <u>Crypto integrity test</u> checks integrity of major CSPs, such as SSH hostkeys and iked credentials, such as Cas, CERTS, and various keys.
 - <u>Authentication error</u> verifies that veriexec is enabled and operates as expected using /opt/sbin/kats/cannot-exec.real.
 - <u>Kernel, libmd, OpenSSL, SSH</u> verifies correct output from known answer tests for appropriate algorithms.
- 78. Juniper Networks devices run only binaries supplied by Juniper Networks. Within the package, each Junos OS firmware image includes fingerprints of the executables and other immutable files. Junos firmware will not execute any binary without a validating registered fingerprint. This feature protects the system against unauthorized firmware and activity that might compromise the integrity of the device. These self-tests ensure that only authorized executables are allowed to run thus ensuring the correct operation of the TOE.
- 79. In the event of a transiently corrupt state or failure condition, the system will panic; the event will be logged and the system restarted, having ceased to process network traffic. When the system restarts, the system boot process does not succeed without passing all applicable self-tests. This automatic recovery and self-test behavior, is discussed in Chapter 11 of the [ECG].
- 80. When any self-test fails, the device halts in an error state. No command line input or traffic to any interface is processed. The device must be power cycled to attempt to return to operation. This self-test behavior is discussed in [ECG]. (FPT_TST_EXT.1,)
- 81. Locally stored authentication credentials are protected (FPT_APW_EXT.1):
 - The password is hashed when stored using hmac-sha1, sha256 or sha512.
 - Authentication data for public key-based authentication methods are stored in a directory owned by the user (and typically with the same name as the user). This directory contains the files '.ssh/authorized_keys' and '.ssh/authorized_keys2' which are used for SSH public key authentication.
- 82. Security Administrators are able to query the current version of the TOE firmware using the CLI command "show version" (*FPT_TUD_EXT.1*) and, if a new version of the TOE firmware is available, initiate an update of the TOE firmware. Junos OS does not provide partial updates for the TOE, customers requiring updates must migrate to a subsequent release. Updates are

Version 1.8 Page 44 of 47

downloaded and applied manually (there is no automatic updating of the Junos OS). The installable firmware package containing the Junos OS has a digital signature that is checked when the Security Administrator attempts to install the package. (FPT_TUD_EXT.1, FMT_SMF.1, FMT_MOF.1/ManualUpdate)

- 83. The Junos OS kernel maintains a set of fingerprints (SHA1 digests) for executable files and other files which should be immutable. The manifest file is signed using the Juniper package signing key, and is verified by the TOE using the accompanying digital signature. ECDSA (P-256) with SHA-256 is used for digital signature package verification.
- 84. The fingerprint loader will only process a manifest for which it can verify the signature. Thus without a valid digital signature an executable cannot be run. When the command is issued to install an update, the manifest file for the update is verified and stored, and each executable/immutable file is verified before it is executed. If any of the fingerprints in an update are not correctly verified, the TOE uses the last known verified image. (FCS_1/SigGen, FPT_TUD_EXT.1)

7.6 TOE Access

- 85. Junos enables Security Administrators to configure an access banner for local and remote SSH connections provided with the authentication prompt. The banner can provide warnings against unauthorized access to the secure switch as well as any other information that the Security Administrator wishes to communicate. (FTA_TAB.1)
- 86. User sessions (local and remote) can be terminated by users (*FTA_SSL.4*). The administrative user can logout of existing CLI and remote SSH sessions by typing logout to exit the session and the Junos OS makes the current contents unreadable after the admin initiates the termination. No user activity can take place until the user re-identifies and authenticates.
- 87. The Security Administrator can set the TOE so that a user session is terminated after a period of inactivity. (*FTA_SSL_EXT.1, FTA_SSL.3*) For each user session Junos OS maintains a count of clock cycles (provided by the system clock) since last activity. The count is reset each time there is activity related to the user session. When the counter reaches the number of clock cycles equating to the configured period of inactivity the user session is locked out.
- 88. Junos OS overwrites the display device and makes the current contents unreadable after the local interactive session is terminated due to inactivity, thus disabling any further interaction with the TOE. This mechanism is the inactivity timer for administrative sessions. The Security Administrator can configure this inactivity timer on administrative sessions after which the session will be logged out.

7.7 Trusted path/Trusted Channels

89. The TOE supports SSH v2 for trusted channel implementation to Syslog server. The TOE supports SSH v2 (remote CLI) for secure remote administration of the TOE.

Version 1.8 Page 45 of 47

8 Glossary

AES Advanced Encryption Standard

ANSI American National Standards Institute

API Application Program Interface cPP collaborative Protection Profile

CCM Counter with Cipher Block Chaining-Message Authentication Code

CFP C Form-factor Pluggable CSP Critical security parameter

DH Diffie Hellman

EAL Evaluation Assurance Level ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm
EP Extended Package, defined in [CC1]
ESP Encapsulating Security Payload

Fig. 1. Field Courte weather

FFC Finite Field Cryptography

FIPS Federal Information Processing Standard

HMAC Keyed-Hash Authentication Code I&A Identification and Authentication

ID Identification

IETF Internet Engineering Task Force

IP Internet Protocol

IPv6 Internet Protocol Version 6

ISO International Organization for Standardization

IT Information Technology
Junos Juniper Operating System
MIC Modular Interface Cards
MPC Modular Port Concentrator

MS-MPC MultiServices Modular Port Concentrator

NAT Network Address Translation

NDcPP Network Device collaborative Protection Profile

NTP Network Time Protocol
OSI Open Systems Interconnect
OSP Organizational Security Policy
PAM Pluggable Authentication Module

PFE Packet Forwarding Engine
PIC/PIM Physical Interface Card/Module

PKI Public Key Infrastructure
POE Power over Ethernet
PP Protection Profile

PRNG Pseudo Random Number Generator

RE Routing Engine

RFC Request for Comment
RNG Random Number Generator
RSA Rivest, Shamir, Adelman
SA Security Association

SFP Small Form-factor Pluggable
SFR Security Functional Requirement

SHA Secure Hash Algorithm

SNMP Simple Network Management Protocol

SSH Secure Shell

Version 1.8 Page 46 of 47

SSL Secure Sockets Layer ST Security Target Target of Evaluation TOE TSF **TOE Security Functionality**

TSF interfaces **TSFI**

UDP **User Datagram Protocol**

Page 47 of 47 Version 1.8