

SmartChip Shuniu

OS Kernel

Security Target Lite

Date: 2024/11/25

Change History

Version Date Author Comment

1.0 25/11/2024 SmartChip Initial official release

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 3 -

Table of contents

1 ST Introduction ... 7

1.1 ST Reference .. 7

1.2 TOE Reference .. 7

1.3 TOE Overview ... 7

1.3.1 Introduction ... 7

1.3.2 TOE Type .. 9

1.3.3 TOE Usage & Major Security Features ... 9

1.3.4 Non-TOE Hardware/Software/Firmware ... 10

1.3.4.1 Non-TOE Hardware .. 10

1.3.4.2 Non-TOE Software ... 10

1.4 TOE Description.. 11

1.4.1 Introduction ... 11

1.4.1.1 A generic view of the microkernel architecture .. 11

1.4.1.1.1 System initialization ... 11

1.4.1.1.2 Hardware abstraction Layer .. 11

1.4.1.1.3 Thread management and scheduling .. 12

1.4.1.1.4 Interrupt Management .. 12

1.4.1.1.5 Inter-thread communication ... 12

1.4.1.1.6 System Invoking/System call ... 12

1.4.1.1.7 Access control .. 12

1.4.1.1.8 Space Isolation and Address Space ... 13

1.4.2 TOE Logical Scope .. 14

1.4.2.1.1 User identification ... 14

1.4.2.1.2 Capability-based access control .. 14

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 4 -

1.4.2.1.3 Memory management ... 15

1.4.2.1.4 Thread management ... 15

1.4.2.1.5 Interrupt Management .. 16

1.4.3 TOE Physical Scope ... 16

2 Conformance Claims .. 18

3 Security Problem Definition ... 19

3.1 Assets ... 19

3.2 Threat Agents ... 19

3.3 Threats to Security ... 19

3.4 Assumptions ... 20

3.5 Organisational Security Policies ... 21

4 Security Objectives ... 22

4.1 Security objectives for the TOE .. 22

4.2 Security objectives for the operational environment .. 22

4.3 Security Objectives Rationale .. 23

4.3.1 Threats ... 25

4.3.1.1 Threat Mapping to Security Objectives ... 25

4.3.2 Assumptions ... 25

4.3.2.1 Assumption Mapping to Security Objectives ... 26

4.3.3 Organisational Security Policy Rationale ... 26

5 Extended Components Definition .. 27

5.1 Class FDP: User data protection ... 27

5.1.1 Delegated Memory Isolation (FDP_DMI) ... 27

6 Security Requirements ... 29

6.1 Definitions .. 29

6.2 Security Functional Policies.. 31

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 5 -

6.2.1 Capability-based Access Control SFP (SFP.CAP): .. 32

6.3 Security Functional Requirements ... 32

6.3.1 FDP: User data protection .. 32

6.3.1.1 FDP_ACC.1: Subset access control ... 32

6.3.1.2 FDP_ACF.1: Security attribute based access control ... 32

6.3.1.3 FDP_DMI.1: Delegated Memory Isolation ... 33

6.3.2 FIA: Identification and authentication ... 33

6.3.2.1 FIA_ATD.1: User attribute definition ... 33

6.3.2.2 FIA_UID.2: User identification before any action .. 33

6.3.2.3 FIA_USB.1: User-subject binding ... 33

6.3.3 FMT: Security management ... 34

6.3.3.1 FMT_MSA.3: Static Attribute Initalization ... 34

6.3.4 FPT: Protection of the TSF .. 34

6.3.4.1 FPT_FLS.1: Failure with preservation of secure state .. 34

6.3.5 FRU: Resource utilisation ... 34

6.3.5.1 FRU_PRS.1: Limited priority of service... 35

6.4 Security Assurance Requirements ... 35

6.5 Security Requirements Rationale... 36

6.5.1 Necessity and sufficiency analysis.. 36

6.5.2 Security Requirement Sufficiency .. 37

6.5.3 SFR Dependency Rationale .. 38

6.5.3.1 Table of SFR dependencies .. 38

6.5.3.2 Justification for missing dependencies .. 38

6.5.4 SAR Rationale ... 39

6.5.5 SAR Dependency Rationale .. 39

6.5.5.1 Table of SAR dependencies .. 39

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 6 -

7 TOE Summary Specification ... 43

7.1.1 User identification .. 43

7.1.1.1 SFR Summary ... 43

7.1.2 Capability-based access control ... 43

7.1.2.1 SFR Summary ... 44

7.1.3 Memory management ... 44

7.1.4 Thread management .. 44

7.1.4.1 SFR Summary ... 45

7.1.5 Fault tolerance ... 45

7.1.5.1 SFR Summary ... 45

8 Acronyms ... 46

9 Glossary of Terms ... 47

10 Document References .. 49

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 7 -

1 ST INTRODUCTION

1.1 ST REFERENCE

Title: SmartChip Shuniu OS Kernel - Security Target Lite

Version: 1.0

Author: SmartChip

Date of publication: 2024/11/25

1.2 TOE REFERENCE

TOE Name: Kernel layer of the Shuniu 4.0-Lite Microkernel

TOE Developer: Beijing SmartChip Microelectronics Technology Co. Ltd.

TOE Version: 2.0.12

1.3 TOE OVERVIEW

1.3.1 INTRODUCTION

The target of evaluation (TOE) is the kernel layer of a microkernel named the “Shuniu 4.0-Lite

Microkernel”, henceforth abbreviated to the “Shuniu OS”, which is an embedded operating system

(OS) designed to run on M4 Cortex processors with MPU support.

The TOE performs the kernel functionalities of the OS including address space management, thread

management and scheduling, exception and interrupt handling, inter-thread communication, access

control, and other basic microkernel services which are defined later in section 1.4.1.1.

As the TOE implements only a minimal set of services, it is considered lightweight, which is a

required characteristic to run strong real-time applications in embedded systems.

For clarification, in this document microkernel is a trade name for the entire operating system,

which includes the kernel layer (TOE) and the user layer (non-TOE). Therefore, when the term

"microkernel" is used, it refers to the entire OS, including both layers.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 8 -

The user layer of the microkernel includes several components as shown below in Figure 1:

Figure 1 Microkernel's architecture

Each component within the user layer is explained in detail as follows:

• Applications: which encompasses common applications and strong real-time applications.

The key difference between the two is that common applications do not invoke kernel

services directly through system calls, unlike strong real-time applications which operate by

directly requesting functionality from the kernel through invoking system calls to the TOE.

Instead, common applications use the interfaces to the root service within the user layer,

the root service then performs the requested operations on behalf of the requesting

common application by making the appropriate system calls to the kernel (TOE).

• System service: this service implements the security and communication protocol, the

database, the shell, and other functionalities to be used by the applications.

• Root service: provides several services, but the most relevant ones are POSIX API and user

layer memory management. Common applications requests functionality from the kernel

through this component, which acts as an intermediary by performing the necessary system

calls to the kernel (TOE) on behalf of the requesting common application.

• Device driver: implements the driver interface and driver framework to be able to connect

other devices to the microkernel.

These components are located in the user layer (unprivileged mode), as such they are not part of

the scope of the TOE. The TOE itself is the kernel layer (privileged mode) of the overall microkernel,

also known as the Shuniu OS, designed to run on ARM platforms that utilise Cortex M4 processors

with MPU support. The final product of use for the Shuniu OS is a terminal device, containing the

SCMB90051A_V2.0 board in which the TOE is run, running both common and strong real-time

applications created by developers; an example of a typical scenario of its usage would be for

devices controlling switches in power systems, which are also applied to real-time devices.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 9 -

Since the scoping of the TOE does not include the core part of the Shuniu OS, as the evaluation

focuses on the functionality provided by the kernel layer (privileged mode), the assurance provided

is that the kernel layer protects its internal data structures, enforces access control on microkernel

services, and additionally ensures that offending threads are blocked or killed.

1.3.2 TOE TYPE

The TOE is the kernel layer of a microkernel (whole OS), that contains the minimum number of

functionalities to implement the core of an operating system. The most important functionality is

the fine-grained management for threads and objects within the kernel, which it is intended to be

used for the Internet of Things (IoT) and industrial control.

1.3.3 TOE USAGE & MAJOR SECURITY FEATURES

To provide fine-grained management for threads and resources, the functionalities of the TOE are

divided into eight modules, that are described in further detail throughout section 1.4.1.1:

• System Invoking / System call

• Access Control

• Inter-thread communication

• Interrupt Management

• Thread management and scheduling

• Hardware abstraction layer (HAL)

• Space Isolation and Address Space

• System initialization

Access control is a major security feature of the TOE, it is implemented as a capability-based model,

which checks the permissions of a subject to perform actions on an object; the users are threads,

the subject is the kernel, whereas objects refer to the kernel objects. The access from the thread to

the objects is controlled by capabilities, which are unforgeable tokens that represents authority; a

list of capabilities is maintained for each thread, indicating the objects to which they have access.

The intended end usage of the TOE is a terminal device with real-time requirements, running the

Shuniu OS; as such it is not meant to use video, multimedia, or multi-applications and therefore

cannot to be integrated into devices for the intent of using these purposes (e.g. a mobile phone or

in car multimedia). Due to the intended usage, it is therefore assumed that physical access to the

TOE is restricted after completion of the respective duties of the trusted personnel, this being the

system integrator and the system administrator.

In consequence to this, physical attacks to the TOE, or to the system in which it will be installed, are

not considered to be within the scope of the evaluation.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 10 -

1.3.4 NON-TOE HARDWARE/SOFTWARE/FIRMWARE

The following section details the Hardware, software and firmware components that are outside of

the scope of the TOE.

1.3.4.1 NON-TOE HARDWARE

An SCMB90051A_V2.0 board is the only supported hardware platform. It provides the (non-TOE)

communication interfaces and contains a SoC, which contains an ARM Cortex M4 and Memory

Protection Unit (MPU); which enforces access control to the physical memory to establish isolation

between different memory areas.

1.3.4.2 NON-TOE SOFTWARE

The TOE is distributed as part of a full Operating System, known as the Shuniu 4.0-Lite Microkernel.

As previously shown in Figure 1 and discussed in section 1.3.1, there are components of the

microkernel which reside in the user layer, not the kernel layer which is the TOE itself. All

components within the user layer are therefore not part of the TOE, though it should be noted that

these components do function together with the kernel in the overall operational environment.

Additionally this includes the management of the communication interfaces (non-TOE hardware) as

well, as this is also provided by the user layer.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 11 -

1.4 TOE DESCRIPTION

1.4.1 INTRODUCTION

1.4.1.1 A GENERIC VIEW OF THE MICROKERNEL ARCHITECTURE

Figure 2 Detailed microkernel architecture

As shown in Figure 2, outside of the TOE, the components for the system services, root services and

device drivers function as entities within the user layer. Also shown in Figure 2, are the

functionalities of the kernel layer (TOE) which are spread throughout eight modules.

The functionalities of each module are described in detail throughout the following subsections.

1.4.1.1.1 SYSTEM INITIALIZATION

The system initialization module, as its name indicates, initializes the system including the kernel,

CPU, root server and other components of the TOE (kernel layer). The TOE is stored in the internal

flash memory of the platform and boots from it when the device is powered on, after which it then

passes control over to the system initialization module to perform the actual initialization of the

system. During initialization, this module will also interact with other modules to call upon a

function when required; for example, it will call upon a function of the hardware abstraction layer to

initialise the system clock.

1.4.1.1.2 HARDWARE ABSTRACTION LAYER

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 12 -

The hardware abstraction layer is the module responsible for initializing the system clock, the main

frequency, and the configuration of other bus blocks.

1.4.1.1.3 THREAD MANAGEMENT AND SCHEDULING

The TOE provides a combined set of mechanisms to implement thread life cycle management and

time slice management. This mechanism consists of creating threads through the root service,

cloning threads, and managing their priority and state.

This module also supports the creation of IDLE thread, and is responsible for initializing the

scheduler during the creation process. In addition, it also supports thread cloning as well as thread

attribute configuration.

1.4.1.1.4 INTERRUPT MANAGEMENT

The TOE handles both external and internal exceptions. External exceptions refer to hardware-

triggered external interrupts, such as MPU exceptions. Whereas, internal exception refers to

undefined instructions or data/instruction access exceptions, SYSTICK exceptions, or software

exceptions generated in the user layer.

1.4.1.1.5 INTER-THREAD COMMUNICATION

The TOE provides communication between threads through event notifications. The communication

can be either by notifications or endpoints. Notifications are to perform inter-thread

synchronisation, whereas endpoints are for transmitting information between threads.

1.4.1.1.6 SYSTEM INVOKING/SYSTEM CALL

This module supports calling specific kernel interface functions from the applications of the user

layer, hence the threads cannot directly access the memory or objects in the kernel layer, except

through system call invocation. These system calls, referred to as syscalls throughout this document,

are directly invoked and processed by the kernel layer to perform operations on kernel objects

when they are invoked. Invocation can occur directly when using strong real-time applications, or

indirectly by common applications in the user layer (through use of the root service as an

intermediary).

There are two types of syscalls: normal and capability-based. In the case of normal syscalls, no

access control is exercised to invoke this type. Whereas as the name suggests, capability-based

syscalls first check whether the subject actually has the permission to invoke them. Capability-based

system calls are meant to perform operations on a kernel object, and in order to be able to perform

those operations, the calling thread needs to have capabilities on that object either by having them

in its private_cspace or in the initial_cspace (described in further detail in section 1.4.2.1.2).

1.4.1.1.7 ACCESS CONTROL

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 13 -

The TOE performs access control between subjects and objects by using a capability-based model, in

which permissions on a kernel object mean being able to invoke capability-based system calls on

those objects. In this model, there is no segregation of permissions, all operations for a matched

capability are allowed. This process is described in further detail in section 1.4.2.1.2.

In general, when a system call is invoked, two separate processes can occur depending on the type

of call. The two types of system call available are either normal system calls, or capability-based

system calls. Figure 3 below shows the high-level flow of the aforementioned types of system calls:

Figure 3 Process flow for system calls

As can be seen, for normal system calls no access control is performed, thus the kernel

automatically performs the invoked operation. Whereas, capability-based system calls must have

the correct permission else they are denied.

1.4.1.1.8 SPACE ISOLATION AND ADDRESS SPACE

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 14 -

The internal memory of the SoC is divided into address spaces (bin, bss, data, etc), inside those

address spaces the TOE performs kernel-specific memory management to organize free blocks.

In addition, the TOE uses the MPU (non-TOE hardware) to set up address spaces (composed of one

or more regions) for the user threads created by the kernel, thus creating address space isolation.

1.4.2 TOE LOGICAL SCOPE

The TOE, which is a binary that performs the kernel functions of the Operating System, provides the

following security services with the modules presented in the previous section.

1.4.2.1.1 USER IDENTIFICATION

The TOE identifies all threads before allowing them to perform any TSF-mediated actions by

associating them with the security attributes ID, private_cspace, and initial_cspace. Through this

method of identification, the threads can be associated as either a common application or a strong

real-time application; which in turn also checks if normal or capability-based system calls have been

used, thus subsequently, if access control checks are required or not.

1.4.2.1.2 CAPABILITY-BASED ACCESS CONTROL

Access control is performed when a capability-based system call is invoked, this is to ensure that the

control is only granted to users which are allowed to invoke the specific operation of the capability-

based system call they are attempting to invoke. In this process, the thread attempting to invoke the

system call passes, as a parameter, a pointer to the kernel object, which would also happen to be

the same as in the cslot. These concepts are shown in below in Figure 4; a cnode is a list of the

associated capabilities available to that thread, whereas the cslot is a pair of values stored in the

cnode, it consists of the pointer to the kernel object and the type of kernel object:

Figure 4 cnode information

Each thread has its own cnode (private_cspace) and has access to the private_cspace of the Root

Service thread, which is referred as initial_cspace throughout the document.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 15 -

Threads cannot create or modify their capabilities, instead they must invoke system calls to let the

kernel do these operations. The access control mechanism works by performing a comparison

between the pointer passed as argument, and the one stored in the cslot.

It will check if the comparison is made in either private or initial cspace:

• Private: used when the function to that kernel object is private, so only available to that thread.

• Initial: used when multiple threads require access to the function of that kernel object, so it is

considered as public.

The TOE will first check the private_cspace of the calling thread to see if there is a match; if it

exhausts all clsots within private_cspace, it will then move on and check for this match inside

initial_cspace. As soon as a match is found, the search stops, this means if the match is found in

private it will not move onto to checking for a match in initial_cspace.

Once the TOE has determined the cspace, it will then finally check that the type of object defined

matches the request function. To put the process into context using an example, if the operation

requested through a system call was an IPC communication to clone a thread, then that operation

would be both valid and accepted if the target kernel object passed as parameter is a thread-type

object, but it would be invalid and denied for other types of kernel objects.

1.4.2.1.3 MEMORY MANAGEMENT

The TOE configures and operates the MPU (non-TOE hardware) to set up address spaces (composed

of one or more regions) for the threads created by the kernel, effectively establishing separation

between the kernel and user layer memory regions. This means that threads executing in privileged

mode can access the memory space in both layers, whereas the remaining threads executing in

unprivileged mode can only access the memory space within the user layer.

1.4.2.1.4 THREAD MANAGEMENT

The Thread management and scheduling module provide a combined set of mechanisms to manage

threads.

• Thread management and scheduling initialization: supports the creation of IDLE and root

service threads, initializing the scheduler during the creation process.

• Thread configuration: support cloning threads and configure threads' properties.

• Thread Lifecycle Management: support thread state switching and thread queue

management.

• Thread scheduling: priority-based preemptible scheduling strategies is implemented for

threads with different priorities, whereas for threads with the same priority time-slice

round-robin is implemented. This strategy is used for assigning CPU time to the threads.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 16 -

1.4.2.1.5 INTERRUPT MANAGEMENT

The TOE handles both external and internal exceptions. External exceptions refer to hardware-

triggered external interrupts, meanwhile internal exceptions refer to undefined instructions or

data/instruction access exceptions, SYSTICK exceptions, or software exceptions all of them

generated in the user layer. Therefore, this module provides fault tolerance, keeping a secure

state in case of any type of interruption or hardware failure which could lead on unexpected

behaviour of the TOE, by killing the thread or halting the system if necessary.

1.4.3 TOE PHYSICAL SCOPE

The TOE includes the following components:

Name Type Version Distribution

format

Description Delivery

Kernel.bin

Hash Value:

3eee585c67118c

cad8df9b8931fda

2852e866b93269

c7d423b07f91bc

db389e3

TOE 2.0.12

Binary file

TOE software image.

Note: This image shall be

integrated during the secure

acceptance (described in the

TOE guidance) with an image

containing the non-TOE parts

of the full operating system.

That full OS image will be

installed on the non-TOE

hardware platform.

Electronic

delivery

SmartChip Shuniu

OS Kernel -

Operational

Guidance.

Hash Value:

0eefd13b39872e

5190debff0cf89f

d9b46f848b17eb

Guidance 1.9 PDF

Document

Operational usage guidance. Electronic

delivery

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 17 -

f4cce86f2911be7

d41a5e

SmartChip Shuniu

OS Kernel -

Preparative

Guidance.

Hash Value:

003dd761a6e9f6

a93c1575f60e40c

a8f0526ceae63f7

c2293158b70795

d6e89c

Guidance 1.10 PDF

Document

Installation process guidance.

Electronic

delivery

Table 1 Physical Scope

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 18 -

2 CONFORMANCE CLAIMS

This Security Target and the TOE described are in accordance with the requirements of Common

Criteria 3.1R5.

This Security Target claims conformance with the following parts of Common Criteria:

o Conformance with [CC31R5P1].

o Conformance with [CC31R5P2] extended.

o Conformance with [CC31R5P3].

The methodology to be used for the evaluation is described in the “Common Evaluation

Methodology” of the Common Criteria standard of April 2017, version 3.1 revision 5 with an

evaluation assurance level of EAL5 + ALC_FLR.1.

This Security Target does not claim conformance with any protection profile.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 19 -

3 SECURITY PROBLEM DEFINITION

This section describes the security aspects of the operational environment and its expected use in

said environment. It includes the declaration of the TOE operational environment that identifies and

describes:

• The alleged known threats that will be countered by the TOE

• The organizational security policies that the TOE and the TOE environment have to adhere

to.

• The TOE usage assumptions in the suggested operational environment.

We will begin defining Assets and Threat Agents.

3.1 ASSETS

This section identifies the assets that require protection by the TOE.

KERNEL_DATA: Data located in memory space of the kernel and used by the TOE, such as Kernel

objects. This also includes the compiled binary code implementing the logic of the kernel.

REAL_TIME_REQUIREMENT: Thread scheduling of the microkernel implements priority based (real-

time) execution for running threads. There is a limit on the maximum amount of time to which the

kernel will respond to a request from a thread for execution, as part of the real-time requirements.

3.2 THREAT AGENTS

This section identifies the threat agents. Hardware attacks have been explicitly not considered or

included as a possible security problem of the TOE; the TOE itself is a microkernel, as piece of

software, as such the only threat agent considered to be within scope of the TOE is SOFTWARE

ATTACKER, as the only attacks considered involve the non-TOE applications running on the user

layer of the Shuniu OS.

SOFTWARE ATTACKER: Malicious actor performing software attacks on the TOE using a user-space

application or service, either by abusing a legitimate application or by creating a malicious one.

3.3 THREATS TO SECURITY

This section identifies the threats to assets that require protection by the TOE. The threats are

defined in terms of assets concerned, attackers and the adverse action that materializes the threat.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 20 -

It is assumed that the Shuniu OS will only be deployed in the previously aforementioned intended

method, and thus will be protected from unauthorised physical access. Therefore, physical attacks

to the TOE, or to the system in which it will be integrated, are not considered to be within the scope

of the TOE.

T.UNAUTHORIZED_ACCESS: A SOFTWARE ATTACKER is able to read or modify KERNEL_DATA

without authorization.

T.QUEUE_SKIPPING: A SOFTWARE ATTACKER attempts to manipulate the KERNEL scheduler in an

attempt to bypass the REAL_TIME_REQUIREMENT of the KERNEL.

T.MALFUNCTION: A SOFTWARE ATTACKER attempts to improperly access KERNEL_DATA by

invoking interruptions which could provoke TOE malfunction, through use of one of the following

methods:

• Attempting to request an unrecognised/illegal operation

• Attempting to access resources without the required permissions

• Intentionally causing an anomalous scenario within the TOE

3.4 ASSUMPTIONS

The assumptions when using the TOE are the following:

A.TRUSTWORTHY_PERSONNEL: The personnel installing the TOE onto the SCMB90051A_V2.0 board

(System Integrator), as well as administering to the final device in which the board is to be

integrated (System Administrator), are trustworthy. In particular, the roles of system integrator and

system administrator must adhere to the following properties;

System Integrator:

• Responsible for installing the TOE into the board.

• Responsible for integrating the board into the final device.

• Loads applications into the TOE before release of the final device.

System Administrator:

• Purchases the final device in which the TOE is integrated.

• Loads applications into the TOE before deployment of the final device.

A.SECURE_INTEGRATION_AND_ADMINISTRATION: It is assumed that security procedures are used

during the integration (System Integrator) of the TOE onto the SCMB90051A_V2.0 board and during

the administration of the final device (System Administrator) up to the delivery to the end consumer

to protect its integrity and confidentiality. System Integrator and System Administrator entities are

expected to provide a controlled environment in which the relevant personnel interacting with the

TOE do not pose a security threat to its integrity or confidentiality.

A.TRUSTED_PLATFORM: The TOE is designed to run on the trusted SCMB90051A_V2.0 board,

subsequently all peripherals on this board are hence trusted.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 21 -

A.PLATFORM_PROTECTION: The trusted SCMB90051A_V2.0 board, on which the TOE runs, is

considered to be adequately protected from physical attacks, and does not represent a physical

attack vector due to in place security measures within the operational environment that prevent

both unauthorised physical and logical access to the board as well as access to the final device in

which the trusted SCMB90051A_V2.0 board is integrated. This ensures that any form of physical

attack to the TOE, the cortex M4 processor, or the final device in which it is integrated are

prevented. In particular, the roles of system integrator and system administrator must adhere to the

following properties;

System Integrator:

• Responsible for the physical protection of the board (including the TOE) during installation.

System Administrator:

• Responsible for physical protection of the device (containing the board which contains the

TOE).

Application Note:

Consequently, physical attacks are not considered to be within scope of the SPD, or part of this

assumption. As such, any form of physical attack to either the TOE or the system in which the TOE in

integrated into, are not considered as they are not within the scope of the SPD.

3.5 ORGANISATIONAL SECURITY POLICIES

The organizational Security policy is defined as follows.

OSP.INTERRUPTS: The TOE shall deal with hardware interruptions generated because of hardware

faults which could provoke TOE malfunction.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 22 -

4 SECURITY OBJECTIVES

The security objectives are high level declarations, concise and abstract of the solution to the

problem exposed in the former section, which counteracts the threats and fulfils the security

policies and the assumptions. These consist of:

• the security objectives for the operational environment.

• the security objectives for the TOE

4.1 SECURITY OBJECTIVES FOR THE TOE

The security objectives for the TOE must determine the responsibility of the TOE in countering the

threats and in enforcing the OSPs. Each objective must be traced back to aspects of identified

threats to be countered by the TOE and to aspects of OSPs to be met by the TOE.

OT.PRIORITY: The TOE shall define a priority-based scheduling for the threads. The priority shall

determine the given time for each thread to access the resources (a.k.a CPU time). As a real-time

kernel, task scheduling will prioritise threads with the highest priority first and will guarantee a time

slice for execution.

OT.SAFE_SECURE_STATE: The TOE shall be able to intercept interruptions generated outside the

TOE, from hardware or from software failures and preserve a secure state by cancelling the

problematic threads or halting the system.

OT.ACCESS_CONTROL: The TOE shall enforce access controls in order to grant permissions over

assets only to authorized users. Specifically, only threads possessing capabilities on a kernel object

shall be able to perform operations (specific per object type) over that kernel object. The TOE shall

configure and operate non-TOE memory protection hardware to enforce memory isolation between

the kernel and user layers.

4.2 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT

The security objectives for the Operational Environment determine the responsibility of the

environment in countering the threats, enforcing the OSPs and upholding the assumptions. Each

objective must be traced back to aspects of identified threats to be countered by the environment,

to aspects of OSPs to be enforced by the environment and to assumptions to be uphold by the

environment.

OE.TRUSTWORTHY_PERSONNEL: The System Integrator and the System Administrator shall both be

trustworthy when performing any action during the normal course of their defined duties.

In particular, the System Integrator shall adhere to the following:

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 23 -

• To perform the installation process of the binary image onto the trusted board

(SCMB90051A_V2.0) according to the provided TOE guidance (and, if necessary, according

to the hardware manuals).

• To perform the installation process of any applications, created by Software Developers,

onto the TOE before the release of the final device.

• To integrate the board, containing the TOE, into the final device to be purchased.

In addition, the System Administrator shall adhere to the following:

• To perform the installation process of applications, created by Software Developers, into

the TOE after purchase of the final device.

OE.SECURE_INTEGRATION_AND_ADMINISTRATION: The System Integrator and the System

Administrator entities shall conduct their activities in a controlled environment which provide

commensurate security to the integrity and confidentiality of the TOE. Both entities shall ensure

that the relevant staff is properly trained, can be trusted upon and are not wilfully negligent while

carrying out their activities under the controlled environment.

OE.TRUSTED_PLATFORM: The TOE shall run on the trusted a SCMB90051A_V2.0 board. The device

driver, root service and system service, shall be loaded as part of TOE installation.

OE.PLATFORM_PROTECTION: For the physical protection of the TOE, the roles of system integrator

and system administrator must adhere to the following properties;

System Integrator:

• To ensure the physical protection of the board (and TOE) prior to release of the final device.

System Administrator:

• To ensure the physical protection of the final device in which the TOE is integrated.

4.3 SECURITY OBJECTIVES RATIONALE

The following table (Table 2) provides a mapping of security objectives tracing each security

objective for the TOE back to threats countered by that security objective and OSPs enforced by that

security objective, and each security objective for the operational environment back to threats

countered by that security objective, OSPs enforced by that security objective, and assumptions

upheld by that security objective.

This illustrates that the security objectives counter all threats, the security objectives enforce all

OSPs and the security objectives for the operational environment uphold all assumptions.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 24 -

O
T.P

R
IO

R
ITY

O
T.SA

FE_SEC
U

R
E_STA

TE

O
T.A

C
C

ESS_C
O

N
TR

O
L

O
E.TR

U
STW

O
R

T
H

Y
_

P
ER

SO
N

N
EL

O
E.TR

U
STED

_
P

LA
TFO

R
M

O
E.P

LA
T

FO
R

M
_P

R
O

TEC
TIO

N

O
E.SEC

U
R

E_IN
TEG

R
A

TIO
N

_A
N

D
_A

D
M

IN
ISTR

A
TIO

N

T.UNAUTHORIZED_ACCESS X

T.QUEUE SKIPPING X

T.MALFUNCTION X

OSP.INTERRUPTS X

A.TRUSTWORTHY_PERSONNEL X

A.TRUSTED_PLATFORM X

A.PLATFORM_PROTECTION X

A.SECURE_INTEGRATION_AND_ADMINISTRATION X

Table 2 Security Objectives vs Security Problem Definition

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 25 -

4.3.1 THREATS

T.UNAUTHORIZED_ACCESS: OT.ACCESS CONTROL prevents unauthorized access to kernel data and

kernel code during normal operation of the TOE.

T.QUEUE SKIPPING: OT.PRIORITY ensures that threads using the TOE are executed on a priority-

based queue.

T.MALFUNCTION: OT.SAFE SECURE STATE protects the TOE against the interruptions which come

from unexpected thread behaviour because of defective programming, or incorrect use of the APIs

or environment malfunction which could lead in an unsecure state of the TOE that could put assets

in danger. All interrupts will result in the cancelation of the threads or the halting of the system to

prevent malfunction of the TOE.

4.3.1.1 THREAT MAPPING TO SECURITY OBJECTIVES

The following table maps the threats of the security problem established to the security objectives

of the TOE and the security objectives of the operational environment.

Threats Security Objectives

T.UNAUTHORIZED_ACCESS OT.ACCESS_CONTROL

T.QUEUE_SKIPPING OT.PRIORITY

T.MALFUNCTION OT.SAFE_SECURE_STATE

Table 3 Threats vs Security Objectives

4.3.2 ASSUMPTIONS

A.TRUSTWORTHY PERSONNEL: The assumption A.TRUSTWORTHY PERSONNEL is directly upheld

by OE.TRUSTWORTHY PERSONNEL.

A.TRUSTED_PLATFORM: The assumption A.PLATFORM is directly upheld

by OE.TRUSTED_PLATFORM.

A.PLATFORM_PROTECTION: The assumption A.TRUSTED_PLATFORM is directly upheld

by OE.PLATFORM_PROTECTION.

A.SECURE_INTEGRATION_AND_ADMINISTRATION: The assumption

A.SECURE_INTEGRATION_AND_ADMINISTRATION is directly upheld

by OE.SECURE_INTEGRATION_AND_ADMINISTRATION.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 26 -

4.3.2.1 ASSUMPTION MAPPING TO SECURITY OBJECTIVES

The following table maps the assumptions of the problem established to the security objectives of

the TOE and the security objectives of the operational environment.

Assumptions Security Objectives

A.TRUSTWORTHY_PERSONNEL OE.TRUSTWORTHY_PERSONNEL

A.TRUSTED_PLATFORM OE.TRUSTED_PLATFORM

A.PLATFORM_PROTECTION OE.PLATFORM_PROTECTION

Table 4 Assumptions vs Security Objectives for the Operational Environment

4.3.3 ORGANISATIONAL SECURITY POLICY RATIONALE

OSP.INTERRUPTS: The objective OT.SAFE_SECURE_STATE directly enforces this OSP by ensuring the
preservation of a secure state when a hardware failure occurs which could cause TOE malfunction.

The following table maps the organisational security policies of the problem established to the
security objectives of the TOE and the security objectives of the operational environment.

OSPs Security Objectives

OSP.INTERRUPTS OT.SAFE_SECURE_STATE

Table 5 OSPs vs Security Objectives

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 27 -

5 EXTENDED COMPONENTS DEFINITION

5.1 CLASS FDP: USER DATA PROTECTION

This class contains families specifying requirements related to protecting user data. FDP is split into

four groups of families (listed below) that address user data within a TOE, during import, export, and

storage as well as security attributes directly related to user data.

The families in this class are organised into four groups:

o User data protection security function policies:

o Forms of user data protection:

o Off-line storage, import and export:

o Inter-TSF communication:

The following extended families use the definition and structure of the predefined class FDP.

5.1.1 DELEGATED MEMORY ISOLATION (FDP_DMI)

This SFR relies on the MPU, which is non-TOE hardware component.

Family behaviour

This family is used to describe isolation capabilities which the TOE offers that are based in the MPU.

The MPU establishes memory isolation between memory regions, based in an access control

mechanism which allow or deny the access to between memory regions of the TOE.

Component levelling

FDP_DMI.1 Isolation of memory requires an external component to provide functionality which

enforces isolation of memory when it is accessed by different entities.

Management: FDP_DMI.1

There are no management activities foreseen.

Audit: FDP_DMI.1

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 28 -

There are no auditable events foreseen.

FDP_DMI.1: Entity Controlled Data Isolation

Hierarchical to:

No other components.

Dependencies:

No dependencies.

FDP_DMI.1.1: The TSF shall configure and operate an [selection: external, internal] entity that

enforces [assignment: data structures] between [assignment: list of entities to be isolated],

allowing [assignment: allowed data flow], but restricting [assignment: restricted data flow].

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 29 -

6 SECURITY REQUIREMENTS

This section defines the Security functional requirements (SFRs) and the Security assurance

requirements (SARs) that fulfill the TOE. Assignment, selection, iteration and refinement operations

have been made, adhering to the following conventions:

• Assignments. They appear between square brackets. The word “assignment” is maintained

and the resolution is presented in boldface, italic and blue color.

• Selections. They appear between square brackets. The word “selection” is maintained and

the resolution is presented in boldface, italic and blue color.

• Iterations. It includes “/” and an “identifier” following requirement identifier that allows to

distinguish the iterations of the requirement. Example: FCS_COP.1/XXX.

• Refinements: the text where the refinement has been done is shown bold, italic, and light

red color. Where part of the content of a SFR component has been removed, the removed

text is shown in bold, italic, light red color and crossed out.

6.1 DEFINITIONS

The statement of the security functional requirements relies on the following characterization of the
TOE in terms of subjects, objects, operations and their security attributes.

Users refer to entities outside the TOE and are defined as follows:

• U.THREAD: threads that are inside the user layer and invoke a system call to access
resources or objects within the TOE.

Subjects refer to entities inside the TOE and are defined as follows:

• S.KERNEL: when threads reach the TOE (kernel layer) after invoking a system call, and are

within the scheduler, this is when the kernel is involved as the subject.

Objects stand for kernel objects inside the TOE and are defined as follows:

• OB.CNODE: kernel object containing the permissions of what capabilities are allowed to be

performed. This maps to the kernel object “cnode” in Table 6.

• OB.NOTIFICATION: kernel object that is used for event triggering between threads. This

maps to the kernel object “Notification” in Table 6.

• OB.ENDPOINT: kernel object containing the information transmitted between two users,

along with the state of the communication. This maps to the kernel object “Endpoint” in

Table 6.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 30 -

• OB.IRQ_CONTROL: kernel object to control interrupt request by associating or

disassociating an event to an interrupt. This maps to the kernel object “IRQ Control” in Table

6.

• OB.IRQ_HANDLER: kernel object which will handle interrupts by forcing an event to wait, or

respond to an interrupt. This maps to the kernel object “IRQ Handler” in Table 6.

• OB.THREAD: kernel object that performs operations over the thread itself, this includes

creating a new thread, modifying a thread properties and changing the priority of an

existing thread. This maps to the kernel object “Thread” in Table 6.

• OB.RAM: kernel object that is used to create and initialise memory space for a thread within

the RAM. This maps to the kernel object “RAM” in Table 6.

Note: All of these objects have their corresponding operations defined as follows in Table 6:

Kernel

Object
Operation Description

cnode 1. CAP_THREAD_FLUSH_CNODE 1. Delete the thread capability space (cnode）

Notification 1. CAP_NTFN_OP_WAIT

2. CAP_NTFN_OP_SIGNAL

3. CAP_NTFN_OP_BDCAST

4. CAP_NTFN_OP_CANCEL

1. Wait for other thread to notify through the

event

2. Notify a waiting thread through an event

3. Notify all waiting threads through the

events

4. Invalidate event objects

Endpoint 1. CAP_EP_OP_SEND

2. CAP_EP_OP_RECV

3. CAP_EP_OP_CALL

4. CAP_EP_OP_REPLY

5. CAP_EP_OP_REPLY_WAIT

6. CAP_EP_CANCEL

1. Send data through endpoint objects

2. Receive data through endpoint objects

3. Initiate RPC calls through endpoint objects

4. Reply to RPC calls made through endpoint

objects

5. Reply to the RPC call through the endpoint

object and receive the response

6. Invalidate Endpoint objects

IRQ Control 1. CAP_IRQ_OP_GET

2. CAP_IRQ_OP_PUT

1. Associate the event object corresponding

to the interrupt number with the IRQ

HANDLER capability object

2. Disassociate the event object

corresponding to the interrupt number

from the IRQ HANDLER capability object

IRQ Handler 1. CAP_IRQ_OP_WAIT

2. CAP_IRQ_OP_ACK

3. CAP_IRQ_OP_ACK_WAIT

1. Wait for the interrupt associated with the

IRQ HANDLER capability object (notified

through the event object)

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 31 -

2. Respond to interrupts associated with IRQ

HANDLER capability objects

3. Wait for the interrupt associated with the

IRQ HANDLER capability object and

respond it

Thread 1. CAP_THREAD_CLONE

2. CAP_THREAD_CONFIG

3. CAP_THREAD_CHANGE_QUE

4. CAP_THREAD_FLUSH_CNODE

5. CAP_THREAD_DUMP

6. CAP_THREAD_SEM_V

7. CAP_THREAD_BLOCK

8. CAP_THREAD_SUSPEND

9. CAP_THREAD_CANCEL

1. Create a new thread

2. Configure the thread's properties

3. Modify the thread's priority (if it is ready,

re-join the ready queue)

4. Delete the thread capability space (cnode

）

5. Return information about the thread, such

as stack address and ipc buffer address

6. Wake up a thread.

7. Block a specified thread.

8. Suspend or resume a specified thread.

9. Cancel a specified thread.

RAM 1. CAP_RAM_MKCAP

2. CAP_RAM_FREE

1. Creates a capability object in the thread's

capability space and initialize it

2. Release the capability object in the

thread's capability space

Table 6 Kernel Objects and Operations

The security attributes are defined as follows:

• ATTR.PRIV_CSPACE.CNODE.CSLOT: private permission of a thread to invoke an operation in

a kernel object. This consists of a pair of values, the pointer to the kernel object and the

type of the kernel object.

• ATTR.INIT_CSPACE.CNODE.CSLOT: public permission of a thread to invoke an operation in a

kernel object. This consists of a pair of values, the pointer to the kernel object and the type

of the kernel object. This permission is checked if the thread does not contain the required

permission in the private_cspace.

• ATTR.THREAD.ID: ID of the thread.

The operations on kernel objects are defined as follows:

• OP.INVOKE: invoke system calls to operate with the kernel objects. All operations

corresponding to each type of kernel objects are automatically authorized once permissions

over the object are granted.

6.2 SECURITY FUNCTIONAL POLICIES

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 32 -

This Security Target defines the following Security Function Policies (SFPs):

6.2.1 CAPABILITY-BASED ACCESS CONTROL SFP (SFP.CAP):

1. Purpose: To control the access to kernel objects through invocation of capability-based

system calls located within the system call module of the TOE.

2. Users: threads which are located within the user layer. Because of this, they are also

referred as “user threads” (non-TOE).

3. Subjects: the kernel (TOE).

4. Objects: Kernel objects (the corresponding operations are defined in Table 6).

5. Security attributes: Permissions ascertained from private_cspace and initial_cspace.

6. SFR instances: FDP_ACC.1, FDP_ACF.1, FMT_MSA.3

6.3 SECURITY FUNCTIONAL REQUIREMENTS

This section defines the Security Functional Requirements (SFRs) the TOE has to enforce in order to

fulfil the security objectives.

Application Note:

The security policy mentioned in the SFRs is the following:

SFP.CAP: Implementation of proper management of capability access.

6.3.1 FDP: USER DATA PROTECTION

6.3.1.1 FDP_ACC.1: SUBSET ACCESS CONTROL

FDP_ACC.1.1 The TSF shall enforce the [assignment: SFP.CAP] on [assignment:

• Subjects: S.KERNEL

• Objects: OB.NOTIFICATION, OB.ENDPOINT, OB.IRQ_CONTROL, OB.IRQ_HANDLER,

OB.THREAD, OB.RAM, OB.CNODE

• Operations: OP.INVOKE]

6.3.1.2 FDP_ACF.1: SECURITY ATTRIBUTE BASED ACCESS CONTROL

FDP_ACF.1.1 The TSF shall enforce the [assignment: SFP.CAP] to objects based on the following:

[assignment:

• Subjects: S.KERNEL

• Objects: OB.NOTIFICATION, OB.ENDPOINT, OB.IRQ_CONTROL, OB.IRQ_HANDLER,

OB.THREAD, OB.RAM, OB.CNODE

• Security attributes: ATTR.PRIV_CSPACE.CNODE.CSLOT, ATTR.INIT_CSPACE.CNODE.CSLOT].

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 33 -

FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an operation among
controlled subjects and controlled objects is allowed: [assignment:

S.KERNEL will perform OP.INVOKE on OB.NOTIFICATION, OB.ENDPOINT, OB.IRQ_CONTROL,
OB.IRQ_HANDLER, OB.THREAD, OB.RAM, OB.CNODE on behalf of U.THREAD if any of the below
conditions stand:

a. ATTR.PRIV_CSPACE.CNODE.CSLOT matches the pointer and type of the kernel object, with
respect to the kernel object that is target of the invocation,

b. ATTR.INIT_CSPACE.CNODE.CSLOT matches the pointer and type of the kernel object, with
respect to the kernel object that is target of the invocation,

The corresponding operations on the object type are shown in Table 6 Kernel Objects and

Operations.]

FDP_ACF.1.3 The TSF shall explicitly authorise access of subjects to objects based on the following

additional rules: [assignment: None].

FDP_ACF.1.4 The TSF shall explicitly deny access of subjects to objects based on the following

additional rules: [assignment: None].

Application note: Each thread retains its own private_cspace, the attribute THREAD.ID determines

which private_cspace is checked in enforcement of the SFP.CAP.

6.3.1.3 FDP_DMI.1: DELEGATED MEMORY ISOLATION

FDP_DMI.1.1 The TSF shall configure and operate an [assignment: external] entity that enforces

[assignment: memory isolation] between [assignment: memory in kernel space and in user space],

allowing [assignment: threads in kernel space full access to kernel and user memory space], but

restricting [assignment: threads in user space to access only memory in user space].

6.3.2 FIA: IDENTIFICATION AND AUTHENTICATION

6.3.2.1 FIA_ATD.1: USER ATTRIBUTE DEFINITION

FIA_ATD.1.1 The TSF shall maintain the following list of security attributes belonging to individual

users: [assignment: ATTR.THREAD.ID, ATTR.PRIV_CSPACE.CNODE.CSLOT and

ATTR.INIT_CSPACE.CNODE.CSLOT].

6.3.2.2 FIA_UID.2: USER IDENTIFICATION BEFORE ANY ACTION

FIA_UID.2.1 The TSF shall require each user to be successfully identified before allowing any other

TSF-mediated actions on behalf of that user.

6.3.2.3 FIA_USB.1: USER-SUBJECT BINDING

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 34 -

FIA_USB.1.1 The TSF shall associate the following user security attributes with subjects acting on the

behalf of that user: [assignment: ATTR.THREAD.ID, ATTR.PRIV_CSPACE.CNODE.CSLOT and

ATTR.INIT_CSPACE.CNODE.CSLOT].

FIA_USB.1.2 The TSF shall enforce the following rules on the initial association of user security

attributes with subjects acting on the behalf of users: [assignment: The ID assigned to each thread

is unique and, when created, it gets assigned a private cnode to which other threads do not have

any permission].

FIA_USB.1.3 The TSF shall enforce the following rules governing changes to the user security

attributes associated with subjects acting on the behalf of users: [assignment:

• The thread identifier ATTR.THREAD.ID cannot be modified.

• The ATTR.PRIV_CSPACE.CNODE.CSLOT and ATTR.INIT_CSPACE.CNODE.CSLOT can only be

modified by the thread-management and scheduling module of the kernel].

Application note: The ATTR.PRIV_CSPACE.CNODE.CSLOT and ATTR.INIT_CSPACE.CNODE.CSLOT can

be modified by the kernel on behalf of U.THREAD, through either creation of an object or flushing of

the cnode (see FDP_ACC.1 or FDP_ACF.1).

6.3.3 FMT: SECURITY MANAGEMENT

6.3.3.1 FMT_MSA.3: STATIC ATTRIBUTE INITALIZATION

FMT_MSA.3.1 The TSF shall enforce the [assignment: SFP.CAP] to provide [selection: restrictive]

default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2 The TSF shall allow the [assignment: none] to specify alternative initial values to

override the default values when an object or information is crated.

Application note: any operation that causes a modification of the OB.CNODE object is always

performed through S.KERNEL, which is the only entity that has direct access to modify the object.

Application note: Restrictive default values refer to cnode, within a corresponding cspace

(ATTR.PRIV_CSPACE.CNODE.CSLOT and ATTR.INIT_CSPACE.CNODE.CSLOT), that is empty of

capabilities upon its initialization.

6.3.4 FPT: PROTECTION OF THE TSF

6.3.4.1 FPT_FLS.1: FAILURE WITH PRESERVATION OF SECURE STATE

FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of failures occur:

[assignment: HW interrupts caused by hardware failures, SW interrupts caused by software

failures in user layer (OS and applications)].

6.3.5 FRU: RESOURCE UTILISATION

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 35 -

6.3.5.1 FRU_PRS.1: LIMITED PRIORITY OF SERVICE

FRU_PRS.1.1 The TSF shall assign a priority to each subject in the TSF.

FRU_PRS.1.2 The TSF shall ensure that each access to [assignment: CPU time] shall be mediated on

the basis of the subject’s assigned priority.

6.4 SECURITY ASSURANCE REQUIREMENTS

The development and the evaluation of the TOE shall be done in accordance to the following

security assurance requirements: EAL5 + ALC_FLR.1.

The following table shows the assurance requirements by reference the individual components in

[CC31R5P3]:

Assurance Class Assurance Components

ASE: Security Target evaluation

ASE_CCL.1: Conformance claims

ASE_ECD.1: Extended components definition

ASE_INT.1: ST introduction

ASE_TSS.1: TOE summary specification

ASE_OBJ.2: Security objectives

ASE_REQ.2: Derived security requirements

ASE_SPD.1: Security problem definition

ALC: Life-cycle support

ALC_CMC.4: Production support, acceptance procedures and

automation

ALC_CMS.5: Development tools CM coverage

ALC_DEL.1: Delivery procedures

ALC_DVS.1: Identification of security measures

ALC_LCD.1: Developer defined life-cycle model

ALC_TAT.2: Compliance with implementation standards

ALC_FLR.1: Basic flaw remediation

ADV: Development

ADV_ARC.1: Security architecture description

ADV_IMP.1: Implementation representation of the TSF

ADV_FSP.5: Complete semi-formal functional specification

with additional error information

ADV_INT.2: Well-structured internals

ADV_TDS.4: Semiformal modular design

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 36 -

Assurance Class Assurance Components

AGD: Guidance documents
AGD_OPE.1: Operational user guidance

AGD_PRE.1: Preparative procedures

ATE: Tests

ATE_COV.2: Analysis of coverage

ATE_DPT.3: Testing: modular design

ATE_FUN.1: Functional testing

ATE_IND.2: Independent testing - sample

AVA: Vulnerability assessment AVA_VAN.4: Methodical vulnerability analysis

Table 7 Security Assurance Requirements

6.5 SECURITY REQUIREMENTS RATIONALE

6.5.1 NECESSITY AND SUFFICIENCY ANALYSIS

SFR / TOE Security

Objective

O
T.P

R
IO

R
ITY

O
T.SA

FE_SEC
U

R
E_STA

TE

O
T.A

C
C

ESS_C
O

N
TR

O
L

FIA_ATD.1 X

FIA_USB.1 X

FPT_FLS.1 X

FDP_ACC.1 X

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 37 -

SFR / TOE Security

Objective

O
T.P

R
IO

R
ITY

O
T.SA

FE_SEC
U

R
E_STA

TE

O
T.A

C
C

ESS_C
O

N
TR

O
L

FDP_ACF.1 X

FRU_PRS.1 X

FIA_UID.2 X

FMT_MSA.3 X

FDP_DMI.1 X

Table 8 SFRs / TOE Security Objectives coverage

6.5.2 SECURITY REQUIREMENT SUFFICIENCY

OT.PRIORITY: FRU_PRS.1 requires that the TOE has to manage the usage of resources based on a

priority-based queue.

OT.SAFE_SECURE_STATE: FPT_FLS.1 requires that the TOE has to preserve a secure state after

receiving an interruption caused by either hardware or software failure.

OT.ACCESS_CONTROL: The following requirements contribute to fulfil the objective:

▪ FIA_ATD.1 enforces the management of the user identity and properties as security

attributes which then become an input for access control functions.

▪ FIA_UID.2 enforces the identification of the user before any action, thus allowing the access

and services and data, and their processing, to authorized users only.

▪ FIA_USB.1 enforces the association of the user identity to the active entity that acts on

behalf of the user and to check that this is a valid identity. It is the starting point to ensure

that only an authorized user accesses and processes services and data.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 38 -

▪ FDP_ACC.1, FDP_ACF.1 state the access control measures based on SFP.CAP, which

establish capability-based access control policy to kernel objects. Thus, keeps kernel

objects inaccessible to unauthorized users.

▪ FDP_DMI.1 enforces memory isolation between memory in kernel space and in user space,

hence preventing unauthorized access to confidential information in the kernel space.

▪ FMT_MSA.3 requires that security attributes are static, this is enforced as the subjects that

have been described have not been granted the ability to modify a cnode directly.

6.5.3 SFR DEPENDENCY RATIONALE

6.5.3.1 TABLE OF SFR DEPENDENCIES

The following table lists the dependencies for each requirement, indicating how they have been

satisfied:

SFR Required Fulfilled Missing

FIA_ATD.1 None None None

FIA_USB.1 FIA_ATD.1 FIA_ATD.1 None

FPT_FLS.1 None None None

FDP_ACC.1 FDP_ACF.1 FDP_ACF.1 None

FDP_ACF.1 FDP_ACC.1, FMT_MSA.3 FDP_ACC.1, FMT_MSA.3 None

FRU_PRS.1 None None None

FIA_UID.2 None None None

FMT_MSA.3 FMT_MSA.1, FMT_SMR.1 None FMT_MSA.1, FMT_SMR.1

FDP_DMI.1 None None None

Table 9 SFR Dependencies

6.5.3.2 JUSTIFICATION FOR MISSING DEPENDENCIES

FMT_MSA.3 dependency on FMT_SMR.1

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 39 -

The security attributes can only be modified by the kernel, there are no roles that can make

modifications to these attributes. Therefore, such roles are not necessary.

FMT_MSA.3 dependency on FMT_MSA.1

This requirement is for management of security attributes, as the TOE does not include

management options for security attributes this security requirement has not been included.

The modification of the security attributes of a cnode is necessary within the lifecycle of a thread,

modifications are performed through the use of operations that create or delete an object, or

operations that flush the cspace of an object. These operations are invoked as an automatic

response, therefore do not match the criteria required to be considered as management actions for

FMT_MSA.1. The justification for non-inclusion is as follows;

• The creation of a kernel object (adding capabilities to the cnode) and the deletion of a

kernel object (removing them from a threads cnode) are not considered as mechanisms that

have the intention of modifying permissions. In both cases they are indirect mechanisms, by

which the TSF automatically handles the cnode population (as performed by the kernel).

• Flushing is an operation that is able to purge the cspace of a thread, removing the

capabilities within the private or initial cspace. The usage of this mechanism is restricted to

the thread which invoked the operation, performing this operation to modify its own cnode.

Therefore, as this function is exercised internally when the purging of the cspace of a thread

is required, there is no intent of modifying the permissions of subjects on kernel objects.

6.5.4 SAR RATIONALE

The Evaluation Assurance Level 5 has been chosen to commensurate with the threat environment

that is experienced by typical consumers of the TOE. The assurance level defined in this ST consists

of the predefined assurance package EAL 5 with the augmentation ALC_FLR.1.

6.5.5 SAR DEPENDENCY RATIONALE

6.5.5.1 TABLE OF SAR DEPENDENCIES

SAR Required Fulfilled Missing

ASE_CCL.1
ASE_INT.1, ASE_ECD.1,

ASE_REQ.1

ASE_INT.1, ASE_ECD.1,

ASE_REQ.2 (hierarchically

above ASE_REQ.1)

None

ASE_ECD.1 None None None

ASE_INT.1 None None None

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 40 -

SAR Required Fulfilled Missing

ASE_OBJ.2 ASE_SPD.1 ASE_SPD.1 None

ASE_REQ.2 ASE_OBJ.2, ASE_ECD.1 ASE_OBJ.2, ASE_ECD.1 None

ASE_TSS.1
ASE_INT.1, ASE_REQ.1,

ADV_FSP.1

ASE_INT.1, ASE_REQ.2

(hierarchically above

ASE_REQ.1), ADV_FSP.5

(hierarchically above

ADV_FSP.1)

None

ALC_CMC.4
ALC_CMS.1, ALC_DVS.1,

ALC_LCD.1

ALC_CMS.5 (hierarchically

above ALC_CMS.1),

ALC_DVS.1, ALC_LCD.1

None

ALC_CMS.5 None None None

ADV_FSP.5 ADV_TDS.1, ADV_IMP.1

ADV_TDS.4 (hierarchically

above ADV_TDS.1),

ADV_IMP.1

None

AGD_OPE.1 ADV_FSP.1
ADV_FSP.5 (hierarchically

above ADV_FSP.1)
None

AGD_PRE.1 None None None

ATE_IND.2

ADV_FSP.2, AGD_OPE.1,

AGD_PRE.1, ATE_COV.1,

ATE_FUN.1

ADV_FSP.5 (hierarchically

above ADV_FSP.2),

AGD_OPE.1, AGD_PRE.1,

ATE_COV.2 (hierarchically

above ATE_COV.1),

ATE_FUN.1

None

AVA_VAN.4

ADV_ARC.1, ADV_FSP.4,

ADV_TDS.3, ADV_IMP.1,

AGD_OPE.1, AGD_PRE.1,

ATE_DPT.1

ADV_ARC.1, ADV_FSP.5

(hierarchically above

ADV_FSP.4), ADV_TDS.4

(hierarchically above

ADV_TDS.3), ADV_IMP.1,

AGD_OPE.1, AGD_PRE.1,

None

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 41 -

SAR Required Fulfilled Missing

ATE_DPT.3 (hierarchically

above ATE_DPT.1)

ADV_ARC.1 ADV_FSP.1, ADV_TDS.1

ADV_FSP.5 (hierarchically

above ADV_FSP.1),

ADV_TDS.4 (hierarchically

above ADV_TDS.1)

None

ADV_IMP.1 ADV_TDS.3, ALC_TAT.1

ADV_TDS.4 (hierarchically

above ADV_TDS.3),

ALC_TAT.2 (hierarchically

above ALC_TAT.1)

None

ASE_SPD.1 None None None

ALC_DEL.1 None None None

ADV_INT.2
ADV_IMP.1, ADV_TDS.3,

ALC_TAT.1

ADV_IMP.1, ADV_TDS.4

(hierarchically above

ADV_TDS.3), ALC_TAT.2

(hierarchically above

ALC_TAT.1)

None

ADV_TDS.4 ADV_FSP.5 ADV_FSP.5 None

ALC_DVS.1 None None None

ALC_LCD.1 None None None

ALC_TAT.2 ADV_IMP.1 ADV_IMP.1 None

ATE_COV.2 ADV_FSP.2, ATE_FUN.1

ADV_FSP.5 (hierarchically

above ADV_FSP.2),

ATE_FUN.1

None

ATE_DPT.3
ADV_ARC.1, ADV_TDS.4,

ATE_FUN.1

ADV_ARC.1, ADV_TDS.4,

ATE_FUN.1
None

ATE_FUN.1 ATE_COV.1
ATE_COV.2 (hierarchically

above ATE_COV.1)
None

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 42 -

SAR Required Fulfilled Missing

ALC_FLR.1 None None None

Table 10 SAR dependencies

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 43 -

7 TOE SUMMARY SPECIFICATION

The TOE performs the following security functions:

• User identification

• Capability-based Access Control

• Memory management

• Thread management

• Fault tolerance

7.1.1 USER IDENTIFICATION

When a thread attempts to invoke functionality within the TOE, it is passed to the scheduler to be

handled by the kernel (S.KERNEL). Each thread (U.THREAD) is identified by its identifier

(ATTR.THREAD.ID) and has two security attributes that specify its permissions

(ATTR.PRIV_CSPACE.CNODE.CSLOT and ATTR.INIT_CSPACE.CNODE.CSLOT). The former specifies the

capabilities owned by the thread, the latter specifies the capabilities of the threads created by the

root service. The ATTR.INIT_CSPACE.CNODE.CSLOT can only be modified by the kernel through

system calls invoked by the root service.

7.1.1.1 SFR SUMMARY

This security function covers the following: FIA_ATD.1, FIA_UID.2 and FIA_USB.1.

7.1.2 CAPABILITY-BASED ACCESS CONTROL

The TOE enforces capability-based access control to protect the confidentiality and integrity of the

objects. A capability is an unforgeable token of authority composed of the pointer to the kernel

object and the object type. Therefore, a capability specifies the rights of a thread to perform an

action in that specific kernel object. All threads can have multiple capabilities, which are stored in a

cslot, which simply defined is a slot inside a structure called a cnode. When a thread makes a

capability-based system call to a kernel object, the kernel first checks the calling thread’s

private_cspace to check if it has the corresponding capability to perform such action. If not, then the

initial_cspace is evaluated in the same manner, to determine if the corresponding capability is

therefore in the initial_cspace instead.

The requisites to be satisfied when a thread invokes a capability-based system call are the following:

1. Have the required capability in its cnode.

2. Pass as an argument the correct pointer to that kernel object.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 44 -

As a result, not only does the thread have the required kernel object, but it also passes, as an

argument, the corresponding capability to the kernel object it wants to operate. There are several

types of capabilities, each for each type of kernel object. The type of capability englobes all the

defined operations to perform in that type of object, hence when a thread has a capability of that

type, it can perform all the available operations to that kernel object. For instance, if a thread has

the capability type X, and X has 5 different available operations, the thread will be able to perform

any of the 5 operations. For the types of capabilities, please refer to the application note of the

requirement FDP_ACC.1.

The following attributes are initialized by the kernel upon creation of a thread; for the root service

thread, the initial_cspace (ATTR.INIT_CSPACE.CNODE.CSLOT) is initialised by the kernel, after which

the private capability space (ATTR.PRIV_CSPACE.CNODE.CSLOT) is initialised. During the lifetime of

the cnode, the kernel will modify private_cspace or initial_cspace, this occurs when a thread invokes

a system call to create a kernel object whereby the thread obtains the capability on that kernel

object, so it is added to the respective cspace.

The cnode in either private_cspace or initial_cspace can be modified to remove capabilities on it,

this action can be performed by either deleting the kernel object related to the capability, resulting

in the capability being removed from the corresponding cspace, or the full cspace can be flushed

through the invocation of a specific system call (CAP_THREAD_FLUSH).

Note: Notification and Endpoint objects are specifically included in initial_cspace when created, this

is so different threads are able to communicate with each other. The rationale behind this is to

avoid potential issues occurring; for example, when two threads attempt to access an object only in

the cspace of one thread.

7.1.2.1 SFR SUMMARY

This security function covers the following SFRs: FDP_ACC.1, FDP_ACF.1 and FMT_MSA.3.

7.1.3 MEMORY MANAGEMENT

The TOE configures and operates the MPU (non-TOE hardware) to enforce memory isolation

between kernel space and user space. Only the threads operating in privileged thread mode have

full access to both kernel and user layer, as the threads operating in unprivileged thread mode only

have access to the memory in user space.

This security function covers the following SFR: FDP_DMI.1

7.1.4 THREAD MANAGEMENT

The TOE implements scheduling strategy for threads depending on if they have the same or

different priority. For threads with different priorities priority-based preemptible scheduling strategy

is adopted and round-robin round for threads with the same priority. This priority disseminates how

much CPU time each subject has.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 45 -

7.1.4.1 SFR SUMMARY

This security function covers the following SFR: FRU_PRS.1.

7.1.5 FAULT TOLERANCE

The TOE maintains a secure state when an error or failure occurs outside the TOE. These exceptions

can be produced by the user layer, or by the hardware, either way the TOE is able to handle them.

In case an unknown error occurs that generates interruptions to the TOE, which have not been

contemplated, the TOE enters the secure state.

Moreover, during the initialization of the TOE, if an error occurs before initialization of the interrupt

module, the TOE halts. However, if the TOE has already initialized the interrupt module, this error

will be handled by such module.

In the case of either a software or hardware interrupt being received, the system call module is

responsible for dealing with these issues, to do this it will invoke a system call which will cancel the

thread that caused the interrupt.

7.1.5.1 SFR SUMMARY

This security function covers the following SFR: FPT_FLS.1.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 46 -

8 ACRONYMS

The following table shows the acronyms used in this document.

Acronym Meaning

PP Protection Profile

CC Common Criteria

TOE Target of Evaluation

TSF TOE Security Functionality

TSFi TSF Interface

OSP Organisational Security Policies

EAL Evaluation Assurance Level

ST Security Target

IT Information Technology

IPC Interprocess communication

Table 11 Abbreviations

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 47 -

9 GLOSSARY OF TERMS

The following table shows the glossary of terms used in this document.

Term Meaning

Augmentation Addition of one or more requirement(s) to a package

Evaluation Assurance
Level

Set of assurance requirements drawn from CC Part 3, representing a point
on the CC predefined assurance scale, that form an assurance package.

Operational
Environment

Environment in which the TOE is operated.

Protection Profile Implementation-independent statement of security needs for a TOE type.

Security Target
Implementation-dependent statement of security needs for a specific
identified TOE.

Target Of Evaluation
Set of software, firmware and/or hardware possibly accompanied by
guidance.

Memory Protection
Unit (MPU)

A computer hardware unit that provides memory protection, usually
implemented as part of the central processing unit (CPU).

Capability Permission for a subject to perform an operation on a kernel object.

cnode A list of permission a thread has, each element of a list is known as a cslot.

cslot
An entry of the cnode, consists of a pair of values; a pointer of the kernel
object to which invoke the operation, and the operation.

TCB
The Thread Control Block, it is a library of information about the threads
within the system.

Thread
The smallest sequence of programmed instructions that can be managed
independently by a scheduler.

Kernel Object
A memory block allocated by the kernel and is accessible only by the kernel,
a data structure whose members contain information about the object.

Private capability space
cnode associated to the threads, contains all the permissions a specific
thread has.

Initial capability space cnode of the root service thread, accessible by all the threads in user space.

root service Primary thread of the user space, it creates the rest of the threads.

Kernel
The core component of an operating system, it serves as the interface
between the physical hardware and the processes running on it.

Microkernel
The entirety of the operating system and the Kernel combined, designed to
run with the minimal number of functions required to run.

SYSTICK
SYSTICK is a simple timer that is part of the NVIC controller in the Cortex-M
microprocessor, intended to provide a periodic interrupt for an RTOS, but it
can be used for other simple timing purposes in addition.

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 48 -

Term Meaning

RPC
Remote Procedure Call, used when a program causes a procedure to
execute in a different address space.

Table 12 Glossary of terms

SmartChip Shuniu OS Kernel - Security Target Lite v1.0 - 49 -

10 DOCUMENT REFERENCES

The following table shows the references used in this document.

Reference Document

[CC31R5P1]
Common Criteria for Information Technology Security Evaluation, Version
3.1, Revision 5, Part 1: Introduction and general model

[CC31R5P2]
Common Criteria for Information Technology Security Evaluation, Version
3.1, Revision 5, Part 2: Security functional components

[CC31R5P3]
Common Criteria for Information Technology Security Evaluation, Version
3.1, Revision 5, Part 3: Security assurance components

[CEM31R5P3] Common Criteria Evaluation methodology, Version 3.1, Revision 5

Table 13 List of document references

