HEDES v1.0

Security Target

Document Version: v1.4

HumaneSystem Co., Ltd.

The Security Target related to the certified TOE. This Security Target is written in Korean and translated from Korean into English.

Doc. Version	Change Date	Author	Content
v1.0	Jul. 1, 2020	HumaneSystem Co., Ltd. Corporate Research Institute	Initial preparation
v1.1	Nov. 13, 2020	HumaneSystem Co., Ltd. Corporate Research Institute	Changes incorporated
v1.2	Nov .27, 2020	HumaneSystem Co., Ltd. Corporate Research Institute	Changes incorporated
v1.3	Dec. 24, 2020	HumaneSystem Co., Ltd. Corporate Research Institute	Typographical errors corrected
v1.4	Jan. 29, 2021	HumaneSystem Co., Ltd. Corporate Research Institute	Reflecting change of identifier for each TOE element
-			

Document History and Change Management

Table of Contents

1. ST Introduction	8
1.1 ST reference	9
1.2 TOE reference	9
1.3 TOE Overview	10
1.4 TOE description	16
1.5 Terms and definitions	24
1.6 Conventions	32
2. Conformance Claim	
2.1 CC Conformance claim	33
2.2 PP conformance claim	34
2.3 Package conformance claim	35
2.4 Conformance claim rationale	36
3. Security Objectives	37
3.1 Security objectives for the operational environment	37
4. Extended Components Definition	
4.1 Cryptographic support (FCS)	40
4.2 Identification & authentication(FIA)	40
4.3 User data protection (FDP)	40
4.4 Security Management(FMT)	41
4.5 Protection of the TSF(FPT)	41
4.6 TOE Access(FTA))	42
5. Security Requirements	43
5.1 Security Functional Requirements	43
5.2 Security Assurance Requirements	62
5.3 Security Requirements Rationale	73
5.4 Assurance Requirements Rationale	76
6. TOE Summary Specification	77
6.1 Security audit	79
6.2 Cryptographic support	83

6.3 User data protection	
6.4 Identification and authentication	
6.5 Security management	94
6.6 Protection of the TSF	
6.7 TOE access	

List of Figures

[Figure 1-1] TOE operational environment	12
[Figure 1-2] Physical scope of the TOE	17
[Figure 1-3] Logical scope of the TOE	17
[Figure 6-1] Diagram of TOE internal mutual authentication procedure	93

List of Tables

[Table 1-1] ST reference	9
[Table 1-2] TOE reference	9
[Table 1-3] Validated cryptographic module	13
[Table 1-4] Third party software for the operational environment	14
[Table 1-5] External IT entity	14
[Table 1-6] Minimum requirements for the hardware and software for the installation a	and
operation of the TOE	15
[Table 1-7] Specifications of the administrator system of the TOE	15
[Table 1-8] Physical scope of the TOE	16
[Table 1-9] Validated cryptographic module	16
[Table 1-10] Cryptographic key generation algorithm for user data encryption	19
[Table 1-11] Cryptographic key generation algorithm for TSF data encryption	19
[Table 1-12] Cryptographic key distribution method	19
[Table 1-13] Cryptographic key destruction method	20
[Table 1-14] Cryptographic operation of user data	20
[Table 1-15] Cryptographic operation of TSF data	20
[Table 1-16] Cryptographic operation of user data	22
[Table 2-1] CC conformance	
[Table 2-2] Rationale for PP conformance	
[Table 4-1] Extended components	
[Table 5-1] Security functional requirements (SFR)	44
[Table 5-2] Audit event	47
[Table 5-3] Type of Audit Data and Selection Criteria	48
[Table 5-4] Cryptographic key generation algorithm for user data encryption	49
[Table 5-5] Cryptographic key generation algorithm for TSF data encryption	50
[Table 5-6] Cryptographic key distribution method	50
[Table 5-7] Cryptographic key destruction method	51
[Table 5-8] Cryptographic operation of user data	51
[Table 5-9] Cryptographic operation of TSF data	51
[Table 5-10] Mutual authentication method between TOE Components	55
[Table 5-11] Security function behavior of administrator	

[Table 5-12] Security assurance requirements	62
[Table 5-13] Rationale of the dependencies	74
[Table 6-1] List of security functions of the TOE	
[Table 6-2] Auditable events of the TOE	79
[Table 6-3] Additional audit record for certain audit events	80
[Table 6-4] Validated cryptographic module	83
[Table 6-5] Cryptographic key generation algorithm for user data encryption	84
[Table 6-6] Cryptographic key generation algorithm for TSF data encryption	84
[Table 6-7] Cryptographic key distribution method	85
[Table 6-8] Cryptographic operation of user data	85
[Table 6-9] Cryptographic operation of TSF data	87
[Table 6-10] Usage of key applied to the TOE	88
[Table 6-11] TOE internal mutual authentication procedure	93
[Table 6-12] Security function behavior of administrator	95
[Table 6-13] TSF data protection method	97
[Table 6-14] Self test items for each TOE component	98
[Table 6-15] TSF data integrity verification items	98
[Table 6-16] TSF integrity verification items	98

This document is the Security Target (hereinafter referred to as the "ST") of HEDES v1.0, a DB encryption/decryption product by HumaneSystem Co., Ltd. that intends to achieve EAL1+ level under the Common Criteria.

This ST describing the Target of Evaluation (hereinafter the "TOE") and is structured as follows:

- Chapter 1 ST Introduction describes the ST reference, TOE reference, TOE overview, TOE description, conventions and terms and definitions.
- Chapter 2 Conformance Claims describes the conformance with the Common Criteria, the Protection Profile (PP) and the package, and presents conformance rationale and protection profile conformance statement.
- Chapter 3 Security Problem Definition explains security problems in the TOE and the TOE operational environment from the perspective of threats, organizational security policies and assumptions.
- Chapter 4 Extended Components Definition specifies the extended components additionally defined in the ST.
- Chapter 5 Security Requirements describes security functional requirements and security assurance requirements to satisfy the security objectives, and presents rationale for each of them.
- Chapter 6 TOE Summary Specification explains how the TOE satisfies the security functional requirements specified in Chapter 5.

1.1 ST reference

Description		
HEDES v1.0 Security Target		
v1.4		
HumaneSystem Co., Ltd. / Corporate Research Institute		
January 29, 2021		
Common Criteria for Information Technology Security		
Evaluation		
CC v3.1 r5		
EAL1+ (ATE_FUN.1)		
hds st 005		
hds_st_005		
Database, Encryption		

[Table 1-1] ST reference

1.2 TOE reference

Classification		Description		
TOE Identification		HEDES v1.0		
TOE Buil	d Version	20210129-001		
TOE Policy Server		HEDES Policy Server v1.0-20210129-001	S/W	
		(hedes_policy_server_1.0_002.tar)	(distril	outed
Compo nent Agent Server		HEDES Agent Server v1.0-20210129-001	in	CD
		(hedes_agent_server_1.0_002.tar)	forma	t)
	Preparative	HEDES v1.0 Preparative Procedure v1.3	PDF	
Guidan	Procedure	(hds_pre_004.pdf)	(distributed	
се	Operational User	HEDES v1.0 Operational User Guidance v1.3	in	CD
	Guidance	(hds_ope_004.pdf) for		t)
Developer		HumaneSystem Co., Ltd. / Corporate Research Institute		

[Table 1-2] TOE reference

1.3 TOE Overview

The TOE encrypts and decrypts user data inside the database (hereinafter the "DB") managed in the Database Management System (hereinafter the "DBMS") of an organization. User data means all data before/after encrypted and stored in the DB, including an organization's confidential data such as personal and sensitive information managed by the organization, which needs to be protected from threats.

The TOE is a database encryption product that performs the function of preventing the unauthorized disclosure of confidential information by encrypting the DB.

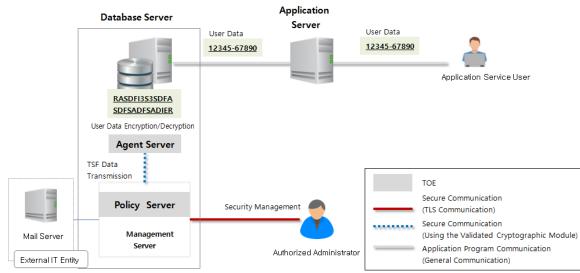
The encryption target of the TOE is the DB managed by the DBMS in the operational environment of the organization, and this ST defines user data as all data before/after encrypted and stored in the DB. Part or all of the user data can be the encryption target, depending on the organizational security policies of the organization that runs the TOE.

1.3.1 TOE usage and major security features

The TOE is provided as software and provides the function of column-level encryption/decryption of user data. The TOE is a plug-in type and consists of the Policy Server and the Agent Server.

The TOE provides various security features so that the authorized administrator can operate the TOE securely in the operational environment of the organization. Such security features include the security audit function that records and manages major auditable events; cryptographic support function such as cryptographic key management to encrypt the user and the TSF data and cryptographic operation; user data protection function that encrypts user data and protects the residual information; identification and authentication function such as verification of the identity of the authorized administrator, authentication failure handling, and mutual authentication among the TOE components; security management function for security functions, role definition, and configuration; TSF protection function including protecting the TSF data transmitted among the TOE components, protecting the TSF data stored in the storage that is controlled by the TSF, and TSF self tests; and TOE access function to manage access sessions of the authorized administrator. The Data Encryption Key (DEK) used to encrypt/decrypt user data is protected by encryption with the Key Encryption Key (KEK). TOE components provide major functions as follows:

- Policy Server
 - Perform life-cycle management such as generation, distribution and destruction of the data encryption key of HEDES
 - Provide the function of managing DB encryption/decryption policies of HEDES
 - Establish the user data encryption/decryption policy by setting different encryption keys and encryption algorithms for each column in order to provide the DB encryption service
 - Provide the administrator interface for the security management of the TOE
 - Provide the function to prevent duplicated login by the administrator and concurrent session login and to ensure automatic logout in case of a prolonged away mode
 - Provide the function to view audit data stored in the local DB
 - Provide the function of security audit including audit record generation, security alarm and audit review
 - Store audit tracing data and take actions if the audit trail is full
 - Provide the encryption of mutual authentication and transmission with the Agent Server, a TOE component
- Agent server
 - Receive the DB encryption/decryption policy from the Policy Server and process the encryption/decryption of user data
 - Apply the cryptographic key and encryption algorithms to user data encryption/decryption according to the policy
 - Send the audit records on the DB encryption/decryption service to the Policy Server
 - Provide the DB plugin module that can perform user data encryption/decryption
 - Provide the encryption of mutual authentication and transmission with the Policy Server, a TOE component


1.3.2 TOE type

The TOE consists of the Policy Server and the Agent Server, and is installed on the database server where the DB to be protected is located. It encrypts user data on the application server before they are stored in the DB according to the policy established by

the authorized administrator, and decrypts the encrypted user data transmitted from the database server to the application server.

The authorized administrator can perform the encryption/decryption of user data according to scope of the encryption target through the Policy Server, with which he/she can perform the security management.

The Policy Server, which is installed on the database server along with the Agent Server, is an integration-type operational environment that integrates the agent and the management server.

The operational environment where the TOE is operated is shown in [Figure 1-1] below:

[Figure 1-1] Plug-in type operational environment (Agent, Management Server integrated type)

The authorized administrator establishes the security policy of the TOE by using a web browser on the administrator PC. Then, the Agent Server receives the encryption policy from the Policy Server, encrypts user data received from the application server and stores them in the DB. Logs generated on the Agent Server are sent to the Policy Server and stored in the local DB.

Communication between the administrator PC and the Policy Server is secured with TLS v1.2 protocol set on WAS. TLS v1.2 TLS_DHE_RSA_WITH_AES_256_CBC _SHA256 Cipher Suite is used on WAS.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· · · · · · · · · · · · · · · · · · ·
	Cryptographic Module Name	MagicCrypto V2.2.0
Validated	Developer (institutions)	Droom Socurity
Cryptographic Module	Developer (Institutions)	Dream Security
	Validation Date	March 3, 2020
Module	Validation Level	VSL1
	Validation No.	CM-162-2025.3

The validated cryptographic module included in the TOE is specified in [Table 1-3] below:

[Table 1-3] Validated cryptographic module

1.3.3 Identification of non-TOE hardware and software

Non-TOE hardware and software not subject to the evaluation are necessary for the operation of the TOE. The TOE needs third party software Jetty 9.4.36, MySQL 5.7 and JAVA JRE 1.8.0_281, which are designated as the requirements for the operation of the TOE.

Third Party S/W	Role		
JAVA JRE 1.8.0_281	JAVA runtime environment for the operation of the TOE components		
MySQL 5.7 DBMS to be protected. It is a local DBMS to store cryptogra keys and other TSF data on the Policy Server.			
Jetty 9.4.36	 Web-based dynamic application server to provide the administrator interface in the Policy Server The administrator PC and the Policy Server communicate with each other through SSL secure channel. 		

	6		
Third party software	necessary for the	operation of the	TOE is listed below:

[Table 1-4] Third party software for the operational environment

A separate external IT entity is necessary for the operation of the TOE. Such external IT entity required by the TOE for the evaluation is as follows:

Classification	Minimum Specification		
Mail server	Server to send an email to the authorized administrator if a		
	potential violation is detected		

[Table-1-5] External IT entity

The following table describes the minimum requirements of hardware and software for the installation and operation of the TOE:

Clas	ssification	Minimum Requirements			
CPU Memory		Intel Xeon CPU E3-1220 @ 3.10 Ghz (4 Core) or higher			
		16 GB or higher			
H/W HDD		Space required for installation of TOE : 300 GB or higher			
NIC		10/100/1000 Mbps * 1 EA or more			
	OS	CentOS 7.9 (kernel v3.10, 64 bit)			
C AM	JAVA	JAVA JRE 1.8.0_281			
S/W	DBMS	MySQL 5.7			
	WAS	Jetty 9.4.36			

[Table 1-6] Minimum requirements for the hardware and software for the installation and operation of the TOE

The following table describes the specifications of the administrator system of the TOE:

Classification		Minimum Requirements	Remarks
S/W	Web browser	Chrome 88	

[Table 1-7] Specifications of the administrator system of the TOE

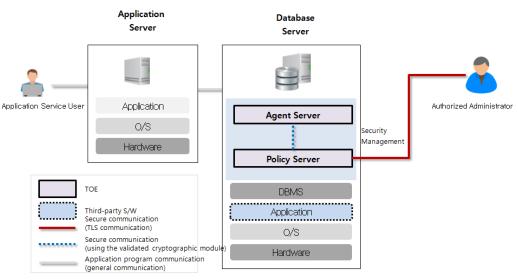
1.4 TOE description

This section describes the physical scope and the logical scope of the TOE.

1.4.1 Physical scope of the TOE

The physical scope and boundary of the TOE include the TOE components (Policy Server and Agent Server) and guidance documents. The TOE consists of the software and guidance documents as shown in [Table 1-8] below:

Classification		Contents	File	Distribution
Clussii	leation	Contents	Format	Format
TOF	Policy	HEDES Policy Server v1.0-20210129-001 (hedes_policy_server_1.0_002.tar)	S/W	CD
TOE	Server	(nedes_policy_server_1.0_002.tar)		
Component	Agent	HEDES Agent Server v1.0-20210129-001	S/W	CD
	Server	(hedes_agent_server_1.0_002.tar)	5/ 11	CD
	Preparative	HEDES v1.0 preparative procedure v1.3		
	procedure	(hds_pre_004.pdf)		
Guidance Operationa			PDF	CD
	User	HEDES v1.0 operational user guidance v1.3		
	Guidance	(hds_ope_004.pdf)		

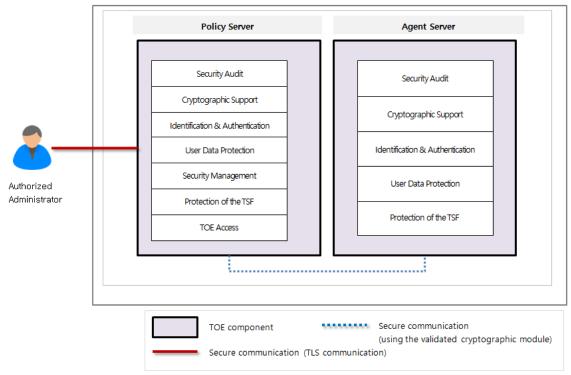

[Table 1-8] Physical scope of the TOE

The cryptographic module included in the TOE is as follows:

Cryptographic	Valio	TOE used		
Module Name	М	TOE used		
	Validation date	2020.03.03		
MagicCrypto V2.2.0	Validation number	CM-162-2025.3	Policy Server Agent server	
	Validation level	VSL1		

[Table 1-9] Validated cryptographic module

The physical scope of the TOE is shown in [Figure 1-2] below:



[Figure 1-2] Physical scope of the TOE

1.4.2 Logical scope of the TOE

The logical scope of the TOE is shown in [Figure 1-3] below:

Database Server

[Figure 1-3] Logical scope of the TOE

1.4.2.1 Security audit (FAU)

The TOE provides the authorized administrator with the function to search and view audit information, and also provides audit information such as date, time, IP, event type, event subject, details, etc. It generates audit records in case of auditable events, and sends an alarm email to the authorized administrator upon the detection of a potential security violation. It also stores all the generated audit data in an audit trail storage (DBMS) and securely manage them. The TOE prevents the unauthorized deletion of audit data, and provides the function to protect the audit trail storage by overwriting the oldest stored audit data if the audit trail storage is full.

The TOE sends an alarm email to the email address registered by the authorized administrator in case of an auditable event or a potential violation as listed below:

- (1) In case the audit data storage reaches or exceeds the threshold
- (2) In case the number of unsuccessful attempts of the administrator authentication or the number of unsuccessful authentication reaches the threshold
- (3) In case a new session is denied based on the limitation of the concurrent sessions
- (4) In case of an attempt to access from a disallowed IP
- (5) In case the integrity and self tests fail
- (6) In case self tests of the validate cryptographic module fail

1.4.2.2 Cryptographic support (FCS)

The TOE generates and destructs all cryptographic keys used for the operation of the product through MagicCrypto V2.2.0, the validated cryptographic module whose security and implementation conformance have been validated by the cryptographic module validation scheme. It performs cryptographic operations according to the cryptographic policy that defines cryptographic algorithms.

Original data are deleted when the encryption is performed, and encrypted data are deleted when the decryption is performed. In addition, the cryptographic key is generated and exchanged through MagicCrypto V2.2.0, which is the validated cryptographic module, for the encrypted communication between TOE components.

- Cryptographic key generation: A cryptographic key is generated based on the cryptographic algorithms and cryptographic key sizes in [Table 1-10] and [Table 1-11].

Standard List	Cryptographic Algorithm	Key Size	Use
ISO/IEC 18031	Hash-	128/256	- Generate user data cryptographic
	DRBG(SHA256)	bits	key

[Table 1-10] Cryptographic key generation algorithm for user data encryption

Standard List	Cryptographic Algorithm	Key Size	Use
ISO/IEC 18031	Hash-	128/256	- Generate KEK
	DRBG(SHA256)	bits	- Generate TSF data cryptographic key

[Table 1-11] Cryptographic key generation algorithm for TSF data encryption

- Cryptographic key distribution: A cryptographic key is distributed online as specified in [Table 1-12].

Standard List	TOE	TOE	Cryptogra	Distribution Method
Stanuaru List	(Sender)	(Receiver)	phic Key	Distribution Method
ISO/IEC 10118-3,	Agont	Policy	Кеу	KEK is encrypted with a session
TTAS.KO-	Agent	Server	encryption	key, and distributed from the
12.0004/R1	server	Server	key (KEK)	Agent Server to the Policy Server.
ISO/IEC 10118-3,			User data	User data encryption key is
TTAS.KO-	Policy	Agent	encryption	encrypted with a session key, and
12.0004/R1	Server	server	key	distributed from the Policy Server
			Key	to the Agent Server.

[Table 1-12] Cryptographic key distribution method

- Cryptographic key destruction: The TOE overwrites the cryptographic key and critical security parameters with "0" as shown in [Table 1-13].

Cryptographic Key	TOE	Location	Destruction Method	Timing of Destruction
User data encryption/decryption key	Agent server	Memory	Zeroization	Immediately after the encryption/decryption operation on user data
Session key	Policy Server	Memory	Zeroization	Immediately after mutual authentication is removed

	Agent	Memory	Zeroization	Immediately after mutual
	server	Memory	Zeroization	authentication is removed
Key encryption key (KEK)	Policy	Momony	Zeroization	Immediately before the
	Server	Memory	Zeroization	program is terminated
	Agent	Momony	Zeroization	Immediately before the
	server	Memory	Zeroization	program is terminated

[Table 1-13] Cryptographic key destruction method

- Cryptographic operation: Cryptographic operation of user data is performed as shown in [Table 1-14], and cryptographic operation for the encryption of TSF data is performed as shown in [Table 1-15].

Standard List	Cryptographic Algorithm	Key Size	Operation Mode	Padding	Use
KS X 1213-1	ARIA	256 bits	CBC	PKCS#5	- User data encryption/decryption
TTAS.KO- 12.0004/R1	SEED	128 bits	CBC	PKCS#5	- User data encryption/decryption
ISO/IEC 10118-3	SHA512	None	None	None	- User data encryption

[Table 1-14] Cryptographic operation of user data

Standard	Cryptographic	Key	Operation	Padding	Use
List	Algorithm	Size	Mode	Fauuling	USE
KS X 1213-1	ARIA	256 bits	СВС	PKCS#5	 Inter-TSF cryptographic communication Encryption/decryption of environment configuration file Encryption/decryption of TSF data
TTAS.KO- 12.0004/R1	SEED	128 bits	CBC	PKCS#5	- Encryption/decryption of KEK
ISO/IEC 10118-3	SHA512	None	None	None	- Integrity monitoring of the TOE

					- Generation of SALT
					value of KEK
					- Generation of SALT
					value of session key
					- Mutual verification of
					session key
					- Inter-TSF cryptographic
					communication
					- Encryption of
					administrator password
ISO/IEC	RSAES	2048	None	None	- Inter-TSF mutual
18033-2	(SHA-256)	bits	NOTE	None None	authentication
ISO/IEC	RSA-PSS	2048	None	None	- Inter-TSF mutual
14888-2	(SHA-256)	bits	None	None	authentication
ISO/IEC	ECDH	256	None	None	- Inter-TSF mutual
11770-3	(SHA-256)	bits	NOTE	None	authentication
TTAS.KO-	PBKDF2	256	None	None	KEK concration
12.0334	(SHA-256)	bits	NOTE	NUTE	- KEK generation

[Table 1-15] Cryptographic operation of TSF data

1.4.2.3 User data protection (FDP)

The TOE performs the encryption/decryption of user data at the column level by using the validated cryptographic module MagicCrypto V2.2.0 through the encryption policy set by the authorized administrator. The same ciphertext is not generated for the same plaintext when encrypting the user data. After the encryption/decryption is completed, the memory area is initialized with "0" value and the used memory area is deallocated so that the user data are unrecoverable in the memory.

Encryption algorithms listed in [Table 1-16] Cryptographic operation of user data are used for the encryption/decryption of user data. SHA-512 is provided for the one-way encryption algorithm.

Standard List	Cryptographic	Кеу	Operation	Padding	Lico
	Algorithm	Size	Mode	Faduling	Use

KS X 1213-1	ARIA	256 bits	СВС	PKCS#5	- Encryption/decryption of user data
TTAS.KO- 12.0004/R1	SEED	128 bits	СВС	PKCS#5	- Encryption/decryption of user data
ISO/IEC 10118-3	SHA512	None	None	None	- Encryption of user data

[Table 1-16] Cryptographic operation of user data

1.4.2.4 Identification and authentication (FIA)

The TOE provides the identification and authentication function for the administrator in charge of the security management, and does not provide a reason for failure in the event of an authentication failure. It also provides the function to lock the authentication (10 minutes) if authentication attempts fail consecutively (5 times). The TOE offers the function to prevent the reuse of authentication data of the administrator.

A password used in the process of the identification and authentication of the administrator shall comply with the rule that the password shall have a combination of alphabetic characters, numeric characters and special characters, and is masked with "*" when entered.

The TOE performs the mutual authentication through the protocol developed by HumaneSystem Co., Ltd. for the purpose of the secure communication among the TOE components.

1.4.2.5 Security management (FMT)

The TOE provides the authorized administrator with the security management function such as policy management, administrator management and environment configuration. The authorized administrator performs the security management through the security management interface. In addition, the administrator ID and password are designated during the installation. When the authorized administrator accesses the security management interface, the TOE enforces the authorized administrator to change the password if the password expiration date arrives (expiration period: 100 days). There is only one type of privilege of the authorized administrator, which is the top administrator.

1.4.2.6 Protection of the TSF (FPT)

The TOE protects the TSF data stored in containers controlled by the TSF, and the TSF data transmitted between TOE components. It also checks major security function processes, etc. by conducting TSF self tests. The TOE runs a suite of self tests during initial start-up and periodically during normal operation (1 hour interval), and verifies the integrity of TOE configuration files and major processes during initial start-up and periodically during normal operation. Then, if the integrity was compromised, it sends an alarm email to the administrator.

The Policy Server protects the stored TSF data including the administrator password, encryption keys, TOE configuration values and the DB encryption/decryption policy by using SHA-512 hash and ARIA256-CBC encryption provided by the validated cryptographic module.

For the encrypted transmission of the TSF data between TOE components, the transmitted data (TSF data + SHA512 hash value of the TSF data) are encrypted/decrypted with ARIA-256-CBC cryptographic algorithm, thereby protecting the TSF data from unauthorized disclosure and modification. If the integrity violation is detected in relation to the hash value of the received TSF data, the TSF ignores the received data, and generates the audit data on this event.

1.4.2.6 TOE access (FTA)

The TOE restricts the number of the administrator's management access sessions whose access is allowed to perform the security management function to one. If the same account makes new access, it terminates the existing session and generates audit data. Also, if the administrator remains inactive for 10 minutes, it terminates the existing session and requires the administrator to be reauthenticated.

In the case of the administrator, access sessions are restricted according to the rule for allowing access IP. The TOE allows the management sessions made only from a device (2 or less) whose IP was designated and allowed to access, and generates audit data on the result of the limitation of sessions by the security management interface.

Technical terms in this ST are defined as follows. Terms used in this ST, which are the same as in the CC, are not separately defined herein, but must follow those in the CC.

Private key

A cryptographic key which is used in an asymmetric cryptographic algorithm and is uniquely associated with an entity (the subject using the private key), not to be disclosed

Object

Passive entity in the TOE, that contains or receives information, and upon which subjects perform operations

Approved mode of operation

An operation mode of a cryptographic module that uses an approved cryptographic algorithm

Approved cryptographic algorithm

A cryptographic algorithm selected by an institution that validates cryptographic modules taking into account the security, credibility, interoperability and so forth with regard to block cipher, hash function, message authentication code, random bit generator, key settings, public key encryption, and electronic signature cryptographic algorithms

Attack potential

Measure of the effort to be expended in attacking a TOE, expressed in terms of an attacker's expertise, resources and motivation

Public key

A cryptographic key which is used in as asymmetric cryptographic algorithm and is associated with a unique entity (the subject using the public key). It can be disclosed.

Public Key(asymmetric) cryptographic algorithm

A cryptographic algorithm that uses a pair of public and private keys

Management access

The access to the TOE by using the HTTPS, SSH, TLS, IPSec, etc. to manage the TOE by administrator

Recommend/be recommended

The 'recommend' or 'be recommended' presented in Application notes is not mandatorily recommended, but required to be applied for secure operation of the TOE.

Random bit generator (RBG)

A device or algorithm that outputs a binary string that is statistically independent and is not biased. The RBG used for cryptographic application generally generates 0- and 1-bit string, and the string can be combined into a random bit block. The RBG is classified into the deterministic and non-deterministic type. The deterministic type RBG is composed of an algorithm that generates bit strings from the initial value called a "seed key," and the nondeterministic type RBG produces output that depends on the unpredictable physical source.

Symmetric cryptographic technique

Encryption scheme that uses the same secret key in mode of encryption and decryption, also known as secret key cryptographic technique

Database (DB)

A set of data that is compiled according to a certain structure in order to receive, save and provide data in response to the demand of multiple users to support multiple application duties at the same time. The database related to encryption by column, which is required by this ST, refers to the relational database.

Data Encryption Key (DEK)

Key that encrypts and decrypts the data

Iteration

Use of the same component to express two or more distinct requirements

Security Function Policy (SFP)

A set of rules that describes the specific security action performed by TSF (TOE security functionality) and describe them as SFR (security function requirement)

Implementation-dependent statement of security needs for a specific identified TOE

Security attribute

The characteristics of the subject used to define the SFR, user (including the external IT product), object, information, session and/or resources. These values are used to perform the SFR.

Security token

Hardware device that implements key generation and electronic signature generation inside the device to save/store confidential information safely

Protection Profile (PP)

Implementation-independent statement of security needs for a TOE type

Decryption

The act that restores the ciphertext into the plaintext using the decryption key

Secret key

A cryptographic key which is used in a symmetric cryptographic algorithm and is uniquely associated with one or several entities, not to be disclosed.

User

Refer to "External entity"

User data

Data for the user, that does not affect the operation of the TSF (TOE security functionality)

Selection

Specification of one or more items from a list in a component

Identity

Representation uniquely identifying an authorized user. The representation can be the full or abbreviated name or a pseudonym.

The act that converts the plaintext into the ciphertext using the encryption key

HEDES Agent Server

A software module that processes the encryption or decryption of the data of a user according to the encryption/decryption policy of the Policy Server

Element

Indivisible statement of a security need

Role

Predefined set of rules on permissible interactions between a user and the TOE

Operation (on a component of the CC)

Modification or repetition of a component. Allowed operations on components are assignment, iteration, refinement and selection.

Operation (on an object)

Specific type of action performed by a subject on an object

External entity

Entity (human or IT entity) interacting (or possibly interacting) with the TOE from outside of the TOE boundary

Threat agent

Unauthorized external entity that can pose illegitimate threats such as adverse access, modification or deletion to an asset

Authorized administrator

Authorized user who securely operates and manages the TOE

Authorized user

User who may, in accordance with the Safety Functional Requirements (SFR), perform an operation

Authentication data

Information used to verify the claimed identity of a user

Self-test

Pre-operational or conditional test executed by the cryptographic module

Assets

Entities that the owner of the TOE presumably places value upon

Refinement

Addition of details to a component

HEDES policy server

A software module for the authorized administrator to manage the establishment of the encryption/decryption policy

Organizational security policies

Set of security rules, procedures, practices, or guidelines for an organization wherein the set is currently given by actual or virtual organizations, or is going to be given

Dependency

Relationship between components such that if a requirement based on the depending component is included in a PP, ST or package, a requirement based on the component that is depended upon must normally also be included in the PP, ST or package

Subject

Active entity in the TOE that performs operations on objects

Augmentation

Addition of one or more requirement(s) to a package

Column

A set of data values of a particular data type, one for each row of the table in a relational database

Component

Smallest selectable set of elements on which requirements may be based

Class

Set of CC families that share a common focus

Key Encryption Key (KEK)

Key that encrypts and decrypts another cryptographic key

Target of Evaluation (TOE)

Set of software, firmware and/or hardware possibly accompanied by guidance

Evaluation Assurance Level (EAL)

Set of assurance requirements drawn from CC Part 3, representing a point on the CC predefined assurance scale, that forms an assurance package

Family

Set of components that share a similar goal but differ in emphasis or rigour

MySQL Plug-In

A form of libraries that can extend additional functions in addition to basic functions of MySQL DBMS

Assignment

The specification of an identified parameter in a component (of the CC) or requirement

Can/could

The 'can' or 'could' presented in Application notes indicates optional requirements applied to the TOE by ST author's choice

Shall/must

The 'shall' or 'must' presented in Application notes indicates mandatory requirements applied to the TOE

Critical Security Parameters (CSP)

Information related to security that can erode the security of the cryptographic module if exposed or changed (e.g., verification data such as secret key/private key, password, or Personal Identification Number)

Application Server

The server that installs and operates the application, which is developed to provide a certain application service by the organization that operates the TOE. The pertinent application reads the user data from the DB, which is located in the database server, by the request of the application service user, or sends the user data to be stored in the DB to the database server.

Database Server

The server in which DBMS managing the protected DB is installed in the organization that operates the TOE

Database Management System (DBMS)

A software system composed to configure and apply the database. The DBMS related to encryption by column, which is required by this ST, refers to the database management system based on the relational database model.

HEDES v1.0

DB security product to perform the column-level encryption/decryption of major information stored in the database to be protected, by using the validated cryptographic module of the National Intelligence Service.

JAVA JDK

Abbreviation of JAVA Development Kit. It is an environment for JAVA development with which JAVA program can be developed and executed.

JRE

Abbreviation of JAVA Runtime Environment. Unlike JAVA JDK, it is an environment to execute a program and not a development environment. It can execute a program developed with a JAVA language only.

Secure Sockets Layer (SSL)

This is a security protocol proposed by Netscape to ensure confidentiality, integrity and security over a computer network

Transport Layer Security (TLS)

This is a cryptographic authentication communication protocol between a SSL-based server and a client and is described in RFC 2246.

TOE Security Functionality (TSF)

Combined functionality of all hardware, software, and firmware of a TOE that must be relied upon for the correct enforcement of the SFRs

TSF data

Data generated by the TOE and for the TOE, which can affect the operation of the TOE

1.6 Conventions

The notation, formatting and conventions used in this ST are consistent with the Common Criteria for Information Technology Security Evaluation.

The CC allows several operations to be performed for functional requirements: iteration, assignment, selection and refinement. Each operation is used in this ST.

Iteration

Iteration is used when a component is repeated with varying operations. The result of iteration is marked with an iteration number in parenthesis following the component identifier, i.e., denoted as (iteration No.).

Assignment

This is used to assign specific values to unspecified parameters (e.g., password length). The result of assignment is indicated in square brackets like [assignment_value].

Selection

This is used to select one or more options provided by the CC in stating a requirement. The result of selection is shown as *underlined and italicized*.

Refinement

This is used to add details and thus further restrict a requirement. The result of refinement is shown in **bold text**.

CC, PP and Package that are compliant with ST and TOE are as follows.

2.1 CC Conformance claim

ST complies with the following CC.

Classification	Conformance			
	Common Criteria for Information Technology Security			
	Evaluation, Version 3.1, Revision 5			
	- Common Criteria for Information Technology Security			
	Evaluation. Part 1:			
	Introduction and General Model, Version 3.1, Revision 5			
	(CCMB-2017- 04-001, April, 2017)			
Common Critoria	- Common Criteria for Information Technology			
Common Criteria	Security Evaluation. Part 2:			
	Security Functional Components, Version 3.1, Revision 5			
	(CCMB-2017- 04-002, April, 2017)			
	- Common Criteria for Information Technology			
	Security Evaluation. Part 3:			
	Security Assurance Components, Version 3.1, Revision 5			
	(CCMB-2017- 04-003, April, 2017)			
	Part 2 Security Functional Requirements Extended			
CC Conformance Claim	Part 3 Security Assurance Requirements Conformant			
	Package Augmented: EAL1 augmented (ATE.FUN.1)			

[Table 2-1]CC Conformance Claim

2.2 PP conformance claim

This ST strictly complied with the 'National PP of Database Encryption 'V1.1'(KECS-PP-0820a2017_PP_KR).'

Classification	PP	ST	Rationale
Type of TOE	DB Encryption	DB Encryption	Same as PP
	FAU_ARP.1	FAU_ARP.1	Same as PP
	FAU_GEN.1	FAU_GEN.1	Same as PP
	FAU_SAA.1	FAU_SAA.1	Same as PP
	FAU_SAR.1	FAU_SAR.1	Same as PP
	FAU_SAR.3	FAU_SAR.3	Same as PP
	FAU_STG.3	FAU_STG.3	Same as PP
	FAU_STG.4	FAU_STG.4	Same as PP
	FCS_CKM.1(1)	FCS_CKM.1(1)	Same as PP
	FCS_CKM.1(2)	FCS_CKM.1(2)	Same as PP
Security	FCS_CKM.2	FCS_CKM.2	Same as PP
Function	FCS_CKM.4	FCS_CKM.4	Same as PP
Requirement	FCS_COP.1(1)	FCS_COP.1(1)	Same as PP
(SFR)	FCS_COP.1(2)	FCS_COP.1(2)	Same as PP
	FCS_RBG.1(Extended)	FCS_RBG.1(Extended)	Same as PP
	FDP_UDE.1(Extended)	FDP_UDE.1(Extended)	Same as PP
	FDP_RIP.1	FDP_RIP.1	Same as PP
	FIA_AFL.1	FIA_AFL.1	Same as PP
	FIA_IMA.1(Extended)	FIA_IMA.1(Extended)	Same as PP
	FIA_SOS.1	FIA_SOS.1	Same as PP
	FIA_UAU.2	FIA_UAU.2	Same as PP
	FIA_UAU.4	FIA_UAU.4	Same as PP
	FIA_UAU.7	FIA_UAU.7	Same as PP

FIA_UID.2	FIA_UID.2	Same as PP
FMT_MOF.1	FMT_MOF.1	Same as PP
FMT_MTD.1	FMT_MTD.1	Same as PP
FMT_PWD.1(Extended)	FMT_PWD.1(Extended)	Same as PP
FMT_SMF.1	FMT_SMF.1	Same as PP
FMT_SMR.1	FMT_SMR.1	Same as PP
FPT_ITT.1	FPT_ITT.1	Same as PP
FPT_PST.1(Extended)	FPT_PST.1(Extended)	Same as PP
FPT_TST.1	FPT_TST.1	Same as PP
FTA_MCS.2	FTA_MCS.2	Same as PP
FTA_SSL.5(Extended)	FTA_SSL.5(Extended)	Same as PP
FTA_TSE.1	FTA_TSE.1	Same as PP

[Table 2-2] Rationale for PP Conformance Claim

2.3 Package conformance claim

This ST conforms to PP assurance requirement package EAL 1, augmented with the following.

Assurance Package: EAL1 augmented(ATE_FUN.1)

2.4 Conformance claim rationale

This ST adopts the TOE type, security objectives and security requirements in the same way as the Protection Profile, and it is demonstrated that this ST conforms to "the National PP for Database Encryption V1.0" "more restrictively and strictly"

The followings are the security objectives handled by technical and procedural method supported from operational environment in order to provide the TOE security functionality accurately.

3.1 Security objectives for the operational environment

The following are the security objectives handled through technical and procedural means supported by the operational environment to provide TOE security functionality accurately.

OE. Physical Security	The place of TOE installation and operation shall be equipped with access control and protection facilities so
OE. Trusted Administrator	that only authorized administrator can access. The authorized administrator of the TOE shall be non- malicious, have appropriately trained for the TOE management functions and accurately fulfill the duties in
OE. Secure Development	accordance with administrator guidances. The developer who uses the TOE to interoperate with the user identification and authentication function in the operational environment of the business system shall ensure that the security functions of the TOE are securely applied in accordance with the requirements of the manual
OE. Log Backup	provided with the TOE. The authorized administrator of the TOE shall periodically check a spare space of the audit data storage in case of the audit data loss, and carries out the audit data backup (external log server or separate storage device, etc.) to prevent audit data loss.
OE. Operation System Reinforcement	The authorized administrator of the TOE shall ensure the reliability and security of the operating system by performing the reinforcement on the latest vulnerabilities of the operating system in which the TOE is installed and operated.

OE. Time Stamp	The TOE shall accurately record security-relevant events by
	using reliable time stamps provided by the TOE operational
	environment.
OE. DBMS	The DBMS interacting with the TOE stores audit trail
	records, and hence should be protected from unauthorized
	deletion or modification.

4. Extended Components Definition

This ST defines and uses the following components in addition to the components of CC Part 2. Extended components of this ST are as follows.

The following [Table 4-1] shows the extended security functional requirements components.

Class		Components
Cryptographic		
support	FCS_RBG.1(Extended)	Random bit generation
(FCS)		
Identification &		
authentication	FIA_IMA.1(Extended)	TOE Internal mutual authentication
(FIA)		
User data protection	EDD LIDE 1/Extended)	licer data energy tion
(FDP)	FDP_UDE.1(Extended)	User data encryption
Security		
Management	FMT_PWD.1(Extended)	Management of ID and password
(FMT)		
Protection of the TSF	EDT DET 1/Extended)	Design protection of stored TCE data
(FPT)	FPT_PST.1(Extended)	Basic protection of stored TSF data
TOE Access	FTA SSL E(Extended)	Management of TCC initiated cossions
(FTA)	FTA_SSL.5(Extended)	Management of TSF-initiated sessions

[Table 4-1] Extended components

4.1 Cryptographic support (FCS)

4.1.1 Random Bit Generation

FCS_RBG.1	Random bit generation (Extended)	
Hierarchical to	No other components.	
Dependencies	No dependencies.	
FCS_RBG.1.1	The TSF shall generate random bits required to generate an	
	cryptographic key using the specified random bit generator that meets	
	the following [assignment: list of standards].	

4.2 Identification & authentication(FIA)

4.2.1 TOE Internal mutual authentication

FIA_IMA.1	TOE Internal mutual authentication (Extended)
Hierarchical to	No other components.
Dependencies	No dependencies.
FIA_IMA.1.1	The TSF shall perform mutual authentication between [assignment:
	different parts of TOE] using the [assignment: authentication protocol]
	that meets the following: [assignment: <i>list of standards</i>].

4.3 User data protection (FDP)

4.3.1 User data encryption

User data encryption (Extended)
No other components.
FCS_COP.1 Cryptographic operation
TSF shall provide TOE users with the ability to encrypt/decrypt user data
according to [assignment: the list of Encryption/decryption methods]
specified.

4.4 Security Management(FMT)

4.4. ID and Password

FMT_PWD.1 Hierarchical to Dependencies	Management of ID and password (Extended) No other components. FMT_SMF.1 Specification of management functions FMT_SMR.1 Security roles
FMT_PWD.1.1	 The TSF shall restrict the ability to manage the password of [assignment: <i>list of functions</i>] to [assignment: <i>the authorized roles</i>]. 1.[assignment: <i>password combination rules and/or length</i>] 2.[assignment: <i>other management such as management of special characters unusable for password, etc.</i>]
FMT_PWD.1.2	The TSF shall restrict the ability to manage the ID of [assignment: <i>list of functions</i>] to [assignment: <i>the authorized identified roles</i>]. 1.[assignment: <i>ID combination rules and/or length</i>] 2.[assignment : <i>other management such as management of special characters unusable for ID, etc.</i>]
FMT_PWD.1.3	The TSF shall provide the capability for [selection, choose one of: <i>setting ID</i> and password when installing, setting password when installing, changing the ID and password when the authorized administrator accesses for the first time, changing the password when the authorized administrator accesses for the first time].

4.5 Protection of the TSF(FPT)

4.5.1 Protection of stored TSF data

FPT_PST.1	Basic protection of stored TSF data (Extended)
Hierarchical to	No other components.
Dependencies	No dependencies.
FPT_PST.1.1	The TSF shall protect [assignment: TSF data] stored in containers
	controlled by the TSF from

the unauthorized [selection: disclosure, modification].

4.6 TOE Access(FTA))

4.6.1 Session Locking and Termination

FTA_SSL.5	Management of TSF-initiated sessions (Extended)		
Hierarchical to	No other components.		
Dependencies	FIA_UAU.1 Authentication or No dependencies.		
FTA_MCS.2.1	The TSF shall [selection:		
	• lock the session and re-authenticate the user before		
	unlocking the session,		
	to united all on interesting species offer a		

terminate]] an interactive session after a [assignment: *time interval of user inactivity*].

5. Security Requirements

The security requirements describe security functional requirements and assurance requirements that must be satisfied by the TOE that claims conformance to this ST.

5.1 Security Functional Requirements

The security function requirements defined in this ST are expressed by selecting the relevant security function components from CC Part 2 to satisfy the security objectives identified in Chapter 4. The following [Table-5-1] provides a summary of the security function components used in this ST.

Security		
Functional	Security Functional Component	
Class		
	FAU_ARP.1	Security alarms
	FAU_GEN.1	Audit data generation
	FAU_SAA.1	Potential violation analysis
Security Audit (FAU)	FAU_SAR.1	Audit review
	FAU_SAR.3	Selectable audit review
	FAU_STG.3	Action in case of possible audit data loss
	FAU_STG.4	Prevention of audit data loss
	FCS_CKM.1(1)	Cryptographic key generation
		(User data encryption)
	FCS_CKM.1(2)	Cryptographic key generation
Cruptographic		(TSF data encryption)
Cryptographic Support (FCS)	FCS_CKM.2	Cryptographic key distribution
	FCS_CKM.4	Cryptographic key destruction
	FCS_COP.1(1)	Cryptographic operation (User data encryption)
	FCS_COP.1(2)	Cryptographic operation (TSF data encryption)
	FCS_RBG.1	Random bit generation

	(Extended)	
User Data	FDP_UDE.1	User data encryption
Protection	(Extended)	
(FDP)	FDP_RIP.1	Protect the residual information Protection
	FIA_AFL.1	Authentication failure handling
	FIA_IMA.1	TOF internal mutual authentication
	(Extended)	TOE internal mutual authentication
Identification and	FIA_SOS.1	Verification of secrets
Authentication	FIA_UAU.2	User authentication before any action
(FIA)		(Administrator)
	FIA_UAU.4	Single-use authentication mechanism
	FIA_UAU.7	Protected authentication feedback
	FIA_UID.2	User identification before any action
	FIA_UID.2	(Administrator)
	FMT_MOF.1	Management of security functions behavior
Convitu	FMT_MTD.1	Management of TSF data
Security Management	FMT_PWD.1	Management of ID and password
(FMT)	(Extended)	
	FMT_SMF.1	Specification of management functions
	FMT_SMR.1	Security roles
	FPT_ITT.1	Basic internal TSF data transfer protection
Protection of the	FPT_PST.1	Basic protection of stored TSF data
TSF (FPT)	(Extended)	
	FPT_TST.1	TSF testing
TOE Access (FTA)	FTA_MCS.2	Per user attribute limitation on multiple
		concurrent sessions
	FTA_SSL.5	Management of TSF-initiated sessions
	(Extended)	
	FTA_TSE.1	TOE session establishment

[Table 5-1] Security functional requirements (SFR)

5.1.1 Security Audit (FAU)

FAU_ARP.1	Security alarms
Hierarchical to	No other components.
Dependencies	FAU_SAA.1 Potential violation analysis
FAU_ARP.1.1	The TSF shall take [an email notification to an authorized administrator]
	upon detection
	of a potential security violation.
FAU_GEN.1	Audit data generation
Hierarchical to	No other components.
Dependencies	FPT_STM.1 Reliable time stamps
FAU_GEN.1.1	The TSF shall be able to generate an audit record of the following
	auditable events:
	a) Start-up and shutdown of the audit functions.
	b) All auditable events for the <i>not specified</i> level of audit, and
	c) [Refer to "auditable event" in [Table 5-2] Auditable Event. [None]
FAU_GEN.1.2	The TSF shall record within each audit record at least the following
	information:
	a) Date and time of the event, type of event, subject identity (if
	applicable) and the outcome (success of failure) of the event: and
	b) For each audit event type, based on the auditable event definitions of
	the functional
	components include in the ST, [refer to "Additional Audit Record" in
	[Table 5-2]
	Auditable Event, (<u>None</u>)]

Security Functional Component	Auditable Event	Туре	Additional Audit Record
FAU_ARP.1	Actions taken due to potential security violations	Target	ldentity of the recipient of the response action

	Enabling and disabling of any of the		
	analysis mechanisms,		
FAU_SAA.1	Automated responses performed by the	Target	
	tool		
FAU_STG.3	Actions taken due to exceeding of a	Target	
	threshold	, anger	
FAU_STG.4	Actions taken due to the audit storage	Target	
	failure	laiget	
FCS_CKM.1(1)	Success and failure of the activity	Target	
	Success and failure of the activity		Identity of the
FCS_CKM.2	(only applying to distribution of key related	Target	recipient of the
	to user data encryption/decryption)		response action
	Success and failure of the activity		
FCS_CKM.4	(only applying to distribution of key related	Target	
	to user data encryption/decryption)		
	Success and failure of cryptographic	Target	
FCS_COP.1(1)	operation	Target	
	Success and failure of user data	-	
FDP_UDE.1	encryption/decryption	Target	
	The reaching of the threshold for the		
	unsuccessful authentication attempts and	Tanat	
FIA_AFL.1	the action taken, and the subsequent, if	Target	
	appropriate, restoration to the normal state		
	Success and failure of mutual		
FIA_IMA.1	authentication Modify of authentication	Target	
	protocol		
FIA_UAU.2	All uses of authentication mechanisms	Target	
		-	
FIA_UAU.4	Attempts to reuse authentication data	Target	
	All use of the User Identification		
FIA_UID.2	mechanism, including the user identity	Target	
	provided		

FMT_MOF.1	All modifications in the behavior of the functions in the TSF	Target	
FMT_MTD.1	All modifications to the values of TSF data	Target	Modified values
			of TSF data
FMT_PWD.1	All changes of the password	Target	
		-	
FMT_SMF.1	Use of the management functions	Target	
	Modifications to the user group of rules		
FMT_SMR.1	divided	Target	
			Modified TSF data
	Execution of the TSF self tests and the		or execution code
FPT_TST.1	results of the tests	Target	in case of
			integrity violation
	Denial of a new session based on the		
FTA_MCS.2	limitation of multiple	Target	
	concurrent sessions		
	Locking or termination of interactive	Targat	
FTA_SSL.5	session	Target	

[Table 5-2] Audit event

FAU_SAA.1	Potential violation analysis
Hierarchical to	No other components.
Dependencies	FAU_GEN.1 Audit data generation
FAU_SAA.1.1	The TSF shall be able to apply a set of rules in monitoring the audited
	events and based upon these rules indicate a potential violation of the
	enforcement of the SFRs.
FAU_SAA.1.2	The TSF shall enforce the following rules for monitoring audited events:
	a) Accumulation or combination of [
	 Authentication failure audit event among auditable
	event in FIA_UAU.1
	 Integrity violation event among auditable events
	in FPT_TST.1 • Failure of self test of the
	KCMVP, [None] known to indicate a potential
	security violation.

b) [None]

FAU_SAR.1	Audit review		
Hierarchical to	No other components.		
Dependencies	FAU_GEN.1 Audit data generation		
FAU_SAR.1.1	The TSF shall provide [authorized administrator] with the capability to		
	read [all the audit data] from the audit records.		
FAU_SAR.1.2	The TSF shall provide the audit records in a manner suitable for the		
	authorized administrator to interpret the information.		
FAU_SAR.3	Selectable audit review		
FAU_SAR.3 Hierarchical to	Selectable audit review No other components.		
_			
Hierarchical to	No other components.		
Hierarchical to Dependencies	No other components. FAU_SAR.1 Audit review		
Hierarchical to Dependencies	No other components. FAU_SAR.1 Audit review The TSF shall provide the capability to apply [the following methods of		
Hierarchical to Dependencies	No other components. FAU_SAR.1 Audit review The TSF shall provide the capability to apply [the following methods of selection and/or ordering] of audit data based on [the following criteria with logical relations].		

Selection Criteria	Allowable Ability
Security name	
Occurred module	
Date and time of	Selective search using keywords
occurrence	
Type of action	

[Table 5-3] Type of Audit Data and Selection Criteria

Hierarchical to No other components.

Dependencies No dependencies.

- FAU_STG.3.1 The TSF shall [notification to the authorized administrator, [None]] if the audit trail exceeds [Usage rate (60%~~90%) for the threshold of the number of audit data set by the authorized administrator and the maximum capacity of the DB table space].
- FAU_STG.4 Prevention of audit data loss

Hierarchical to	FAU_STG.3 Action in case of possible audit data loss
Dependencies	No dependencies.
FAU_STG.4.1	The TSF shall overwrite oldest audit records and [send email alert to the
	administrator] if the audit trail is full.

5.1.2 Cryptographic Support (FCS)

FCS_CKM.1(1)	Cryptographic key generation (User Data Encryption)		
Hierarchical to	No other components.		
Dependencies	[FCS_CKM.2 Cryptographic key distribution, or		
	FCS_COP.1 Cryptographic operation]		
	FCS_CKM.4 Cryptographic key destruction		
FCS_CKM.1.1	The TSF shall generate cryptographic keys in accordance with a specified		
	cryptographic key generation algorithm [Key generation algorithm of		
	[Table 5-4]] and specified cryptographic key sizes [Cryptographic key		
	size of [Table 5-4]] that meet the following: [Standard List of [Table 5-		
	4]].		

Standard List	Cryptographic Algorithm	Key Size	Usage
ISO/IEC 18031	Hash-	128/256	- Generate for user data Encryption
	DRBG(SHA256)	bits	and decryption key

[Table 5-4] Cryptographic key generation algorithm for user data encryption

Cryptographic key generation (TSF data encryption)
No other components.
[FCS_CKM.2 Cryptographic key distribution or
FCS_COP.1 Cryptographic operation]
FCS_CKM.4 Cryptographic key destruction
The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm [Key generation algorithm of
[Table 5-5]] and specified cryptographic key sizes [Key size of [Table 5-
5]] that meet the following: [Standard List of [Table 5-5]].

Standard List	Cryptographic Algorithm	Key Size	Usage
ISO/IEC 18031	Hash-	128/256	 KEK generation Generate for TSF data Encryption
	DRBG(SHA256)	bits	and decryption key

[Table 5-5] Cryptographic key generation algorithm for TSF data encryption

FCS_CKM.2	Cryptographic key distribution
-----------	--------------------------------

Hierarchical to No other components.

- Dependencies [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation] FCS_CKM.4 Cryptographic key destruction
- FCS_CKM.2.1 The TSF shall destruct cryptographic keys in accordance with a specified cryptographic key distribution method [Cryptographic key distribution Method of [Table 5-6]] that meet the following: [Standard List of [Table 5-6]]

Standard List	TOE(Sender)	TOE(Receiver)	Cryptographic Key	Distribution Method
ISO/IEC 10118- 3, TTAS.KO- 12.0004/R1	Agent Server	Policy Server	KEK	KEK is encrypted using a session key and distributed from the Agent Server to the Policy Server.
ISO/IEC 10118- 3, TTAS.KO- 12.0004/R1	Policy Server	Agent Server	User data encryption and decryption key	The user data encryption key is encrypted using the session key and distributed from the Policy Server to the Agent Server.

[Table 5-6] Cryptographic key distribution method

FCS_CKM.4	Cryptographic key destruction
Hierarchical to	No other components.
Dependencies	[FDP_ITC.1 Import of user data without security attributes,

or FDP_ITC.2	Import of	user data	with secur	ity attributes,
or				

FCS_CKM.1	Cryptographic	key generation]	

Cryptographic Key	TOE	Location	Destruction Method	Timing of Destruction
User data encryption/ decryption key	Agent server	Memory	Zeroization	Immediately after the encryption/decryption operation on user data
Session key	Policy Server	Memory	Zeroization	Immediately after mutual authentication is removed
	Agent server	Memory	Zeroization	Immediately after mutual authentication is removed
Key encryption key	Policy Server	Memory	Zeroization	Immediately before the program is terminated
(KEK) Agent Memory server		Zeroization	Immediately before the program is terminated	

[Table 5-7] Cryptographic key destruction method

FCS_COP.1(1) Cryptographic operation (User data encryption)					
Hierarchical to No other components.					
Dependencies	[FDP_ITC.1 Import of user data without security attributes, or				
	FDP_ITC.2 Import of user data with security attributes, or				
	FCS_CKM.1 Cryptographic key generation]				
	FCS_CKM.4 Cryptographic key destruction				
FCS_COP.1.1	The TSF shall perform [Operations list of [Table 5-8]] in accordance				
	with a specified cryptographic algorithm [Cryptographic algorithms or				
	[Table 5-8]]				
	and cryptographic key sizes [Key size of [Table 5-8]] that meet the				
following: [Standard List of [Table 5-8]].					
Ctore dowed List	Cryptographic Operation Dadding Operation				

Standard List	Cryptographic algorithms	Key size	Operation mode	Padding	Operation list		
KS X 1213-1	ARIA	256 bits	СВС	PKCS#5	Encryption. Decryption		

TTAS.KO- 12.0004/R1	SEED	128 bits	СВС	PKCS#5	Encryption. Decryption
ISO/IEC	SHA512	None	Nono	Nono	Encryption
10118-3	SURSIS	None	None	None	Encryption

[Table 5-8] Cryptographic operation of user data

FCS_COP.1(2)	Cryptographic operation (TSF data encryption)
Hierarchical to	No other components.
Dependencies	[FDP_ITC.1 Import of user data without security attributes, or
	FDP_ITC.2 Import of user data with security attributes, or
	FCS_CKM.1 Cryptographic key generation]
	FCS_CKM.4 Cryptographic key destruction
FCS_COP.1.1	The TSF shall perform [Operations list of [Table 5-9]] in accordance with
	a specified cryptographic algorithm [Cryptographic algorithms of [Table
	5-9]] and cryptographic key sizes [Key size of [Table 5-9]] that meet the
	following: [Standard List of [Table 5-9]].

Standard List	Cryptographic Algorithm	Key Size	Operation Mode	Padding	Use
KS X 1213-1	ARIA	256 bits	CBC	PKCS#5	 Inter-TSF cryptographic communication Encryption/decryption of environment configuration file Encryption/decryption of TSF data
TTAS.KO- 12.0004/R1	SEED	128 bits	СВС	PKCS#5	- Encryption/decryption of KEK
ISO/IEC 10118-3	SHA512	None	None	None	 Integrity monitoring of the TOE Generation of SALT value of KEK Generation of SALT value of session key

					- Mutual verification of
					session key
					- Inter-TSF cryptographic
					communication
					- Encryption of
					administrator password
ISO/IEC	RSAES	2048	None	None	- Inter-TSF mutual
18033-2	(SHA-256)	bits	None	none	authentication
ISO/IEC	RSA-PSS	2048	Nana	None	- Inter-TSF mutual
14888-2	(SHA-256)	bits	None	None	authentication
ISO/IEC	ECDH	256 bits	Nana	None	- Inter-TSF mutual
11770-3	(SHA-256)	200 DILS	None	None	authentication
TTAS.KO-	PBKDF2	2EC bits	None	None	KEK concretion
12.0334	(SHA-256)	256 bits	None	None	- KEK generation

[Table 5-9] Cryptographic operation of TSF data

FCS_RBG.1	Random bit generation (extended)	
-----------	----------------------------------	--

Hierarchical to	No other components.
-----------------	----------------------

Dependencies No dependencies.

FCS_RBG.1.1 The TSF shall generate random bits required to generate an cryptographic key using the specified random bit generator that meets the following [ISO/IEC 18031].

5.1.3 User Data Protection (FDP)

- **FDP_UDE.1** User data encryption (extended)
- Hierarchical to No other components.
- Dependencies FCS_COP.1 Cryptographic operation
- FDP_UDE.1.1 The TSF shall provide a function that can encrypt/decrypt the user data to the TOE user according to the specified [encryption/decryption method by column, [none]].
- FDP_RIP.1Subset residual information protectionHierarchical toNo other components.DependenciesNo dependencies.

FDP_RIP.1.1The TSF shall ensure that any previous information content of a resource
is made unavailable upon the allocation of the resource to, deallocation
of the resource from the following object: [user data].

5.1.4 Identification and Authentication (FIA)

FIA_AFL.1	Authentication failure handling	
Hierarchical to	No other components.	
Dependencies	FIA_UAU.1 Timing of authentication	
FIA_AFL.1.1	The TSF shall detect when " <u>an administrator configurable positive</u>	
	integer within [5]" unsuccessful authentication attempts occur related to	
	[administrator authentication attempts].	
FIA_AFL.1.2	When the defined number of unsuccessful authentication attempts has	
11A_ALL.1.2		
	been met, the TSF shall [deactivate the identification and authentication	
	function (default: 10 minutes)].	
FIA_IMA.1	TOE Internal mutual authentication	
Hierarchical to	No other components.	
Dependencies	No dependencies.	
FIA_IMA.1.1	The TSF shall perform mutual authentication using [Authentication	
	protocol of [Table 5-10]] in accordance with [Standard List of [Table 5-	
	10]] between [TOE components of [Table 5-10]].	

Standard List	TOE components	Authentication protocol
None	Policy Server, Agent Server	Mutual signature verification through Pre-Auth Key distribution

[Table 5-10] Mutual authentication method between TOE Components

FIA_SOS.1	Verification of secrets
Hierarchical to	No other components.
Dependencies	No dependencies.
FIA_SOS.1.1	The TSF shall provide a mechanism to verify that secrets meet [the
	following defined quality metric].
	a) Password length: 9 or more and 20 or less
	b) Combination rules: English letter (52 letters: a~z, A~Z), Number (10
	letters : 0~9), Special character (32 letters: :`~! @ # \$ % ^ & * () +

= [] {} ₩ |; : '",. <> /?)

FIA_UAU.2 Hierarchical to Dependencies FIA_UAU.2.1	User authentication before any action FIA_UAU.1 Timing of authentication FIA_UID.1 Timing of identification The TSF shall require each authorized administrator to be successfully authenticated before allowing any other TSF-mediated actions on behalf of that authorized administrator .
FIA_UAU.4 Hierarchical to Dependencies FIA_UAU.4.1	Single-use authentication mechanisms No other components. No dependencies. The TSF shall prevent reuse of authentication data related to [ID/Password Authentication Method].
FIA_UAU.7 Hierarchical to Dependencies FIA_UAU.7.1	Protected authentication feedback No other components. FIA_UAU.1 Timing of authentication The TSF shall provide only ['*', a message that cannot infer the reason for failure in the event of authentication failure] to the user while the authentication is in progress
FIA_UID.2 Hierarchical to Dependencies FIA_UID.2.1	User identification before any action FIA_UID.1 No dependencies. The TSF shall require each authorized administrator to be successfully identified before allowing any other TSF-mediated actions on behalf of that authorized administrator .

5.1.5 Security Management (FMT)

FMT_MOF.1	Management of security functions behaviour
Hierarchical to	No other components.
Dependencies	FMT_SMF.1 Specification of Management Functions
	FMT_SMR.1 Security roles
FMT_MOF.1.1	The TSF shall restrict the ability to <i>conduct management actions of</i> the
	functions [Security functions behavior of [Table 5-11]] to [Administrator
	of [Table 5-11]].

Security functions		Mana	agement	Туре	
(Policy Server)	Basic	Query	Insert	Modify	Delete
Set the administrator's email address for the detection of a potential violation	0	0		0	
Apply a set of rules to audit events	0				
View audit records	0	0			
Maintain the threshold on audit data	0	0		0	
Manage actions to be taken in case of imminent audit storage failure	0				
Manage the policy to overwrite the oldest records in case of audit storage failure	0				
Manage the rule for user data encryption/decryption		0	0	0	0
Manage the threshold for unsuccessful authentication attempts	0	0		0	
Manage the authentication protocol for mutual authentication	0				
Manage the quality metrics used to verify passwords	0				
Manage the group of roles that can interact with	0				

the functions in the TSF			
Manage the group of roles that can interact with TSF data	0		
Manage the rules for ID and password setting	0		
Manage the group of users that are part of a role	0		
Manage the types of modification against which the TSF should protect	0		
Manage the mechanism used to provide the protection of the data in transit between different parts of the TSF	0		
Self-tests and integrity verification on TSF	0		
Terminate a session in case of the administrator inactivity	0		
Number of concurrent sessions of administrator access	0		

[Table 5-11] Security function behavior of administrator

FMT_MTD.1	TSF Management of TSF data
Hierarchical to	No other components.
Dependencies	FMT_SMF.1 Specification of Management Functions
	FMT_SMR.1 Security roles
FMT_MTD.1.1	The TSF shall restrict the ability to <i>manage</i> [TSF data and management
	ability of [Table 5-11]] to [Administrator].
FMT_PWD.1	Management of ID and password (Extended)
Hierarchical to	No other components.
Dependencies	Specification of Management Functions
	FMT_SMR.1 Security roles
FMT_PWD.1.1	The TSF shall restrict the ability to manage the password of [None] to
	[None].

FMT_PWD.1.2	The TSF shall restrict the ability to manage the ID of [None] to [None].
FMT_PWD.1.3	The TSF shall provide the capability for <i>changing the ID and password</i>
	when the authorized chief administrator accesses for the first time.
FMT_SMF.1	Specification of management functions
Hierarchical to	No other components.
Dependencies	No dependencies
FMT_SMF.1.1	The TSF shall be capable of performing the following management
	functions: [
	a) Management functions specified in FMT_MOF.1
	b) Management functions specified in FMT_MTD.1
]
FMT_SMR.1	Security roles
Hierarchical to	No other components.
Dependencies	FIA_UID.1 Timing of identification
FMT_SMR.1.1	The TSF shall maintain the roles [Administrator].
FMT_SMR.1.2	TSF shall be able to associate users and their roles defined in
	FMT_SMR.1.1.

5.1.6 Protection of the TSF (FPT)

FPT_ITT.1	Basic internal TSF data transfer protection
Hierarchical to	No other components.
Dependencies	No dependencies
FPT_ITT.1.1	he TSF shall protect the TSF data from <i>disclosure, modification</i> by
	verifying encryption and message integrity when the TSF data is
	transmitted among TOE's separated parts.
FPT_PST.1	Basic protection of stored TSF data (extended)
Hierarchical to	No other components.
Dependencies	No dependencies
FPT_PST.1.1	The TSF shall protect [TSF data] stored in the containers controlled by
	the TSF from unauthorized <i>disclosure, modification</i> .
FPT_TST.1	TSF testing
Hierarchical to	No other components.
Dependencies	No dependencies
FPT_TST.1.1	The TSF shall run a suite of self tests <i>during initial start-up, periodically</i>
	during normal operation to demonstrate the correct operation of TSF.
FPT_TST.1.2	The TSF shall provide the authorized administrator with the capability
	to verify the integrity of <u>TSF data.</u>
FPT_TST.1.3	The TSF shall provide the authorized administrator with the capability

5.1.7 TOE Access (FTA)

Per user attribute limitation on multiple concurrent sessions
FTA_MCS.1 Basic limitation on multiple concurrent sessions
FIA_UID.1 Timing of Identification
The TSF has a list of management functions defined in [FMT_SMF.1.1:
a) Limit the maximum number of concurrent sessions to 1 for
administrative access by the same administrator who have the
authority to p.

	 b) 'Management behavior' in FMT_MOF.1.1 cannot be performed and 'manage' in FMT_MTD.1.1 maximum number of sessions for the same administrator with the right to perform query only { 1 }. c) Limit the maximum number of concurrent sessions belonging to the same Administrator according to the [None] rule.
FTA_MCS.2.2	The TSF shall enforce a limit of [1] session per administrator by default.
FTA_SSL.5 Hierarchical to Dependencies FTA_MCS.2.1	Management of TSF-initiated sessions (extended) No other components. FIA_UAU.1 Authentication or No dependencies The TSF shall <u>terminate</u> the administrator's interactive session after a [10 minutes].
FTA_TSE.1	TOE session establishment
Hierarchical to	No other components.
Dependencies	No dependencies
FTA_TSE.1.1	The TSF shall be able to refuse the management access session of the
	administrator, based on [Access IP, <u>None</u>].

5.2 Security Assurance Requirements

Assurance requirements of this Security Target are comprised of assurance components in CC Part3, and the evaluation assurance level is EAL+1. The following table summarizes assurance components.

Security Assurance Class	Security Assurance Component	
	ASE_INT.1	ST introduction
	ASE_CCL.1	Conformance claims
Security Target	ASE_OBJ.1	Security objectives for the operational environment
Evaluation	ASE_ECD.1	Extended Component definition
	ASE_REQ.1	Stated security requirements
	ASE_TSS.1	TOE summary specification
Development	ADV_FSP.1 Basic functional specification	
Guidance documents	AGD_OPE.1	Operational user guidance
	AGD_PRE.1	Preparative procedures
	ALC_CMC.1	Labelling of the TOE
Life-cycle support	ALC_CMS.1	TOE CM coverage
Tests	ATE_FUN.1	Functional testing
	ATE_IND.1	Independent testing: conformance
Vulnerability Assessment	AVA_VAN.1 Vulnerability survey	

[Table 5-12] Security assurance requirements

5.2.1 Security Target Evaluation

introduction
Dependencies : No dependencies
Developer action elements
The developer shall provide an ST introduction.
Content and presentation elements
The ST introduction shall contain an ST reference, a TOE reference, a
TOE overview and a TOE description.
The ST reference shall uniquely identify the ST.
The TOE reference shall uniquely identify the TOE.
The TOE overview shall summaries the usage and major security
features of the TOE.
The TOE overview shall identify the TOE type.
The TOE overview shall identify any non-TOE
hardware/software/firmware required by the TOE.
The TOE description shall describe the physical scope of the TOE.
The TOE description shall describe the logical scope of the TOE.
The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.
The evaluator shall confirm that the TOE reference, the TOE overview,
and the TOE description are consistent with each other.
Conformance claims
Dependencies : ASE_INT.1 ST introduction
ASE_ECD.1 Extended components definition
ASE_REQ.1 Stated security requirements
Developer action elements
The developer shall provide a conformance claim
The developer shall provide a conformance claim rationale.

Content and presentation elements

- The conformance claim shall contain a CC conformance claim that ASE_CCL.1.1C identifies the version of the CC to which the ST and the TOE claim conformance. ASE_CCL.1.2C The CC conformance claim shall describe the conformance of the ST to CC part 2 as either CC Part 2 conformant or CC Part 2 extended. ASE_CCL.1.3C The CC conformance claim shall describe the conformance of the ST to CC part 3 as either CC Part 3 conformant or CC Part 3 extended. ASE CCL.1.4C The CC conformance claim shall be consistent with the extended components definition. ASE_CCL.1.5C The conformance claim shall identify all PPs and security requirement packages to which the ST claims conformance. ASE CCL.1.6C The conformance claim shall describe any conformance of the ST to a package as either package-conformant or package-augmented. ASE_CCL.1.7C The conformance claim rationale shall demonstrate that the TOE type is consistent with the TOE type in the PPs for which conformance is being claimed. ASE_CCL.1.8C The conformance claim rationale shall demonstrate that the statement of the security problem definition is consistent with the statement of the security problem definition in the PPs for which conformance is being claimed. ASE_CCL.1.9C The conformance claim rationale shall demonstrate that the statement of security objectives is consistent with the statement of security objectives in the PPs for which conformance is being claimed. ASE_CCL.1.10C The conformance claim rationale shall demonstrate that the statement of security requirements is consistent with the statement of security requirements in the PPs for which conformance is being claimed. **Evaluator action elements** ASE_CCL.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.
- ASE_OBJ.1 Security objectives for the operational environment

Dependencies : No dependencies

Developer action elements ASE_OBJ.1.1D The developer shall provide a statement of security objective. **Content and presentation elements** ASE_OBJ.1.1C The statement of security objective shall describe the security objectives for the operational environment. **Evaluator action elements** ASE_OBJ.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence. ASE ECD.1 **Extended component definition** Dependencies : No dependencies **Developer action elements** ASE_ECD.1.1D The developer shall provide a statement of security requirements. ASE_ECD.1.2D The developer shall provide an extended component definition. **Content and presentation elements** ASE_ECD.1.1C The statement of security requirements shall identify all extended security requirements. The extended components definition shall define an extended ASE_ECD.1.2C component for each extended security requirement. ASE_ECD.1.3C The extended components definition shall describe how each extended component is related to the existing CC components, families, and classes.

- ASE_ECD.1.4C The extended components definition shall use the existing CC components, families, classes, and methodology as a model for presentation.
- ASE_ECD.1.5C The extended components shall consist of measurable and objective elements such that conformance or nonconformance to these elements can be demonstrated.

	Evaluator action elements
ASE_ECD.1.1E	The evaluator shall confirm that the information provided meets all
	requirements for content and presentation of evidence.
ASE_ECD.1.2E	The evaluator shall confirm that no extended component can be
	clearly expressed using existing components.
ASE_REQ.1	Stated security requirements
	Dependencies : ASE_ECD.1 Extended components definition
	Developer action elements
ASE_REQ.1.1D	The developer shall provide a statement of security requirements.
ASE_REQ.1.2D	The developer shall provide a security requirements rationale.
	Content and presentation elements
ASE_REQ.1.1C	The statement of security requirements shall describe the SFRs and the SARs.
ASE_REQ.1.2C	All subjects, objects, operations, security attributes, external entities and other terms that are used in the SFRs and the SARs shall be defined.
ASE_REQ.1.3C	The statement of security requirements shall identify all operations on the security requirements.
ASE_REQ.1.4C	All operations shall be performed correctly.
ASE_REQ.1.5C	Each dependency of the security requirements shall either be satisfied, or the security requirements rationale shall justify the dependency not
	being satisfied.
ASE_REQ.1.6C	The statement of security requirements shall be internally consistent.
	Evaluator action elements
ASE_REQ.1.1E	The evaluator shall confirm that the information provided meets all
	requirements for content and presentation of evidence.
ASE_TSS.1	TOE summary specification
	Dependencies : ASE_INT.1 ST introduction

ASE_REQ.1 Stated security requirements ADV_FSP.1 Basic functional specification

Developer action elements

ASE_TSS.1.1D The developer shall provide a TOE summary specification.

Content and presentation elements

ASE_TSS.1.1C The TOE summary specification shall describe how the TOE meets each SFR.

Evaluator action elements

- ASE_TSS.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.
- ASE_TSS.1.2E The evaluator shall confirm that the TOE summary specification is consistent with the TOE overview and the TOE description.

5.2.2 Development

ADV_FSP.1	Basic functional specification	
	Dependencies : No dependencies	

Developer action elements

- ADV_FSP.1.1D The developer shall provide a functional specification.
- ADV_FSP.1.2D The developer shall provide a tracing from the functional specification to the SFRs.

Content and presentation elements

- ADV_FSP.1.1C The functional specification shall describe the purpose and method of use for each SFR-enforcing and SFR-supporting TSFI.ADV_FSP.1.2C The functional specification shall identify all parameters associated with
- each SFR-enforcing and SFR-supporting TSFI. ADV_FSP.1.3C The functional specification shall provide rationale for the implicit categorization of interface as SFR-non-interfering.
- ADV_FSP.1.4C The tracing shall demonstrate that the SFRs trace to TSFIs in the

functional specification.

Evaluator action elements

- ADV_FSP.1.1EThe evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.ADV_FSP.1.2EThe evaluator shall determine that the functional specification is an
- accurate and complete instantiation of the SFRs.

5.2.3 Guidance Documents

AGD_OPE.1	Operational user guidance
	Dependencies : ADV_FSP.1 Basic functional specification
	Developer action elements
AGD_OPE.1.1D	The developer shall provide operational user guidance.
	Content and presentation elements
AGD_OPE.1.1C	The operational user guidance shall describe, for each user role, the
	user accessible functions and privileges that should be controlled in a
	secure processing environment, including appropriate warnings.
AGD_OPE.1.2C	The operational user guidance shall describe, for each user role, how
	to use the available interfaces provided by the TOE in a secure
	manner.
AGD_OPE.1.3C	The operational user guidance shall describe, for each user role, the
	available functions and interfaces, in particular all security parameters
	under the control
	of the user, indicating secure values as appropriate.
AGD_OPE.1.4C	The operational user guidance shall, for each user role, clearly present
	each type of security-relevant event relative to the user-accessible
	functions that need to be performed, including changing the security
	characteristics of entities under the control of the TSF.
AGD_OPE.1.5C	The operational user guidance shall identify all possible modes of
	operation of the TOE (including operation following failure or
	operational error), their consequences and implications for maintaining
	secure operation.

AGD_OPE.1.6C	The operational user guidance shall, for each user role, describe the security measures to be followed in order to fulfill the security objectives for the operational environment as described in the ST.
AGD_OPE.1.7C	The operational user guidance shall be clear and reasonable.
	Evaluator action elements
AGD_OPE.1.1E	The evaluator shall confirm that the information provide meets all requirements for content and presentation of evidence.
AGD_PRE.1	Preparative procedures
	Dependencies : No dependencies
	Developer action elements
AGD_PRE.1.1D	The developer shall provide the TOE including its preparative
	procedures.
	Content and presentation elements
AGD_PRE1.1C	The preparative procedures shall describe all the steps necessary for
	secure acceptance of the delivered TOE in accordance with the
	developer's delivery procedures.
AGD_PRE1.2C	The preparative procedures shall describe all the steps necessary for
	secure installation of the TOE and for the secure preparation of the
	operational environment in accordance with the security objectives for
	the operational environment as described in the ST
	Evaluator action elements
AGD_PRE.1.1E	The evaluator shall confirm that the information provided meets all
	requirements for content and presentation of evidence.
AGD_PRE.1.2E	The evaluator shall apply the preparative procedures to confirm that
	the TOE can be prepared securely for operation.

5.2.4 Life-cycle support

ALC_CMC.1	TOE Labeling of the TOE	
	Dependencies : ALC_CMS.1	TOE CM coverage

	Developer action elements
ALC_CMC.1.1D	The developer shall provide the TOE and a reference for the TOE.
	Content and presentation elements
ALC_CMC.1.1C	The TOE shall be labelled with its unique reference.
	Evaluator action elements
ALC_CMC.1.1E	The evaluator shall confirm that the information provided meets
	requirements
	for content and presentation of evidence.
ALC_CMS.1	TOE CM coverage
	Dependencies : No dependencies
	Developer action elements
ALC_CMS.1.1D	The developer shall provide a configuration list for the TOE.
	Content and presentation elements
ALC_CMS.1.1C	The configuration list shall include the followings: the TOE itself; and
	the evaluation evidence required by the SARs.
ALC_CMS.1.2C	The configuration list shall uniquely identify the configuration items.
	Evaluator action elements
ALC_CMS.1.1E	The evaluator shall confirm that the information provided meets all
	requirements for content and presentation of evidence.
5.2.5 Tests	
ATE_FUN.1	Functional testing
ATL_FON.T	Dependencies : ATE_COV.1 Evidence of coverage
	Dependencies . Art_cov.r Evidence of coverage
	Developer action elements
ATE_FUN.1.1D	The developer shall test the TSF and document the results.
ATE_FUN.1.2D	The developer shall provide test documentation.

Content and presentation elements The test documentation shall consist of test plans, expected test results and actual test results. The test plans shall identify the test to be performed and describe the scenarios for performing each test. These scenarios shall include any ordering dependencies on the results of other tests. The expected test results shall show the anticipated outputs from a successful execution of the tests. The actual test results shall be consistent with the expected test results.
Evaluator action elements The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.
Independent testing: conformance Dependencies : ADV_FSP.1 Basic functional specification AGD_OPE.1 Operational user guidance AGD_PRE.1 Preparative procedures
Developer action elements The developer shall provide the TOE for testing.
Content and presentation elements The TOE shall be suitable for testing.
Evaluator action elements The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence. The evaluator shall test a subset of the TSF to confirm that the TSF operates as specified.

5.2.6 Vulnerability assessment

AVA_VAN.1	Vulnerability survey	
	Dependencies : ADV_FSP.1 Basic functional specification	
	AGD_OPE.1 Operational user guidance	
	AGD_PRE.1 Preparative procedures	
	Developer action elements	
AVA_VAN.1.1D	The developer shall provide the TOE for testing.	
	Content and presentation elements	
AVA_VAN.1.1C	The TOE shall be suitable for testing.	
	Evaluator action elements	
AVA_VAN.1.1E	The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.	
AVA_VAN.1.2E	The evaluator shall perform a search of public domain sources to	
	identify potential vulnerabilities in the TOE.	
AVA_VAN.1.3E	The evaluator shall conduct penetration testing, based on the	
	identified potential vulnerabilities, to determine that the TOE is	
	resistant to attacks performed by an attacker processing Basic attack	
	potential.	

5.3 Security Requirements Rationale

The table below shows dependencies of SFR.

No.	SFR	Dependencies	Reference No.
1	FAU_ARP.1	FAU_SAA.1	3
2	FAU_GEN.1	FPT_STM.1	OE.Time Stamp
3	FAU_SAA.1	FAU_GEN.1	2
4	FAU_SAR.1	FAU_GEN.1	2
5	FAU_SAR.3	FAU_SAR.1	4
6	FAU_STG.3	-	OE.DBMS
7	FAU_STG.4	-	OE.DBMS
8		[FCS_CKM.2 OR FCS_COP1]	10,12
0	FCS_CKM.1(1)	FCS_CKM.4	11
9		[FCS_CKM.2 OR FCS_COP1]	10,13
9	FCS_CKM.1(2)	FCS_CKM.4	11
10		[FDP_ITC.1 OR FDP_ITC.2 OR FCS_CKM.1]	8,9
10	FCS_CKM.2	FCS_CKM.4	11
11	FCS_CKM.4	[FDP_ITC.1 OR FDP_ITC.2 OR FCS_CKM.1]	8,9
10		[FDP_ITC.1 OR FDP_ITC.2 OR FCS_CKM.1]	8
12	FCS_COP.1(1)	FCS_CKM.4	11
10		[FDP_ITC.1 OR FDP_ITC.2 OR FCS_CKM.1]	9
13	FCS_COP.1(2)	FCS_CKM.4	11
14	FCS_RBG.1	-	-
15	FDP_UDE.1	FCS_COP.1	12,13
16	FDP_RIP.1	-	-
17	FIA_AFL.1	FIA_UAU.1	20
18	FIA_IMA.1	-	-
19	FIA_SOS.1	-	-

20	FIA_UAU.2	FIA_UID.1	23
21	FIA_UAU.4	-	-
22	FIA_UAU.7	FIA_UAU.1	20
23	FIA_UID.2	-	-
24		FMT_SMF.1	27
24	FMT_MOF.1	FMT_SMR.1	28
25		FMT_SMF.1	27
25	FMT_MTD.1	FMT_SMR.1	28
20	FMT_PWD.1	FMT_SMF.1	27
26		FMT_SMR.1	28
27	FMT_SMF.1	-	-
28	FMT_SMR.1	FIA_UID.1	23
29	FPT_ITT.1	-	-
30	FPT_PST.1	-	-
31	FPT_TST.1	-	-
32	FTA_MCS.2	FIA_UID.1	23
33	FTA_SSL.5	FIA_UAU.1	20
34	FTA_TSE.1		-

[Table 5-13] Rationale of the dependencies

FAU_GEN.1 has a dependency on FPT_STM.1. However, reliable time stamps provided by the security objective OE.TIME_STAMP for the operational environment of this ST are used, thereby satisfying the dependency.

the hash algorithm is an algorithm characteristic, and encryption key generation and destruction are not applied in FCS_CKM.2

FIA_AFL.1, FIA_UAU.7 and FTA_SSL.5 are dependent on FIA_UAU.1, which is satisfied by FIA_UAU.2 in its hierarchical relationship with FIA_UAU.1.

FIA_UAU.2, FMT_SMR.1, FTA_MCS.2 have dependencies on FIA_UID.1, which is satisfied by FIA_UID.2 in its hierarchical relationship with FIA_UID.1.

5.4 Assurance Requirements Rationale

The dependency of the EAL1 assurance package provided in Common Criteria for Information Technology Security Evaluation is already satisfied, therefore details into its rationale are excluded.

ATE.FUN.1, which is an augmented assurance requirement, includes ATE_COV.1 by dependency.

ATE_FUN.1 was added to ensure that the developer accurately tests the testing items and records them in the test paper. ATE_COV.1 was not added to this ST, as the proof of consistency between the testing items and the TSFI was not deemed strictly necessary.

6. TOE Summary Specification

This chapter provides detailed explanation on the security functions of the TOE and how the TOE satisfies the SFRs. [Table 6-1] below shows all the security functional components of the TOE.

Security Functional Class	Security Functional Component		
	FAU_ARP.1	Security alarms	
	FAU_GEN.1	Audit data generation	
	FAU_SAA.1	Potential violation analysis	
Security Audit (FAU)	FAU_SAR.1	Audit review	
	FAU_SAR.3	Selectable audit review	
	FAU_STG.3	Action in case of possible audit data loss	
	FAU_STG.4	Prevention of audit data loss	
	FCS_CKM.1(1)	Cryptographic key generation (User data encryption)	
	FCS_CKM.1(2)	Cryptographic key generation (TSF data encryption)	
Cryptographic	FCS_CKM.2	Cryptographic key distribution	
Support	FCS_CKM.4	Cryptographic key destruction	
(FCS)	FCS_COP.1(1)	Cryptographic operation (User data encryption)	
	FCS_COP.1(2)	Cryptographic operation (TSF data encryption)	
	FCS_RBG.1(Extended)	Random bit generation	
User Data Protection	FDP_UDE.1(Extended)	User data encryption	
(FDP)	FDP_RIP.1	Subset residual information protection	
Identification and	FIA_AFL.1	Authentication failure handling	
Authentication (FIA)	FIA_IMA.1(Extended)	TOE internal mutual authentication	

	FIA_SOS.1	Verification of secrets
	FIA_UAU.2	User authentication before any action
	FIA_UAU.4	Single-use authentication mechanisms
	FIA_UAU.7	Protected authentication feedback
	FIA_UID.2	User identification before any action
	FMT_MOF.1	Management of security functions behaviour
Security	FMT_MTD.1	Management of TSF data
Management	FMT_PWD.1(Extended)	Management of ID and password
(FMT)	FMT_SMF.1	Specification of management functions
	FMT_SMR.1	Security roles
	FPT_ITT.1	Basic internal TSF data transfer protection
Protection of the TSF (FPT)	FPT_PST.1(Extended)	Basic protection of stored TSF data
(111)	FPT_TST.1	TSF testing
TOE Access	FTA_MCS.2	Per user attribute limitation on multiple concurrent sessions
(FTA)	FTA_SSL.5(Extended)	Management of TSF-initiated sessions
	FTA_TSE.1	TOE session establishment

[Table 6-1] List of security functions of the TOE

6.1 Security audit

6.1.1 Audit data generation

The TOE can generate audit data by combining success and failure, and form successful encryption events or unsuccessful decryption events, etc. (FAU_GEN.1).

The default value is set to generate logs on all successful and unsuccessful encryption and decryption events. The authorized administrator can set the condition for audit data generation, based on whether encryption/decryption is successful.

Security Functional Component	Auditable Event		
FAU_ARP.1	Actions taken due to potential security violations		
FAU_SAA.1	Enabling and disabling of any of the analysis mechanisms, Automated responses performed by the tool		
FAU_STG.3	Actions taken due to exceeding of a threshold		
FAU_STG.4	Actions taken due to the audit storage failure		
FCS_CKM.1(1)	Success and failure of the activity		
FCS_CKM.2	Success and failure of the activity (applied only to distribution of key related to encryption/decryption of user data)		
FCS_CKM.4	Success and failure of the activity (applied only to the destruction of key related to encryption/decryption of user data)		
FCS_COP.1(1)	Success and failure of cryptographic operation, type of cryptographic operation		
FDP_UDE.1	Success and failure of encryption/decryption of user data		
FIA_AFL.1	The reaching of the threshold for the unsuccessful authentication attempts and the actions taken and the subsequent, if appropriate, restoration to the normal state		
FIA_IMA.1	Success/failure of mutual authentication, modification of authentication		

	protocol
FIA_UAU.2	User authentication before any action
FIA_UAU.4	Single-use authentication mechanisms
FIA_UID.2	User identification before any action
FMT_MOF.1	All modification in the behavior of the functions in the TSF
FMT_MTD.1	All modifications to the values of TSF data
FMT_PWD.1	All changes of the password
FMT_SMF.1	Use of the management functions
FMT_SMR.1	Modifications to the user group of rules divided
FPT_TST.1	Execution of the TSF self-tests and the results of the tests
FTA_MCS.2	Denial of a new session based on the limitation of multiple concurrent
	sessions
FTA_SSL.5	Locking or termination of interactive session

[Table 6-2] Auditable events of the TOE

All TOE components generate audit data on the auditable events listed in [Table 6-2], including audit records such as date and time of the event, type of event, subject identity (if applicable), and the outcome (success or failure) of the event (FAU_GEN.1).

Regarding audit events shown in [Table 6-3], the TOE generates audit data in [Table 6-2] and additional audit records in [Table 6-3] (FAU_GEN.1).

Audit Event	Additional Audit Record		
All modification on TSF data	Modified value of TSF data		
Execution of TSF self-tests and the	Modified TSF data or executable code in case of		
result	integrity violation		

[Table 6-3] Additional audit record for certain audit events

% SFR to be satisfied

FAU_GEN.1

6.1.2 Audit data review

The authorized administrator can review audit data stored in the audit storage in the local DB in the "View Log" menu of the administrator's page. Audit data files generated in all TOE components store data in the local DB by the Policy Server located on the same physical server as TOE components. If the authorized administrator requests audit data stored in the local DB through the security management interface provided by the Policy Server, the Policy Server searches audit data stored in the local DB and provides the function of review or selective review of audit data collected from the entire data. The authorized administrator can view audit data by using the selective searching on the basis of keywords or a combination of the criteria that have logical relations (identity of the subject, object, date and time of the event, and type of the event). Search results of audit data are sorted and provided in a descending order according to the date and time of the event.

※ SFR to be satisfied

FAU_SAR.1, FAU_SAR.3

6.1.3 Potential violation analysis and action

Audit data in all TOE components generated as described in FAU_GEN.1 are stored in the local DB by the Policy Server. The Policy Server generates a security alarm if the administrator authentication fails; if the authentication fails for a defined number of times; if the audit trail storage capacity is full or exceeds the predefined threshold; if the verification of the integrity of TOE configuration files fails; if the verification of major security functional processes fails; or if self-tests of the validated cryptographic module fail.

If the Policy Server receives the audit of integrity violation among auditable events in FPT_TST.1, it shall view the event immediately (FAU_SAA.1).

In case of the audit of potential violation, the Policy Server sends a security alarm email to the email address designated by the authorized administrator and generates audit data. In the Agent Server, an error message on an audit event of a potential violation that can occur during initial start-up is displayed on the screen (FAU_ARP.1).

※ SFR to be satisfied

FAU_ARP.1, FAU_SAA.1

6.1.4 Protected audit trail storage and action in case of possible audit data loss

The Policy Server periodically monitors the threshold of the number of audit data and the space used in the local DB to store audit data (FAU_STG.3, FAU_STG.4).

If the threshold of the number of audit data or the space used in the local DB checked by the Policy Server exceeds a defined limit, it sends a security alarm to the email address designated by the administrator and generates audit data.

The authorized administrator can set the limit ranging from at least 60% up to 90% for the threshold of the number of audit data and the DB table space (FAU_STG.3).

If the number of audit data in the local DB or the space used in the local DB exceeds the threshold of 90%, the Policy Server overwrites the oldest audit records, sends a security alarm email and generates audit data (FAU_STG.4).

※ SFR to be satisfied

FAU_STG.3, FAU_STG.4

6.2 Cryptographic support

The TOE generates random bits necessary for cryptographic key generation by using HASH_DRBG (256 bits) algorithm through the random bit generator of MagicCrypto V2.2.0, the validated cryptographic module whose security and implementation conformance have been validated by the cryptographic module validation scheme.

Cryptographic support of the TOE is possible through the cryptographic key and DB encryption policy established by the authorized administrator for the purpose of the protection of the TSF data. Encryption/decryption of user data according to the DB encryption policy established by the authorized administrator is performed through the plug-in provided in the Agent Server, and is destructed safely by using the zeroization function immediately after the use.

Random bit generation and all cryptographic support functions are performed by using the encryption algorithm of the validated cryptographic module as shown in [Table 6-4].

	Cryptographic module name	MagicCrypto V2.2.0
Validated	Developer (institutions)	Dream Security
Cryptographic	Validation date	March 3, 2020
Module	Validation level	VSL1
	Validation number	CM-162-2025.3
	Library	libMagicCrypto.so

[Table 6-4] Validated cryptographic module

6.2.1 Cryptographic key generation

A user data key (key for the user data encryption) is generated on the Policy Server in accordance with the approved cryptographic algorithm in [Table 6-5] and the key size in [Table 6-5] if the authorized administrator generates it through the administrator's page (FCS_CKM.1(1)).

Standard List Cryptographic Algorithm	Key Size	Use
---------------------------------------	----------	-----

	Hash-	128/256	- Generation of cryptographic key for
ISO/IEC 18031	DRBG(SHA256)	bits	user data

[Table 6-5] Cryptographic key generation algorithm for user data encryption

TSF data such as security policies and encryption keys are encrypted by using the cryptographic algorithm of the validated cryptographic module.

A cryptographic key for TSF data encryption is generated in accordance with the cryptographic algorithm in [Table 6-6] and the key size in [Table 6-6] that meet the list of standards in [Table 6-6] (FCS_CKM.1(2)).

Standard List	Cryptographic Algorithm	Key Size	Use
ISO/IEC 18031	Hash-	128/256	 KEK generation Generation of cryptographic key for
	DRBG(SHA256)	bits	TSF data

[Table 6-6] Cryptographic key generation algorithm for TSF data encryption

% SFR to be satisfied

FCS_CKM.1(1), FCS_CKM.1(2), FCS_RBG.1(Extended)

6.2.2 Cryptographic key distribution

The Policy Server distributes an encryption key required by each component so that the TOE can protect TSF data and user data accurately.

Cryptographic key distribution between TOE components follows the policy in [Table 6-7] (FCS_CKM.2).

Standard	TOE (Sender)	TOE	Cryptographic	Distribution Method
List	TOE (Sender)	(Receiver)	Key	Distribution Method
ISO/IEC			Кеу	KEK is encrypted by using a
10118-3,	Agent server	Policy Server	Encryption	session key, and distributed
TTAS.KO-	Agent server			from the Agent Server to the
12.0004/R1			Key (KEK)	Policy Server.
ISO/IEC	Policy Server	Agent server	User Data	User data encryption key is

10118-3,		Encryption	encrypted by using a session
TTAS.KO-		Key	key, and distributed from the
12.0004/R1			Policy Server to the Agent
			Server

[Table 6-7] Cryptographic key distribution method

※ SFR to be satisfied

FCS_CKM.2

6.2.3 Cryptographic key destruction

At the time of the destruction of a cryptographic key (immediately after the user data encryption/decryption operation or immediately after the mutual authentication is removed), the TOE initializes the allocated cryptographic key with "0" and deallocates the used memory area to destruct the cryptographic key (FCS_CKM.4).

※ SFR to be satisfied

FCS_CKM.4

6.2.4 Cryptographic operation

In cryptographic operation provided by the TOE, the operation on user data in [Table 6-8] is performed in accordance with the cryptographic algorithm in [Table 6-8] and cryptographic key size in [Table 6-8]. In the list of standards in [Table 6-8], cryptographic algorithms in the validated cryptographic module are used (FCS_COP.1 (1)).

Standard List	Cryptographic Algorithm	Key Size	Operation Mode	Padding	Operation
					- Encryption/decryption
KS X 1213-1	ARIA	256 bits	CBC	PKCS#5	of user data
TTAS.KO-		100 1:4-	CDC		- Encryption/decryption
12.0004/R1	SEED	128 bits	CBC	PKCS#5	of user data
ISO/IEC		None	None	None	- Encryption of user
10118-3	SHA512	None	None	None	data

[Table 6-8] Cryptographic operation of user data

In cryptographic operation provided by the TOE, the operation on the TSF data in [Table 6-9] is performed in accordance with the cryptographic algorithm in [Table 6-9] and cryptographic key size in [Table 6-9]. In the list of standards in [Table 6-9], cryptographic algorithms in the validated cryptographic module are used (FCS_COP.1 (2)).

Standard List	Cryptographic Algorithm	Key Size	Operation Mode	Padding	Operation
KS X 1213-1	ARIA	256 bits	СВС	PKCS#5	 Inter-TSF cryptographic communication Encryption/decryption of environment configuration file Encryption/decryption of TSF data
TTAS.KO- 12.0004/R1	SEED	128 bits	СВС	PKCS#5	- Encryption/decryption of KEK
ISO/IEC 10118-3	SHA512	None	None	None	 Integrity check of the TOE Generation of SALT value of KEK Generation of SALT value of session key Mutual verification of session key Inter-TSF cryptographic communication Encryption of administrator password
ISO/IEC 18033-2	RSAES (SHA-256)	2048 bits	None	None	- Inter-TSF mutual authentication
ISO/IEC 14888-2	RSA-PSS (SHA-256)	2048 bits	None	None	- Inter-TSF mutual authentication
ISO/IEC 11770-3	ECDH (SHA-256)	256 bits	None	None	- Inter-TSF mutual authentication
TTAS.KO- 12.0334	PBKDF2 (SHA-256)	256 bits	None	None	- KEK generation

[Table 6-9] Cryptographic operation of TSF data

The usage of cryptographic key generation algorithm, hash, block cipher, public key cryptography, electronic signature, key derivation and key setting are shown in [Table 6-10] below.

Classification	Standard List	Cryptographic Algorithm	Key Size	Use
Cryptographic key generation	ISO/IEC 18031	Hash- DRBG(SHA256)	128/256 bits	 KEK generation Generation of cryptographic key for TSF data Generation of cryptographic key for user data
Hash	ISO/IEC 10118-3	SHA512	None	 Integrity monitoring of the TOE Generation of SALT value of KEK Generation of SALT value of session key Mutual verification of session key User data encryption Inter-TSF cryptographic communication Encryption of administrator password
Block cipher (CBC mode)	KS X 1213-1	ARIA	256 bits	 Encryption/decryption of user data Inter-TSF cryptographic communication Encryption/decryption of environment configuration file

					- Encryption/decryption of
					TSF data
					- Encryption/decryption of
	TTAS.KO-	SEED		128	KEK
	12.0004/R1	SEED		bits	- Encryption/decryption of
					user data
Public key	ISO/IEC	RSAES	(SHA-	2048	- Inter-TSF mutual
cryptography	18033- 2	256)		bits	authentication
Electronic	ISO/IEC	RSA-PSS	(SHA-	2048	- Inter-TSF mutual
signature	14888-2	256)		bits	authentication
Kay catting	ISO/IEC	ECDH	(SHA-	256	- Inter-TSF mutual
Key setting	11770-3	256)		bits	authentication
Kay derivation	TTAS.KO-	PBKDF2	(SHA-	256	KEK generation
Key derivation	12.0334	256)		bits	- KEK generation

[Table 6-10] Usage of key applied to the TOE

※ SFR to be satisfied

FCS_COP.1 (1), FCS_COP.1 (2)

6.3 User data protection

The TOE provides the function of column-level encryption/decryption of the data stored in the DBMS to be protected through the validated cryptographic module MagicCrypto V2.2.0. The same ciphertext is not generated for the same plaintext when encrypting the user data.

In addition, it deletes all the original user data in plaintexts after user data encryption/decryption in order to protect the user data.

The authorized administrator sets the DB encryption policy in the Policy Server. The Agent Server performs two-way encryption and one-way encryption of user data in accordance with the DB encryption/decryption policy set in the Policy Server (FDP_UDE.1 (Extended)).

Cryptographic algorithms listed in FCS_COP.1(1) are used for the encryption/decryption of user data. SHA-512 is provided for one-way cryptographic algorithm (FDP_UDE.1 (Extended)).

After the encryption/decryption is completed, the memory area is initialized with "0" value and the used memory area is deallocated so that the user data are unrecoverable in the memory (FDP_RIP.1).

※ SFR to be satisfied

FDP_UDE.1(Extended), FDP_RIP.1

6.4 Identification and authentication

The identification and authentication function offered by the TOE is to provide mutual authentication between TOE components and the identification and authentication of the administrator in order to access the administrator's page on the Policy Server.

6.4.1 Identification and authentication of the administrator

The identification and authentication shall be performed successfully before allowing access to and control of the administrator's page provided by the Policy Server (FIA_UAU.2).

The TOE satisfies the hierarchical levelling of FIA_UAU.2 by performing the identification and authentication based on the administrator ID/password (FIA_UAU.1).

During the authentication of the administrator, the password entered is masked (*) to make it unrecognizable on the screen. If the authentication fails, only the authentication failure message that states "You are not a registered user or your password does not match" is provided (FIA_UAU.7).

The Policy Server blocks access attempts for the account for 10 minutes (fixed value), and if authentication attempts fail consecutively (default value: 5 times) for the defined number of times, it stores audit records on the authentication failure (FIA_AFL.1).

For the administrator password, the verification mechanism is provided to satisfy the allowable criteria as defined below (FIA_SOS.1).

- -Password length: at least 9 digits up to 20 digits
- -Password combination rule: A combination of alphabetic characters (52 characters: a~z, A~Z), numeric characters (10 characters: 0-9) and special characters (32 characters: `~! @ # \$ % ^ & * () -_ + = [] {} ₩ |; : '",. <> /?)

In addition, the reuse of authentication data is prevented by using time stamps in order to ensure the uniqueness of session ID of the administrator (FIA_UAU.4).

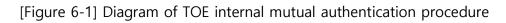
When the Policy Server is installed, an account (ID and password) and allowed IP are registered for the authorized administrator to generate the his/her information. Before the authorized administrator performs the security management function on the Policy Server,

the unique session ID authenticated to be the administrator needs to be checked to confirm whether he/she was authenticated as the administrator (FIA_UID.2).

※ SFR to be satisfied

FIA_AFL.1, FIA_SOS.1, FIA_UAU.2, FIA_UAU.4, FIA_UAU.7, FIA_UID.2

6.4.2 Mutual authentication


Ahead of the communication between TOE components, the TOE performs the mutual authentication through the mutual signature verification by using a private key and a public key issued between the Policy Server and the Agent Server in real time. The process of the mutual authentication between TOE components is shown in [Table 6-11] below.

Step	Sender	Receiver	Mutual Authentication Procedure
1	Policy Server	-	 (1) Generate Nonce A based on the cryptographic algorithm Hash-DRBG(SHA256). (2) Sign Nonce A with the private key of the Policy Server based on cryptographic algorithm RSA-PSS (SHA-256). (3) Encrypt Nonce A and the time stamp of the Policy Server by using the public key of the Agent Server based on cryptographic algorithm RSAES (SHA-256).
2	Policy Server	Agent server	Send the data encrypted in step 1 and data hash value based on the cryptographic algorithm SHA 512.
3	_	Agent server	 (1) Decrypt Nonce A and the time stamp by using the private key of the Agent Server based on cryptographic algorithm RSAES (SHA-256). (2) Compare the time stamp with the time stamp of the Agent Server by applying Clock Skew. (3) Verify the signature of Nonce A with the

HEDES v1.0 Security Target

			public key of the Policy Server based on
			cryptographic algorithm RSA-PSS (SHA-256).
			(1) Generate Nonce B based on
			cryptographic algorithm Hash-DRBG(SHA256).
			(2) Sign Nonce B with the private key of the
			Agent Server based on cryptographic
4	-	Agent server	algorithm RSA-PSS (SHA-256).
			(3) Encrypt Nonce B and the time stamp of
			the Agent Server by using the public key of
			the Policy Server based on cryptographic
			algorithm RSAES (SHA-256).
			Send the data encrypted in step 4 and data
5	Agent server	Policy Server	hash value based on the cryptographic
			algorithm SHA 512.
			(1) Decrypt Nonce B and the time stamp by
			using the private key of the Policy Server
			based on cryptographic algorithm RSAES
			(SHA-256).
			(2) Compare the time stamp with the time
6	-	Policy Server	stamp of the Policy Server by applying Clock
			Skew.
			(3) Verify the signature of Nonce B with the
			public key of the Agent Server based on
			cryptographic algorithm RSA-PSS (SHA-256).
			Encrypt the mutual authentication completion
			message by using the public key of the
7	-	Policy Server	Agent Server based on cryptographic
			algorithm RSAES (SHA-256).
			Send the data encrypted in step 7 and data
8	Policy Server	Agent server	hash value based on the cryptographic
	,		algorithm SHA 512.
			Decrypt the mutual authentication
9	-	Agent server	completion message by using the private key
-			of the Agent Server based on cryptographic
			- <u>-</u>

	algorithm RSAES (SHA-256), and check the					
	mutual authentica	ation completion message.				
fter the mutual authenti	ication is completed, a session ke	ey is generated based or				
ryptographic algorithm E	CDH (SHA-256), and message en	cryption communication i				
erformed based on crypto	graphic algorithm ARIA 256 CBC.					
[Table 6-1	1] TOE internal mutual authentication	n procedure				
When installing the product, - Policy Server: Key pair (private key A, public key A - Agent Server: Key pair (private key B, public key B are stored in a shared directory with each file nam - Cryptographic algorithm for key pair generation: R # Generate key pair in advance when installing th) + Policy management server public key A ie by using the password SA-PSS(SHA-256) / Derive KEK from the password: PBKDF2(SHA-256	6) / Keypairen cryption: SEED 128 CBC				
Policy Server	Mutual Authentication Protocol Sequence	AgentServer				
Mutual authenfication 1 : (1) Generate Nonce A - Cryptographic algorithm: Hash-DRBG(SHA256) (2) Sign Nonce A with private key A	Mutual authen fication 2: - Send data [encrypted Nonce A + Time Stamp A + signature] + data integrity hash value	Mutual authentication 3: (1) Decrypt Nonce A + Time Stamp A with private key B, and compare time stamp				
- Cryptographic algorithm: RSA-PSS(SHA-256) (3) EncryptNonce A + Time Stamp A with public key B	- Integrity hash cryptographic algorithm: SHA512	(2) Verify the signature of Nonce A with public key A				
	- Integrity hash cryptographic algorithm: SHA512 // Nonce prevents reflection attacks // Time Stamp prevents replay attacks	key A − Cryptographic algorithm: RSA-PSS(SHA- 256)				
(3) Encrypt Nonce A + Time Stamp A with public key B	# Nonce prevents reflection attacks	 (2) Verify the signature of Nonce A with public key A Cryptographic algorithm: RSA-PSS(SHA- 				

※ SFR to be satisfied

FIA_IMA.1

6.5 Security management

6.5.1 Security roles

The administrator is entitled to be the top administrator in charge of all security roles in the Policy Server of the TOE (FMT_SMR.1).

※ SFR to be satisfied

FMT_SMR.1

6.5.2 Management of security functions behaviour

The security functions that the TOE provides for the administrator is shown in [Table 6-12]. The basic setting items in [Table 6-12] are set as default when the TOE is installed. (FMT_MOF.1, FMT_MTD.1, FMT_SMF.1, FMT_SMR.1)

Security functions		Mana	agement	Туре	
(Policy Server)	Basic	Query	Insert	Modify	Delete
Set the administrator's email address for the detection of a potential violation	0	0		0	
Apply a set of rules to audit events	0				
View audit records	0	0			
Maintain the threshold on audit data	0	0		0	
Manage actions to be taken in case of imminent audit storage failure	0				
Manage the policy to overwrite the oldest records in case of audit storage failure	0				
Manage the rule for user data encryption/decryption		0	0	0	0
Manage the threshold for unsuccessful authentication attempts	0	0		0	

		1	1	1	
Manage the authentication protocol for mutual authentication	0				
Manage the quality metrics used to verify passwords	0				
Manage the group of roles that can interact with the functions in the TSF	0				
Manage the group of roles that can interact with TSF data	0				
Manage the rules for ID and password setting	0				
Manage the group of users that are part of a role	0				
Manage the types of modification against which the TSF should protect	0				
Manage the mechanism used to provide the protection of the data in transit between different parts of the TSF	0				
Self-tests and integrity verification on TSF	0				
Terminate a session in case of the administrator inactivity	0				
Number of concurrent sessions of administrator access	0				

[Table 6-12] Security function behavior of administrator

% SFR to be satisfied

FMT_MOF.1, FMT_MTD.1, FMT_SMF.1, FMT_SMR.1

6.5.3 Management of ID and password

The TOE has only one administrator, and generates an account of the authorized administrator (ID and password) in installing the Policy Server.

The authorized administrator can modify the password of the administrator through the security management interface after the identification and authentication in the Policy Server. The administrator password has at least 9 up to 20 digits in length, and consists of a combination of alphabetic characters (52 characters: $a \sim z$, $A \sim Z$), numeric characters (10 characters: 0-9) and special characters (32 characters: :'~! @ # \$ % ^ & * () -_ + = [] {} \ |; : ''',. <>) (FMT_PWD.1).

※ SFR to be satisfied

FMT_PWD.1

6.6 Protection of the TSF

The TOE protects TSF by using the cryptographic algorithm of "MagicCrypto V2.2.0" which is the validate cryptographic module.

6.6.1 Basic internal TSF data transfer protection

For the encrypted transmission of the TSF data between TOE components, the TSF data are protected from unauthorized disclosure and modification by encrypting/decrypting the data in transit (TSF data + SHA512HASH value of the TSF data) with ARIA-256-CBC cryptographic algorithm. If the integrity violation is detected regarding the hash value of the received TSF data, the TSF ignores the received data ad generates audit data on this event (FPT_ITT.1).

SFR to be satisfied FPT ITT.1

6.6.2 Basic protection of stored TSF data

The TOE protects stored TSF data by performing the protection in [Table 6-13] to protect TSF data in [Table 6-13] stored in TOE component in [Table 6-13].

The encryption to protect the TSF data is conducted by using "MagicCrypto V2.2.0" which is the validated cryptographic module (FPT_PST.1 (Extended)).

TOE Component	TSF Data	Protection Method	
	Administrator password	SHA-512 hash	
Doling	DBMS access information	ARIA-256-CBC encryption	
Policy Server	Authentication authority key	ARIA-256-CBC encryption	
	Mutual authentication session key	ARIA-256-CBC encryption	
	Key encryption key (KEK)	SEED-128-CBC encryption	
Agont convor	User data key	ARIA-256-CBC encryption	
Agent server	Mutual authentication session key	ARIA-256-CBC encryption	

[Table 6-13] TSF data protection method

% SFR to be satisfied

FPT_PST.1 (Extended)

6.6.3 Self tests

The TOE runs a suite of self tests (self tests of the validated cryptographic module, integrity verification of executable files and configuration of TOE components, and process status check) upon initial start-up of each component. Self tests are carried out periodically after initial start-up, and the results of self tests are stored in the DB. If self tests fail, the TOE component is disabled, and an alarm is sent to the email address set by the authorized administrator. In addition, the authorized administrator can access the Policy Server through a web browser, and verify the integrity of executable files and configuration files of TOE components.

If self tests fail, an alarm email is sent and the failure is recorded as audit data. Then, the process is disabled immediately. The authorized administrator can carry out self tests on the administrator's page, if necessary.

Self test items for each TOE component are listed in [Table 6-14], TSF data integrity verification items for the TOE in [Table 6-15], and TSF integrity verification items for the TOE in [Table 6-16]. Self tests are performed in the same manner regardless of the operational environment of the physical server where the TOE is installed (FPT_TST.1).

TOE Component	Timing of Self Tests	Verification Item
Policy Server	 When the process starts At 1-hour interval after the initial start-up At the request on the administrator's page 	- Library module - Validated cryptographic module - Process
Agent server	 When the process starts At 1-hour interval after the initial start-up 	 Library module Validated cryptographic module Process

[Table 6-14] Self test items for each TOE component

TOE Component	Timing of Integrity Verification	Verification Item
Policy Server	- When the process starts	
	- At 1-hour interval after the initial	
	start-up	- TSF data (Local Key)
	- At the request on the	
	administrator's page	
Agent server	- When the process starts	
	- At 1-hour interval after the initial	- TSF data (Local Key)
	start-up	

[Table 6-15] TSF data integrity verification items

TOE Component	Timing of Integrity Verification	Verification Item
Policy Server	- When the process starts	
	- At 1-hour interval after the initial	
	start-up	- Policy Server binary data
	- At the request on the	
	administrator's page	
Agent server	- When the process starts	
	- At 1-hour interval after the initial	- Agent server binary data
	start-up	

[Table 6-16] TSF integrity verification items

※ SFR to be satisfied

FPT_TST.1

6.7 TOE access

6.7.1 Limitation on multiple concurrent sessions

The maximum number of concurrent session by the authorized administrator to the Policy Server is limited to one in order to block concurrent access sessions that belong to the same administrator.

If the same account makes new access, the existing session is terminated (FTA_MCS.2).

※ SFR to be satisfied

FTA_MCS.2

The TOE allows the management sessions made only from a device (2 or less) whose IP was designated and allowed to access, and generates audit data on the result of the limitation of sessions by the security management interface.

6.7.2 Session management and establishment

The TOE restricts TOE access to ensure that access to the management interface is made only from the registered IP addresses. If the authorized administrator remains inactive for 10 minutes, the session is automatically terminated (FTA_SSL.5 (Extended), FTA_TSE.1).

In installing the TOE, the number of accessible IPs of an administrator device is set as 2 or less, and the management access session is denied if access is made from an unauthorized IP (FTA_TSE.1).

※ SFR to be satisfied

FTA_SSL.5 (Extended), FTA_TSE.1