
Security Target

for
Tresorit Core Interface v5.0

Version v2.1

Date 2023-10-27

Classification PUBLIC

2

Version history

Version Date Author Description

v1.0 2022-05-19 Tresorit Kft. The first version of the
Security Target.

v1.1 2022-10-06 Tresorit Kft. Improved version with

additional clarifications.

v1.2 2022-12-08 Tresorit Kft. Improved version with
additional clarifications.

v1.3 2023-03-31 Tresorit Kft. Improved version with

additional clarifications.
Version history format

consistent with other
documents.

v1.4 2023-06-23 Tresorit Kft. Improved version with
additional clarifications.

v2.0 2023-07-10 Tresorit Kft. Improved version with

additional clarifications.

v2.1 2023-10-27 Tresorit Kft. Improved version with

additional clarifications.

3

Table of Contents

1 Introduction ... 5

1.1 Security Target and TOE References ... 5

1.2 TOE Overview .. 5

1.2.1 TOE Usage and Major Security Features 5

1.2.2 TOE Type ... 6

1.2.3 Non-TOE Hardware/Software/Firmware 6

1.3 TOE Description .. 6

1.3.1 Physical Scope of the TOE .. 7

1.3.2 Logical Scope of the TOE .. 9

1.3.3 Features and functionality not included in the TOE: 10

1.4 Usage of the TOE in order to implement cryptographic controls .. 10

2 Conformance Claims .. 11

2.1 Protection Profile Conformance Rationale 12

3 Security Problem Definition .. 12

3.1 Assets ... 12

3.2 Assumptions .. 12

3.3 Threats ... 13

4 Security Objectives .. 14

4.1 Security Objectives for the TOE .. 14

4.2 Security Objectives for the Operational Environment 14

4.3 Security Objectives Rationale ... 15

4.3.1 Security Objectives and Threats 15

4.3.2 Assumptions and Security Objectives 16

5 Extended Components Definition ... 17

6 Security Requirements ... 17

6.1 Conventions ... 17

6.2 Subjects, Objects, Security Attributes, and Operations 17

6.2.1 Operations ... 18

6.3 TOE Security Functional Requirements 21

6.3.1 Security functional policies implemented by the TOE 21

6.3.2 Security Functional Requirements 22

6.4 TOE Security Assurance Requirements 30

4

6.5 Security Requirements Rationale .. 31

6.5.1 Security Requirements Coverage and Sufficiency 31

6.6 Requirements Dependency Rationale 33

6.6.1 Rationale Showing that Dependencies are Satisfied 33

7 TOE Summary Specification .. 39

7.1 Cryptographic operations ... 39

7.2 File management .. 40

7.3 Container management ... 42

7.4 User management .. 43

7.5 Secure communication .. 45

8 Glossary of Terms ... 45

9 Acronyms ... 45

10 Bibliography ... 45

5

1 Introduction

This section identifies the Security Target (ST) and the Target of Evaluation

(TOE). The TOE is Tresorit Core Interface v5.0 and will be referred to as the

TOE in this Security Target.

1.1 Security Target and TOE References

ST Title Security Target for Tresorit Core Interface v5.0

ST Version v2.1

ST Creation Date 2023-10-27

TOE Short Name Tresorit Core Interface v5.0

TOE Reference Tresorit Core Interface v5.0.3950.3950

Table 1.1 — Security Target and TOE References

1.2 TOE Overview

The TOE is a command line interface (CLI) application for Windows designed

as an end-to-end encrypted file storage and sharing solution to protect the

confidentiality and integrity of users’ files and file names. Users can share

their files and folders with other users of the TOE. User files and folders are

accessible to those who the user gave access to.

Users of the TOE can create cryptographically protected containers and

share entire containers or part of their content with other users of the TOE.

The TOE provides an end-to-end encrypted solution which guarantees that

no one who has access to the communication channel between the users

can access or modify the content of the shared files or the name of the files.

The TOE provides its security functionality without the need to trust the

developer’s servers.

The TOE implements a state-of-the-art end-to-end encryption (E2EE)

communication that ensures all encrypted information remains encrypted

once it leaves the sender’s device and remains encrypted until it reaches

the recipient. This means that no third party has any way of accessing the

exchanged information in unencrypted form, not even the developer of the

TOE. As an industry-standard best practice, the TOE also uses TLS 1.2+ for

in-transit data encryption when communicating with the cloud servers, even

though this is not part of the TOE’s end-to-end encrypted security model

and thus not part of the TOE’s security requirements; the TOE would remain

secure even without using any kind of in-transit data encryption.

1.2.1 TOE Usage and Major Security Features

The TOE can be used to share files and folders with other TOE users in a

secure way that guarantees that no third party has any way of accessing

the exchanged information in unencrypted form.

6

The TOE is responsible for the confidentiality and integrity protection of user

file contents, file and folder names transmitted over network with state-of-

the-art encryption solutions based on cryptographic best practices.

The major security features of the TOE are the following:

• Encrypted communication with other TOE users: The TOE

encrypts the names and contents of all files leaving the TOE, meaning

that no cloud servers or network devices have access to the file names

and file content shared between TOE users.

• Secure key exchange: Exchanging encryption keys between TOE

applications is done in a way that only the communicating parties gain

access to the keys, ensuring no third party can access them in

unencrypted form.

• Key generation and management: The keys used for encrypting

information are generated by the sending party and are managed by

the participating parties in a way that no third party can gain access

to them in unencrypted form, not even temporarily.

• End-point authentication: All parties can be sure that the public

keys belong to the desired party, and a potential attacker cannot

inject their own public key to execute a man-in-the-middle attack.

1.2.2 TOE Type

The TOE is a CLI software product designed for end-to-end encrypted

file/folder sharing.

1.2.3 Non-TOE Hardware/Software/Firmware

The TOE is a software product which requires the following OS to run:

• Windows: 10 (x64) or later

The TOE has the same minimum hardware requirements as the underlying

OS. The TOE requires internet access and the usage of a pre-defined cloud

storage service provided by the developer.

The cloud service is a Microsoft Azure infrastructure architected and

operated by the developer of the TOE. The TOE automatically uses this

service without any interaction required by the user.

1.3 TOE Description

This section addresses the physical and logical scope of the TOE.

Figure 1.1 describes the TOE and its environment. The two displayed TOEs

are the running TOE software instances on the shown physical computers.

7

Figure 1.1 — The TOE and its environment

Figure 1.1 illustrates an additional secure communication channel. This

channel is needed to be established when a TOE user (inviter) shares a

container with another TOE user (invitee) to communicate verification

objects required to ensure the integrity of the container sharing process and

is only needed until the invitee accepts the invitation to the container.

1.3.1 Physical Scope of the TOE

The TOE is a CLI application delivered to the users in the form of an installer

named Tresorit.exe with version 3.5.4549.3950.

The physical scope of the TOE consists of two files along with the necessary

guidance documentation.

Table 1.2 details parts of the physical scope of the TOE.

File Identification Version

TOE
executable

tresorit-core-interface.exe (the
executable file which is to be started

by the user to use the TOE)

5.0.3950.3950

TOE DLL Tresorit.dll (the DLL file containing

TOE functionality, used by the TOE
executable)

4.13.17.3950

User

guidance

AGD Documentation for Tresorit

Core Interface v5.0 (PDF document,
user guide and install guide)

1.1

Table 1.2 — The physical scope of the TOE

8

The TOE executable and the TOE DLL are delivered to the user in the form

of an executable installer named Tresorit.exe.1 Said installer installs two

Tresorit products:

1. a GUI application — this is not part of the TOE,

2. a CLI application — this is the TOE executable (tresorit-core-

interface.exe).

Both the GUI and the CLI application use the same TOE DLL (Tresorit.dll),

which is also part of the TOE and contains functionality used by both

applications. The TOE DLL is also installed by the installer.

The installer file has a separate version number than the TOE executable

and the TOE DLL.

The CLI application uses a different set of functionalities than the GUI

application. The available functions of the TOE are listed in Chapter 7 of this

document.

Figure 1.2 illustrates the physical scope of the TOE software, including the

TOE delivery method. The boxes with green background are parts of the

TOE software, others are not.

Figure 1.2 — The physical scope of the TOE software including the TOE delivery method

The developer maintains an email address for customers to ask their

questions at “support@tresorit.com”. The user guidance documentation and

1 The installer is not considered to be part of the physical scope of the TOE, but a TOE

delivery method.

9

the installer of the TOE can be accessed for users upon request submitted

through this email address or through dedicated sales representatives for

enterprise customers.

Each part of the TOE (the TOE executable, the TOE DLL and the guidance

document) and the TOE installer are digitally signed by the developer.

1.3.2 Logical Scope of the TOE

The logical boundary of the TOE is broken down into the following security

classes:

• Cryptographic operations

• File management

• Container management

• User management

• Secure communication

1.3.2.1 Cryptographic operations

This functionality is provided by the TOE for encryption and decryption of

user files, as well as file and folder names. It is responsible for encrypted

communication with the cloud service servers also. It performs

cryptographic key generation, cryptographic key management, and

cryptographic operations (e.g., hashing) as well.

1.3.2.2 File management

Files are organized in an arbitrary structure of folders and subfolders within

a shared container. These files can be on the container level. The TOE

encrypts all uploaded files and folders. Every file has a unique combination

of a symmetric encryption key and a random initialization vector. As a

result, even if two files only differ by one bit, their encrypted form will be

completely different.

1.3.2.3 Container management

TOE users can create encrypted containers to upload files and folders into

it and share them with other TOE users. The thumbprint of the container

can be verified by the users to check the integrity of the shared data. Access

to shared containers can be revoked.

1.3.2.4 User management

The TOE provides an interface to register, login, and logout, but the

identification and authentication management is not handled by the TOE.

TOE users can get other users’ public keys as well.

10

1.3.2.5 Secure communication

The TOE encrypts files and folders when they are transferred between TOE

users in a way that protects their confidentiality and integrity from third

parties including the cloud servers used by the TOE.

1.3.3 Features and functionality not included in the TOE:

• Identity and authentication management

• Invitation of non-TOE users

• Link-based sharing

• Single Sign-On

• Enterprise features

• Web application features

1.4 Usage of the TOE in order to implement cryptographic controls

The security objectives of the TOE allow users to use the TOE to exchange

data in an encrypted format in such a way that is described by international

standards or required by legal regulations. The following table contains

excerpts from a few international standards that require data to be

encrypted. Using the TOE helps organizations to implement these controls

easier.

Regulation /

Standard

Excerpt

GDPR Processing of personal data must be done in such a way as

to ensure appropriate security, integrity, and

confidentiality. The controller shall not be required to

communicate the personal data breach to the data subject

if encryption was applied to the personal data affected

by the personal data breach, in particular if it renders the

personal data unintelligible to any person who is not

authorized to access it. Source: [GDPR].

HIPAA Sensitive data shall be encrypted. Source: [HIPAA].

TISAX The mapping of information classification (such as

confidential or secret) to protection must be handled.

Source: [TISAX].

BSI_C5 Authentication information shall be handled according to

requirement PSS-07.

Key management shall be handled according to

requirement CRY-04.

Access to cloud customer data shall be handled according

to requirement IDM-07. Source: [BSI_C5].

11

CJIS Access control mechanisms shall use encryption. Data

transmitted outside the boundary of the physically secure

location shall be encrypted. Source: [CJIS].

CMMC Audit information shall be protected. Cryptographic

mechanisms shall be used to protect digital media during

transport. Confidentiality of backup shall be protected.

Cryptographic mechanisms shall be implemented to

prevent unauthorized disclosure of data during

transmission. Source: [CMMC].

FEDRAMP Cryptographic mechanisms shall be used to protect digital

media during transport. Cryptographic mechanisms shall

be implemented to prevent unauthorized disclosure of data

during transmission. Cryptographic mechanisms shall be

implemented to prevent unauthorized disclosure and

modification of information. Source: [FEDRAMP].

FINRA Sensitive data and/or storage units shall be encrypted.

Source: [FINRA].

ISO27001 Documented information required by the information

security management system shall be controlled to ensure

it is adequately protected (e.g., from loss of confidentiality,

improper use, or loss of integrity). Source: [ISO27001].

ITAR Usage of end-to-end encrypted services transferring

technical data shall not count as exports, reexports,

retransfers, or temporary imports. Source: [ITAR].

NIST Cryptographic mechanisms shall be implemented for

security and privacy controls for Information Systems and

Organizations according to [SP800-53].

SOC2 Encryption shall be used to protect data-at-rest. Encryption

keys shall be protected. Encryption shall be used to protect

transmission of data. Source: [SOC2].

DTL Best practice cryptography shall be used to protect data-

at-rest and data-at-transit. Source: [DTL].

2 Conformance Claims

Common Criteria Conformance CC Part 2 Conformant, CC Part 3

Conformant

12

Common Criteria Version Common Criteria for Information
Technology Security Evaluation, Version

3.1, Revision 5, April 2017

PP Conformance —

Evaluation Assurance Level EAL4 augmented with AVA_VAN.5

2.1 Protection Profile Conformance Rationale

This ST does not claim conformance to a PP.

3 Security Problem Definition

This section includes the following:

• Assets

• Secure usage assumptions,

• Threats, and

• Organisational security policies.

3.1 Assets

Asset Description

ASSET.DATA Contents of data files that contain

information to be protected and names of
files and folders stored in TOE containers.

ASSET.PASSWORD Password of the TOE user.

ASSET.USER_KEY User’s cryptographic keys that are
transmitted to cloud servers in an encrypted

format. These keys are only accessible for a
single TOE user. Public keys are excluded

because they are meant to be shared.

ASSET.CONTAINER_KEY Container’s cryptographic keys that are

transmitted to cloud servers in an encrypted
format and distributed among TOE users

based on who the containers are shared with.
Public keys are excluded because they are

meant to be shared.

3.2 Assumptions

Assumption Description

A.PLATFORM The underlying operating system and

hardware platform on which the TOE is
installed are trustworthy, work correctly, and

have no undocumented security critical side
effects on the security functions of the TOE.

13

A.PHYSICAL The TOE is operated on a hardware platform
to which only the TOE user has physical

access to.

A.ENTROPY The underlying operating system on which

the TOE is installed provides an entropy
source that is suitable for generating

cryptographically secure pseudorandom
numbers.

A.USER The TOE user is trustworthy, security

conscious, and uses the TOE according to the

provided user guidance.

A.PASSWORD The password chosen by the TOE user for
protecting ASSET.USER_KEY is kept secret.

3.3 Threats

Threat agents are attackers who have access to any communication channel

over which the integrity protected, and confidentiality protected data are

transferred, e.g., networks, other paths of transmission, the cloud service’s

storage media etc.

The threat agent is assumed to have advanced attack potential.

Threat Description

T.DISCLOSE Loss of confidentiality — An attacker of one of the

communication paths over which the assets are
transferred succeeds in accessing the assets, i.e., the

attacker violates the confidentiality of the information
sent over the communication channel.2

T.INJECT Loss of integrity — An attacker of one of the
communication paths over which the assets are

transferred adds new data files (files that are not in the
container and have never been in the container before)

to a container, in a way that is not detected.3

T.TAMPER Loss of integrity — An attacker of one of the

communication paths over which the assets are
transferred replaces or modifies the content of the data

2 The attack can for example be achieved by eavesdropping, recording encrypted data

during the transfer and deciphering the encrypted data.
3 The attack can for example be achieved by interrupting the transfer, modifying the

server’s responses, injecting new file entries, then serving those files as if they belonged

to the container.

14

files or the name of the data file in a way that is not
detected.4

T.BRUTEFORCE An attacker tries to crack the password through trial and
error.

4 Security Objectives

4.1 Security Objectives for the TOE

Objective Description

OT.CONFIDENTIALITY The TOE shall provide mechanisms that
protect the information of a transmitted data

such that its content's confidentiality is
protected and only accessible by authorized

users.

OT.INTEGRITY The TOE shall provide mechanisms that

detect if an attacker has tampered with a
transmitted data file (replacing or modifying

the content or the name of data files).

OT.PASSWORD_KEY The TOE shall use a password stretching
algorithm with parameters that protects

encrypted objects and the token used for
server authentication against known brute-

force attacks.

OT.PASSWORD The TOE shall ensure that users create strong

password.

4.2 Security Objectives for the Operational Environment

Objective Description

OE.PLATFORM The underlying operating system and

hardware platform on which the TOE is
installed shall be trustworthy, work correctly,

and have no undocumented security critical

side effects on the security functions of the
TOE.

OE.PHYSICAL The TOE shall be run on a hardware platform

to which only the TOE user has physical
access to.

4 The attack can for example be achieved by interrupting the transfer, modifying the

content of the data (including replacing the whole file or modify file/folder names

information) and then re-constructing the integrity protection. Afterwards the modified

data is sent to the intended destination.

15

OE.USER The TOE user shall be trustworthy, security
conscious, and shall use the TOE according

to the provided user guidance including the
that the TOE password is kept secret.

OE.ENTROPY The underlying operating system on which
the TOE is installed shall provide an entropy

source that is suitable for generating
cryptographically secure pseudorandom

numbers.

4.3 Security Objectives Rationale

This section demonstrates that the stated security objectives counter all

identified threats, policies, or assumptions.

The following tables provide a mapping of security objectives to the

environment defined by the threats, policies, and assumptions, illustrating

that each security objective covers at least one threat, policy, or assumption

and that each threat, policy or assumption is covered by at least one

security objective.

4.3.1 Security Objectives and Threats

Threats Security Objectives for the TOE and Rationale

T.DISCLOSE OT.CONFIDENTIALITY ensures that assets are protected
in a way that threat agents cannot violate their

confidentiality.

T.INJECT OT.INTEGRITY ensures that injection of new files is

detected.

T.TAMPER OT.INTEGRITY ensures that tampering with a
transmitted data file is detected.

T.BRUTEFORCE OT.PASSWORD_KEY ensures that the password key
derived from the user password is strong enough that

known brute-force attacks cannot succeed against it.

OT.PASSWORD ensures that the user password used as
a base for the password key derivation is strong enough

to use it for password key derivation.

OT.CONFIDENTIALITY ensures that assets are protected

with a cryptographic algorithm that protects against
brute-force attacks.

Threats Security Objectives for the Environment and Rationale

16

T.DISCLOSE OE.ENTROPY ensures that used cryptographic algorithms
are working with random numbers that have enough

entropy to mitigate cryptographic attacks against
encrypted assets.

OE.PLATFORM ensures that the underlying operating
system and hardware platform on which the TOE is

installed are trustworthy, work correctly and have no
undocumented security critical side effects on the

security functions of the TOE.

OE.PHYSICAL ensures that TOE is operated on a

hardware platform to which only the TOE user has
physical access to.

OE.USER ensures that the TOE user is trustworthy,

security conscious, and uses the TOE according to the
provided user guidance including the that the TOE

password is kept secret.

4.3.2 Assumptions and Security Objectives

Assumptions Security Objectives for the Environment and Rationale

A.PLATFORM OE.PLATFORM ensures that the underlying operating

system and hardware platform on which the TOE is
installed is trustworthy, work correctly and have no

undocumented security critical side effects on the
security functions of the TOE.

A.PHYSICAL OE.PHYSICAL ensures that the TOE is operated on a

hardware platform to which only the TOE user has

physical access to.

A.ENTROPY OE.ENTROPY ensures that the underlying operating
system on which the TOE is installed provides an entropy

source that is suitable for generating cryptographically
secure pseudorandom numbers.

A.USER OE.USER ensures that the TOE user is trustworthy,
security conscious, and uses the TOE according to the

provided user guidance.

A.PASSWORD OE.USER ensures that the TOE user uses the TOE
according to the provided user guidance including that a

strong password is created, and it is kept secret.

17

5 Extended Components Definition

There are no extended SFRs and no extended Security Assurance

Requirements (SAR) for the TOE.

6 Security Requirements

6.1 Conventions

The following conventions are used whenever an operation (assignment,

selection, or refinement) has been applied to a security functional

requirement:

• Assignment: Italicized text

• Selection: Underlined text

• Refinement: Bold text

• Assignment in selection: Italicized and underlined text

Whenever a security functional requirement has been used more than once,

the title of the security functional requirement is followed by a unique string

(e.g., /xyz) to distinguish between the different iterations of the security

functional requirement.

6.2 Subjects, Objects, Security Attributes, and Operations

Subject Description

S.USER User of the TOE.

S.CRYPTO Cryptographic module of the TOE that

performs cryptographic operations
automatically or manually when triggered by

user action.

S.COMMUNICATION Communication module of the TOE that

handle sending and receiving data to and
from the cloud provider’s servers (export

from and import to the TOE).

Object Description

O.DATA Data file contents, file names, and folder

names that contain information to be
protected.

O.USER_PASSWORD_

DERIVED_TOKEN

A token is derived from the user’s password

during registration which is shared with the
cloud servers. This token can be used by the

servers to authenticate the TOE user during
subsequent logins.

18

O.USER_PASSWORD_
DERIVED_KEY

A key that is derived from the user’s
password which is used to open encrypted

user key objects.

O.USER_KEY User’s cryptographic keys that are

transmitted to cloud servers in an encrypted
format.

O.USER_VERIFICATION_

HASH

It is a hash which is used to verify the

integrity of user’s public keys.

O.USER_PUBLIC_KEY Public key counterparts of asymmetrical

O.USER_KEY objects.

O.CONTAINER_KEY Container’s cryptographic keys that are
transmitted to cloud servers in an encrypted

format and distributed among TOE users
based on who the containers are shared with.

O.CONTAINER_
VERIFICATION_HASH

It is a hash that is used to verify the integrity
of a container.

Security attribute Description

SA.PASSWORD The password of the TOE user.

6.2.1 Operations

6.2.1.1 OP.HASH_ACCESS

• Subject: S.USER

• Objects: O.USER_VERIFICATION_HASH,

O.CONTAINER_VERIFICATION_HASH

• Description: S.USER accesses O.USER_VERIFICATION_HASH and

O.CONTAINER_VERIFICATION_HASH objects to verify integrity.

6.2.1.2 OP.DOWNLOAD

• Subject: S.USER

• Objects: O.DATA

• Description: S.USER accesses O.DATA after download and

decryption.

6.2.1.3 OP.UPLOAD

• Subject: S.USER

• Objects: O.DATA

• Description: S.USER can instruct the TOE to upload encrypted

O.DATA to the cloud.

19

6.2.1.4 OP.PASSWORD_DERIVATION

• Subject: S.CRYPTO

• Objects: O.USER_PASSWORD_DERIVED_TOKEN,

O.USER_PASSWORD_DERIVED_KEY

• Description: S.CRYPTO derives

O.USER_PASSWORD_DERIVED_TOKEN and

O.USER_PASSWORD_DERIVED_KEY from SA.PASSWORD that the

user provided. (Note: Performed during registration and login.)

6.2.1.5 OP.KEY_CREATION

• Subject: S.CRYPTO

• Objects: O.USER_KEY, O.USER_PUBLIC_KEY, O.CONTAINER_KEY

• Description: S.CRYPTO generates or derives O.USER_KEY,

O.USER_PUBLIC_KEY and O.CONTAINER_KEY objects.

6.2.1.6 OP.USER_KEY_ENCRYPTION

• Subject: S.CRYPTO

• Objects: O.USER_KEY, O.USER_PASSWORD_DERIVED_KEY,

O.USER_PUBLIC_KEY

• Description: S.CRYPTO encrypts O.USER_KEY objects with

O.USER_PASSWORD_DERIVED_KEY or with O.USER_PUBLIC_KEY or

with other O.USER_KEY objects.

6.2.1.7 OP.USER_KEY_DECRYPTION

• Subject: S.CRYPTO

• Objects: O.USER_KEY, O.USER_PASSWORD_DERIVED_KEY

• Description: S.CRYPTO decrypts encrypted O.USER_KEY objects with

O.USER_PASSWORD_DERIVED_KEY or with other O.USER_KEY

objects.

6.2.1.8 OP.DATA_ENCRYPTION

• Subject: S.CRYPTO

• Objects: O.DATA, O.CONTAINER_KEY

• Description: S.CRYPTO encrypts O.DATA with O.CONTAINER_KEY

objects.

6.2.1.9 OP.DATA_DECRYPTION

• Subject: S.CRYPTO

• Objects: O.DATA, O.CONTAINER_KEY

• Description: S.CRYPTO decrypts encrypted O.DATA with

O.CONTAINER_KEY objects.

6.2.1.10 OP.HASH_GENERATION

• Subject: S.CRYPTO

20

• Objects: O.USER_VERIFICATION_HASH,

O.CONTAINER_VERIFICATION_HASH

• Description: S.CRYPTO generates O.USER_VERIFICATION_HASH

and O.CONTAINER_VERIFICATION_HASH objects.

6.2.1.11 OP.CONTAINER_KEY_ENCRYPTION

• Subject: S.CRYPTO

• Objects: O.CONTAINER_KEY, O.USER_PUBLIC_KEY

• Description: S.CRYPTO encrypts O.CONTAINER_KEY objects with

O.USER_PUBLIC_KEY objects or with other O.CONTAINER_KEY

objects.

6.2.1.12 OP.CONTAINER_KEY_DECRYPTION

• Subject: S.CRYPTO

• Objects: O.CONTAINER_KEY, O.USER_KEY

• Description: S.CRYPTO decrypts encrypted O.CONTAINER_KEY

objects with O.USER_KEY objects or with other O.CONTAINER_KEY

objects.

6.2.1.13 OP.EXPORT

• Subject: S.COMMUNICATION

• Objects: O.DATA, O.CONTAINER_KEY, O.USER_KEY,

O.USER_PASSWORD_DERIVED_TOKEN, O.USER_PUBLIC_KEY,

O.USER_PASSWORD_DERIVED_KEY

• Description: S.COMMUNICATION exports encrypted O.DATA,

encrypted O.CONTAINER_KEY, encrypted O.USER_KEY to cloud

servers. S.COMMUNICATION exports

O.USER_PASSWORD_DERIVED_TOKEN, O.USER_PUBLIC_KEY to

cloud servers. S.COMMUNICATION never exports SA.PASSWORD or

O.USER_PASSWORD_DERIVED_KEY.

6.2.1.14 OP.IMPORT

• Subject: S.COMMUNICATION

• Objects: O.DATA, O.CONTAINER_KEY, O.USER_KEY,

O.USER_PUBLIC_KEY

• Description: S.COMMUNICATION imports encrypted O.DATA,

encrypted O.CONTAINER_KEY, and encrypted O.USER_KEY from

cloud servers. S.COMMUNICATION imports O.USER_PUBLIC_KEY

from cloud servers.

21

6.3 TOE Security Functional Requirements

6.3.1 Security functional policies implemented by the TOE

6.3.1.1 Data access

The cloud provider for the TOE stores the contents of data files and the

names of files/directories in an encrypted format. This data is always

encrypted using the containers' cryptographic keys before uploading it to

the cloud servers. The user must enter the correct password during login

every time after starting the TOE or after a logout to access the unencrypted

data.The TOE imports objects automatically from the cloud servers and

when a TOE user instructs it, manually. When the TOE imports this data, it

decrypts it using the same keys and always checks its integrity. The TOE

user can only access this data after successful decryption and integrity

verification.

Every file and directory are attached to a container. This association is

exported when the TOE uploads encrypted data to the cloud servers.

6.3.1.2 Key derivation from password

A key is derived from the user’s password during registration and login with

a password stretching algorithm. This SFP regulates that the user must

choose a password when registering, and provide the same password every

time when logging in. Neither the user’s password nor this derived key can

be exported to outside of the TOE boundary, not even in an encrypted

format. (Note: Another output, a token is also derived from the user’s

password during registration and login, also with a password stretching

algorithm. This token is not considered secret or sensitive data and can be

exported from the TOE without restrictions. This token is shared with the

cloud servers during registration. During login, this token is used to prove

to the cloud servers that the user knows the password.)

6.3.1.3 User key access

The cloud provider for the TOE stores cryptographic user keys in an

encrypted format. These keys are always encrypted using other user keys

of the same TOE user or using the key which is derived from the user’s

password before uploading it to the cloud servers. The user must enter the

correct password during login every time after starting the TOE or after a

logout to access these keys. The TOE imports user keys automatically from

the cloud servers. When the TOE imports these keys, it decrypts it using

the same keys as for the encryption and always checks their integrity. The

TOE only uses these keys to encrypt or decrypt other data after successful

decryption and integrity verification.

Every user key is attached to a user. This association is exported when the

TOE uploads encrypted user keys to the cloud servers.

22

Each user key that belongs to an asymmetric key pair is either a public key

or a private key. User keys that are public keys of such asymmetric key

pairs are not considered secret or sensitive data, and can be exported from

the TOE without restrictions.

6.3.1.4 Container key access

The cloud provider for the TOE stores cryptographic container keys in an

encrypted format. These keys are always encrypted using other container

keys of the same container or using user public keys of the users who have

been given access to that container. The user must enter the correct

password during login every time after starting the TOE or after a logout to

access these keys. The TOE imports user keys automatically from the cloud

servers. When the TOE imports these keys, it decrypts them using the same

keys that were used for encryption (the corresponding user private keys are

used for decryption when user public keys were used for encryption),

checking their integrity in the process. The TOE only uses these keys to

encrypt or decrypt other data after successful decryption and integrity

verification.

Integrity verification is performed automatically or manually. In most cases

the TOE checks the integrity of the received keys automatically. If that is

not possible, the TOE user needs to acquire a verification object (e.g., hash)

over a secondary communication channel with another TOE user. The other

TOE user can use their own TOE to generate these verification objects.

Manual integrity verification is required in two cases:

• When a TOE user is sharing a container with another TOE user using

the other user’s public key, the other TOE user must acquire a

verification object of their own user key.

• When a TOE user receives an invitation to a container from another

TOE user, the other TOE user must acquire a verification object of the

container.

Each container key is attached to a container – this association is exported

when the TOE uploads encrypted container keys to the cloud servers. Each

container has an associated list of users and user public keys which can

access that container – this list is exported when the TOE uploads container

keys to the cloud servers.

6.3.2 Security Functional Requirements

6.3.2.1 FCS_CKM.1/rsa Cryptographic key generation

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with

a specified cryptographic key generation algorithm RSA Key-Pair Generation

23

with a Fixed Public Exponent5 and specified cryptographic key sizes 4096

bits6 that meet the following: [SP800-56Br2]7
.

6.3.2.2 FCS_CKM.1/random Cryptographic key generation

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with

a specified cryptographic key generation algorithm Using the Output of a

Random Bit Generator8 and specified cryptographic key sizes 256 bits for

AES and HMAC9 that meet the following: [SP800-133r2]10.

6.3.2.3 FCS_CKM.1/password_stretching Cryptographic key generation

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with

a specified cryptographic key generation algorithm Scrypt with a cost

parameter of 32768 or 131072, a block size of 8 and a parallelization

parameter of 1 or 8, using user input or another cryptographic key as its

input11 and specified cryptographic key sizes 256 bits12 that meet the

following: [RFC 7914]13.

6.3.2.4 FCS_CKM.1/derivation Cryptographic key generation

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with

a specified cryptographic key generation algorithm using the output of a

key derivation (FCS_COP.1/key_derivation) or keyed hash

(FCS_COP.1/keyed_hash), with inputs that include at least one other

cryptographic key that is generated using one of the FCS_CKM.1/random,

FCS_CKM.1/password_stretching, or FCS_CKM.1/derivation14 and specified

cryptographic key sizes 256 or 512 bits15 that meet the following:

[RFC8018] (FCS_COP.1/key_derivation), [FIPS198-1]

(FCS_COP.1/keyed_hash)16.

6.3.2.5 FCS_COP.1/hash Cryptographic operation

FCS_COP.1.1 The TSF shall perform hashing and integrity verification17 in

accordance with a specified cryptographic algorithm SHA-2 with a digest

5 [assignment: cryptographic key generation algorithm]
6 [assignment: cryptographic key sizes]
7 [assignment: list of standards]
8 [assignment: cryptographic key generation algorithm]
9 [assignment: cryptographic key sizes]
10 [assignment: list of standards]
11 [assignment: cryptographic key generation algorithm]
12 [assignment: cryptographic key sizes]
13 [assignment: list of standards]
14 [assignment: cryptographic key generation algorithm]
15 [assignment: cryptographic key sizes]
16 [assignment: list of standards]
17 [assignment: list of cryptographic operations]

24

size of 256 bits18 and cryptographic key sizes none19 that meet the

following: [FIPS180-4]20.

6.3.2.6 FCS_COP.1/keyed_hash Cryptographic operation

FCS_COP.1.1 The TSF shall perform keyed hashing and integrity

verification21 in accordance with a specified cryptographic algorithm HMAC

with SHA-2 with a digest size of 256 or 512 bits22 and cryptographic key

sizes 256 or 512 bits23 that meet the following: [FIPS198-1]24.

6.3.2.7 FCS_COP.1/key_derivation Cryptographic operation

FCS_COP.1.1 The TSF shall perform key derivation25 in accordance with a

specified cryptographic algorithm PBKDF2 with HMAC with SHA-2 with a

digest size of 256 or 512 bits26 and cryptographic key sizes 256 or 512 bits27

that meet the following: [RFC8018]28.

6.3.2.8 FCS_COP.1/enc_symmetric_noauth Cryptographic operation

FCS_COP.1.1 The TSF shall perform encryption and decryption29 in

accordance with a specified cryptographic algorithm AES with ECB or CFB

mode of operation30 and cryptographic key sizes 256 bits31 that meet the

following: [SP800-38A]32.

6.3.2.9 FCS_COP.1/enc_symmetric_auth Cryptographic operation

FCS_COP.1.1 The TSF shall perform encryption, decryption, and integrity

verification33 in accordance with a specified cryptographic algorithm AES

with GCM mode of operation, a tag size of 128 bits, and an initialization

vector size of 128 bits34 and cryptographic key sizes 256 bits35 that meet

the following: [SP800-38D]36.

18 [assignment: cryptographic algorithm]
19 [assignment: cryptographic key sizes]
20 [assignment: list of standards]
21 [assignment: list of cryptographic operations]
22 [assignment: cryptographic algorithm]
23 [assignment: cryptographic key sizes]
24 [assignment: list of standards]
25 [assignment: list of cryptographic operations]
26 [assignment: cryptographic algorithm]
27 [assignment: cryptographic key sizes]
28 [assignment: list of standards]
29 [assignment: list of cryptographic operations]
30 [assignment: cryptographic algorithm]
31 [assignment: cryptographic key sizes]
32 [assignment: list of standards]
33 [assignment: list of cryptographic operations]
34 [assignment: cryptographic algorithm]
35 [assignment: cryptographic key sizes]
36 [assignment: list of standards]

25

6.3.2.10 FCS_COP.1/enc_asymmetric Cryptographic operation

FCS_COP.1.1 The TSF shall perform encryption and decryption37 in

accordance with a specified cryptographic algorithm RSA-OAEP with hash

function SHA-138 and cryptographic key sizes 4096 bits39 that meet the

following: [SP800-56Br2]40.

6.3.2.11 FDP_ACC.1 Subset access control

FDP_ACC.1.1 The TSF shall enforce the following SFPs41 on

• Data access SFP

o Subjects:

▪ S.USER

▪ S.CRYPTO

▪ S.COMMUNICATION

o Objects:

▪ O.DATA

▪ O.CONTAINER_KEY

o Operations:

▪ OP.DOWNLOAD

▪ OP.UPLOAD

▪ OP.DATA_ENCRYPTION

▪ OP.DATA_DECRYPTION

▪ OP.EXPORT

▪ OP.IMPORT

• User key access SFP

o Subjects:

▪ S.CRYPTO

▪ S.COMMUNICATION

o Objects:

▪ O.USER_KEY

▪ O.USER_PUBLIC_KEY

▪ O.USER_PASSWORD_DERIVED_KEY

o Operations:

▪ OP.KEY_CREATION

▪ OP.USER_KEY_ENCRYPTION

▪ OP.USER_KEY_DECRYPTION

▪ OP.EXPORT

▪ OP.IMPORT

• Container key access SFP

37 [assignment: list of cryptographic operations]
38 [assignment: cryptographic algorithm]
39 [assignment: cryptographic key sizes]
40 [assignment: list of standards]
41 [assignment: access control SFP]

26

o Subjects:

▪ S.USER

▪ S.CRYPTO

▪ S.COMMUNICATION

o Objects:

▪ O.CONTAINER_KEY

▪ O.USER_KEY

▪ O.USER_PUBLIC_KEY

▪ O.CONTAINER_VERIFICATION_HASH

▪ O.USER_VERIFICATION_HASH

o Operations:

▪ OP.HASH_ACCESS

▪ OP.KEY_CREATION

▪ OP.HASH_GENERATION

▪ OP.CONTAINER_KEY_ENCRYPTION

▪ OP.CONTAINER_KEY_DECRYPTION

▪ OP.EXPORT

▪ OP.IMPORT

• Key derivation from password SFP

o Subjects:

▪ S.CRYPTO

▪ S.COMMMUNICATION

o Objects:

▪ O.USER_PASSWORD_DERIVED_KEY

o Operations:

▪ OP.PASSWORD_DERIVATION

▪ OP.EXPORT42.

6.3.2.12 FDP_ACF.1 Security attribute based access control

FDP_ACF.1.1 The TSF shall enforce the following SFPs43 to objects based on

the following:

• Data access SFP

o Subjects:

▪ S.USER

▪ S.CRYPTO

▪ S.COMMUNICATION

o Objects:

▪ O.DATA

▪ O.CONTAINER_KEY

o Security attributes:

42 [assignment: list of subjects, objects, and operations among subjects and objects

covered by the SFP]
43 [assignment: access control SFP]

27

▪ SA.PASSWORD

• User key access SFP

o Subjects:

▪ S.CRYPTO

▪ S.COMMUNICATION

o Objects:

▪ O.USER_KEY

▪ O.USER_PUBLIC_KEY

▪ O.USER_PASSWORD_DERIVED_KEY

o Security attributes:

▪ SA.PASSWORD

• Container key access SFP

o Subjects:

▪ S.USER

▪ S.CRYPTO

▪ S.COMMUNICATION

o Objects:

▪ O.CONTAINER_KEY

▪ O.USER_KEY

▪ O.USER_PUBLIC_KEY

▪ O.CONTAINER_VERIFICATION_HASH

▪ O.USER_VERIFICATION_HASH

o Security attributes:

▪ SA.PASSWORD

• Key derivation from password SFP

o Subjects:

▪ S.CRYPTO

▪ S.COMMMUNICATION

o Objects:

▪ O.USER_PASSWORD_DERIVED_KEY

o Security attributes:

▪ SA.PASSWORD44

FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an

operation among controlled subjects and controlled objects is allowed:

o The user must choose a SA.PASSWORD that meet the following

password requirements which are based on Unicode code points and

character classes:

o Minimum of 8 characters long,

o Contains at least 1 uppercase letter,

44 [assignment: list of subjects and objects controlled under the indicated SFP, and for

each, the SFP-relevant security attributes, or named groups of SFP-relevant security

attributes]

28

o Contains at least 1 lowercase letter,

o Contains at least 1 digit

o The user must enter the correct SA.PASSWORD to access user data45.

FDP_ACF.1.3 The TSF shall explicitly authorise access of subjects to objects

based on the following additional rules:

o S.USER can access O.DATA when objects are already decrypted by

S.CRYPTO.

o S.CRYPTO can always access the encrypted form of O.DATA,

O.USER_KEY, O.CONTAINER_KEY.

o S.CRYPTO can only access the decrypted form of O.DATA,

O.USER_KEY, O.CONTAINER_KEY if it was able to successfully decrypt

said objects with their encryption keys.

o S.COMMUNICATION can access O.DATA, O.USER_KEY,

O.CONTAINER_KEY in their encrypted form only46.

FDP_ACF.1.4 The TSF shall explicitly deny access of subjects to objects

based on the following additional rules: none47.

6.3.2.13 FDP_ETC.1 Export of user data without security attributes

FDP_ETC.1.1 The TSF shall enforce the Data access SFP, User key access

SFP, Container key access SFP, and Key derivation from password SFP48

when exporting user data, controlled under the SFP(s), outside of the TOE.

FDP_ETC.1.2 The TSF shall export the user data without the user data's

associated security attributes.

6.3.2.14 FDP_ITC.1 Import of user data without security attributes

FDP_ITC.1.1 The TSF shall enforce the Data access SFP, User key access

SFP, and Container key access SFP49 when importing user data, controlled

under the SFP, from outside of the TOE.

FDP_ITC.1.2 The TSF shall ignore any security attributes associated with

the user data when imported from outside the TOE.

FDP_ITC.1.3 The TSF shall enforce the following rules when importing user

data controlled under the SFP from outside the TOE: none50.

45 [assignment: rules governing access among controlled subjects and controlled objects

using controlled operations on controlled objects]
46 [assignment: rules, based on security attributes, that explicitly authorise access of

subjects to objects]
47 [assignment: rules, based on security attributes, that explicitly deny access of subjects

to objects]
48 [assignment: access control SFP(s) and/or information flow control SFP(s)]
49 [assignment: access control SFP(s) and/or information flow control SFP(s)]
50 [assignment: additional importation control rules]

29

6.3.2.15 FDP_DAU.1 Basic Data Authentication

FDP_DAU.1.1 The TSF shall provide a capability to generate evidence that

can be used as a guarantee of the validity of

• O.DATA

• O.USER_KEY

• O.USER_PUBLIC_KEY

• O.CONTAINER_KEY51.

FDP_DAU.1.2 The TSF shall provide

• S.USER

• S.CRYPTO52

with the ability to verify evidence of the validity of the indicated information.

Application Note FDP_DAU.1: S.USER’s assistance is only needed for:

• verifying other users' public keys when inviting them to containers

(using O.USER_VERIFICATION_HASH objects)

• accepting invitations to containers sent by other users (using

O.CONTAINER_VERIFICATION_HASH objects)

All other evidence verification is handled by S.CRYPTO automatically.

6.3.2.16 FIA_SOS.2 TSF Generation of secrets

FIA_SOS.2.1 The TSF shall provide a mechanism to generate secrets that

meet [SP800-90Ar1]53.

FIA_SOS.2.2 The TSF shall be able to enforce the use of TSF generated

secrets for

• the initialization vector of block ciphers used for symmetric encryption

(FCS_COP.1/enc_symmetric_auth and

FCS_COP.1/enc_symmetric_noauth)

• the salt parameter of password stretching functions

(FCS_CKM.1/password_stretching)

• the random salt used to derive keys if such values are required

(FCS_CKM.1/derivation)54.

51 [assignment: list of objects or information types]
52 [assignment: list of subjects]
53 [assignment: a defined quality metric]
54 [assignment: list of TSF functions]

30

6.4 TOE Security Assurance Requirements

This section defines the assurance requirements for the TOE. Assurance

requirements are taken from CC Part 3 and are EAL4+ augmented with

AVA_VAN.5

Assurance requirements

Class ASE:

Security Target
evaluation

ASE_CCL.1 Conformance claims

ASE_ECD.1 Extended components definition

ASE_INT.1 ST introduction

ASE_OBJ.2 Security objectives

ASE_REQ.2 Derived security requirements

ASE_SPD.1 Security problem definition

ASE_TSS.1 TOE summary specification

Class ALC:
Life Cycle

Support

ALC_CMC.4 Production support, acceptance procedures
and automation

ALC_CMS.4 Problem tracking CM Coverage

ALC_DEL.1 Delivery procedures

ALC_DVS.1 Identification of security measures

ALC_LCD.1 Developer defined life-cycle model

ALC_TAT.1 Well-defined development tools

Class ADV:

Development

ADV_ARC.1 Security architecture description

ADV_FSP.4 Complete functional specification

ADV_IMP.1 Implementation representation of the TSF

ADV_TDS.3 Basic modular design

Class AGD:

Guidance

documents

AGD_OPE.1 Operational user guidance

AGD_PRE.1 Preparative procedures

Class ATE:
Tests

ATE_COV.2 Analysis of coverage

ATE_DPT.1 Testing: basic design

ATE_FUN.1 Functional testing

ATE_IND.2 Independent testing – sample

Class AVA:
Vulnerability

assessment

AVA_VAN.5 Advanced methodical vulnerability analysis

The developer has chosen EAL4+ because it is best suited to address the

stated security objectives. EAL4+ challenges vendors to use best (rather

31

than average) security and commercial practices. EAL4+ allows the vendor

to evaluate their product at a detailed level. The chosen assurance level is

appropriate for the threats defined in the environment.

The augmentation of AVA_VAN.5 was chosen to give greater assurance of

the product’s security and the absence of vulnerabilities. At EAL4+

augmented with AVA_VAN.5 penetration testing is performed by the

evaluator assuming an attack potential of Advanced.

6.5 Security Requirements Rationale

This section provides the rationale for necessity and sufficiency of security

requirements, demonstrating that each of the security objectives is

addressed by at least one security requirement, and that every security

functional requirement is directed toward solving at least one objective.

6.5.1 Security Requirements Coverage and Sufficiency

The following table provides a mapping of the relationships of security

requirements to objectives, illustrating that each security requirement

covers at least one objective and that each objective is covered by at least

one security requirement. The table in this section addresses the mapping

of security functional requirements to security objectives.

Security Functional Requirements Related to Security Objectives

Objective Functional Requirement and Rationale

OT.CONFIDENTIALITY FCS_CKM.1/rsa ensures that RSA private keys are

generated in a way that is considered secure and
that there is no known attack against them which

can be successful in recovering them from their
corresponding public keys or the output of the

cryptographic functions in which they are used as
keys.

FCS_CKM.1/random ensures that industry standard
random bit generator is used for generating

cryptographic keys.

FCS_CKM.1/password_stretching ensures that
password stretching is applied with secure

parameters for protection against brute force

attacks.

FCS_CKM.1/derivation ensures that derivation
operations are performed according to industry

standard algorithms with secure parameters.

FCS_COP.1/key_derivation ensures that key

derivation operations are performed according to

32

industry standard algorithms with secure
parameters.

FCS_COP.1/enc_symmetric_noauth ensures that
symmetric encryption operations without

authentication method are performed according to
industry standard algorithms with secure

parameters.

FCS_COP.1/enc_symmetric_auth ensures that
symmetric encryption operations with

authentication operations are performed according

to industry standard algorithms with secure
parameters.

FCS_COP.1/enc_asymmetric ensures that

asymmetric encryption operations are performed
according to industry standard algorithms with

secure parameters.

FDP_ACC.1 ensures that proper access control flow

is applied to sensitive objects.

FDP_ACF.1 ensures that access control is enforced
on sensitive objects.

FDP_ETC.1 ensures that user data is exported
without security attributes.

FIA_SOS.2 ensures that nonce and salt generation

operations are performed according to industry
standard algorithms with secure parameters

OT.INTEGRITY FCS_COP.1/hash ensures that hashing operations
are performed according to industry standard

algorithms with secure parameters.

FCS_COP.1/keyed_hash ensures that keyed
hashing operations are performed according to

industry standard algorithms with secure
parameters.

FDP_ACC.1 ensures that proper access control flow
is applied to sensitive objects.

FDP_ACF.1 ensures that access control is enforced

on sensitive objects.

FDP_ETC.1 ensures that user data is exported

without security attributes.

FDP_ITC.1 ensures that user data is imported
without security attributes.

33

FDP_DAU.1 ensures that guarantee of the validity
of objects can be generated.

OT.PASSWORD_KEY FCS_CKM.1/password_stretching ensures that
password stretching is applied with secure

parameters for protection against brute-force
attacks.

FDP_ACC.1 ensures that proper access control flow

is applied to sensitive objects.

FDP_ACF.1 ensures that access control is enforced

on sensitive objects.

OT.PASSWORD FDP_ACF.1 ensures that the user chooses a strong
password.

6.6 Requirements Dependency Rationale

6.6.1 Rationale Showing that Dependencies are Satisfied

The selected security requirements include related dependencies. All SFR

dependencies are satisfied except where FCS_CKM.4 or FMT_MSA.3 is a

dependency.

FCS_CKM.4 is excluded per the following rationale. The TOE, being a

compiled binary software, does not store cryptographic keys in itself —

cryptographic keys in their unencrypted form are only ever stored in the

RAM of the hardware running the TOE (and never in persistent storage).

The hardware running the TOE is considered secure and inaccessible to

attackers per OE.PLATFORM and OE.PHYSICAL, which makes key

destruction on the hardware running the TOE irrelevant. The destruction of

cryptographic keys stored outside the hardware running the TOE is also

irrelevant because the TOE only exports cryptographic keys in an encrypted

form. Hence, said keys cannot be recovered without their respective

encryption keys, which are either only accessible by the running TOE

instance (because they are stored in the RAM of the hardware running the

TOE while the TOE is running) or can ultimately only be accessed with the

user's password.

FMT_MSA.3 is excluded because the TSF does not provide default values for

relevant object security attributes, which can be overridden by an initial

value. The TOE does not have a default password, user passwords are

created by users during registration.

6.6.1.1 Security Functional Requirements Dependencies

The following table provides a summary of the security functional

requirements dependency analysis.

34

Component Dependency Rationale

FCS_CKM.1/rsa FCS_CKM.4 Not
included -

See
rationale

above.

FCS_CKM.1/rsa FCS_COP.1/enc_asymmetric Included

FCS_CKM.1/random FCS_CKM.4 Not
included -

See
rationale

above.

FCS_CKM.1/random FCS_COP.1/keyed_hash

FCS_COP.1/key_derivation
FCS_COP.1/enc_symmetric_n

oauth
FCS_COP.1/enc_symmetric_a

uth

Included

FCS_CKM.1/password_stretch

ing

FCS_CKM.4 Not

included -
See

rationale
above.

FCS_CKM.1/password_stretch

ing

FCS_COP.1/keyed_hash

FCS_COP.1/key_derivation
FCS_COP.1/enc_symmetric_n

oauth

FCS_COP.1/enc_symmetric_a
uth

Included

FCS_CKM.1/derivation FCS_CKM.4 Not

included -
See

rationale
above.

FCS_CKM.1/derivation FCS_COP.1/keyed_hash
FCS_COP.1/key_derivation

FCS_COP.1/enc_symmetric_n
oauth

FCS_COP.1/enc_symmetric_a
uth

Included

FCS_COP.1/hash FCS_CKM.1 Not

included -

Hashing

35

does not
use

cryptograp
hic keys.

FCS_COP.1/hash FCS_CKM.4 Not
included -

Hashing
does not

use
cryptograp

hic keys.

FCS_COP.1/keyed_hash FCS_CKM.1/random

FCS_CKM.1/password_stretch
ing

FCS_CKM.1/derivation

Included

FCS_COP.1/keyed_hash FCS_CKM.4 Not
included -

See
rationale

above.

FCS_COP.1/key_derivation FCS_CKM.1/random

FCS_CKM.1/password_stretch
ing

FCS_CKM.1/derivation

Included

FCS_COP.1/key_derivation FCS_CKM.4 Not

included -
See

rationale
above.

FCS_COP.1/enc_symmetric_n

oauth

FCS_CKM.1/random

FCS_CKM.1/password_stretch
ing

FCS_CKM.1/derivation

Included

FCS_COP.1/enc_symmetric_n

oauth

FCS_CKM.4 Not

included -
See

rationale
above.

FCS_COP.1/enc_symmetric_a

uth

FCS_CKM.1/random

FCS_CKM.1/password_stretch

ing
FCS_CKM.1/derivation

Included

FCS_COP.1/enc_symmetric_a FCS_CKM.4 Not

36

uth included -
See

rationale
above.

FCS_COP.1/enc_asymmetric FCS_CKM.1/rsa Included

FCS_COP.1/enc_asymmetric FCS_CKM.4 Not
included -

See
rationale

above.

FDP_ACC.1 FDP_ACF.1 Included

FDP_ACF.1

FDP_ACC.1 Included

FMT_MSA.3

Not
included –

The TSF
does not

provide
static

attribute
initializatio

n.

FDP_ETC.1 FDP_ACC.1 Included

FDP_ITC.1 FDP_ACC.1 Included

FMT_MSA.3 Not
included –

The TSF
does not

provide
static

attribute
initializatio

n.

FDP_DAU.1 - -

FIA_SOS.2 - -

6.6.1.2 Security Assurance Requirements Dependencies

Component Depends On Which is

ADV_ARC.1 ADV_FSP.1 included (hierarchical to ADV_FSP.4)

ADV_TDS.1 included (hierarchical to ADV_TDS.3)

37

ADV_FSP.4 ADV_TDS.1 included (hierarchical to ADV_TDS.3)

ADV_IMP.1 ADV_TDS.3 included

ALC_TAT.1 included

ADV_TDS.3 ADV_FSP.4 included

AGD_OPE.1 ADV_FSP.1 included (hierarchical to ADV_FSP.4)

AGD_PRE.1 - not applicable

ALC_CMC.4 ALC_CMS.1 included (hierarchical to ALC_CMS.4)

ALC_DVS.1 included

ALC_LCD.1 included

ALC_CMS.4 - not applicable

ALC_DEL.1 - not applicable

ALC_DVS.1 - not applicable

ALC_LCD.1 - not applicable

ALC_TAT.1 ADV_IMP.1 included

ASE_INT.1 - not applicable

ASE_CCL.1 ASE_INT.1 included or hierarchical component is
included

ASE_ECD.1

ASE_REQ.1

ASE_SPD.1 - not applicable

ASE_OBJ.2 ASE_SPD.1 included

ASE_ECD.1 - not applicable

ASE_REQ.2 ASE_OBJ.2 included

ASE_ECD.1

ASE_TSS.1 ASE_INT.1 included or hierarchical component is
included

ASE_REQ.1

ADV_FSP.1

ATE_COV.2 ADV_FSP.2 included (hierarchical to ADV_FSP.4)

ATE_FUN.1 included

ATE_DPT.1 ADV_ARC.1 included

ADV_TDS.2 included (hierarchical to ADV_TDS.3)

38

ATE_FUN.1 included

ATE_FUN.1 ATE_COV.1 included (hierarchical to ATE_COV.2)

ATE_IND.2 ADV_FSP.2 included (hierarchical to ADV_FSP.4)

AGD_OPE.1 included

AGD_PRE.1 included

ATE_COV.1 included (hierarchical to ATE_COV.2)

ATE_FUN.1 included

AVA_VAN.5 ADV_ARC.1 included

ADV_FSP.4 included

ADV_TDS.3 included

ADV_IMP.1 included

AGD_OPE.1 included

AGD_PRE.1 included

ATE_DPT.1 included

39

7 TOE Summary Specification

This section provides a description of how the TOE satisfies all SFRs listed

in this ST. The following table describes the mapping between security

functionality and their associated SFRs:

Security functionality SFRs

Cryptographic operations FCS_CKM.1/rsa

FCS_CKM.1/random
FCS_CKM.1/password_stretching

FCS_CKM.1/derivation
FCS_COP.1/hash

FCS_COP.1/keyed_hash
FCS_COP.1/key_derivation

FCS_COP.1/enc_symmetric_noauth
FCS_COP.1/enc_symmetric_auth

FCS_COP.1/enc_asymmetric
FDP_DAU.1

FIA_SOS.2

File management FDP_ACC.1

FDP_ACF.1
FDP_ETC.1

FDP_ITC.1
FDP_DAU.1

Container management FDP_ACC.1

FDP_ACF.1

FDP_ETC.1
FDP_ITC.1

FDP_DAU.1

User management FDP_ACC.1
FDP_ACF.1

FDP_ETC.1
FDP_ITC.1

FDP_DAU.1

Secure communication FDP_ETC.1

FDP_ITC.1

7.1 Cryptographic operations

The TOE uses OpenSSL v3.1.4 for its cryptographic operations. OpenSSL is

a software - a robust, commercial-grade, full-featured toolkit for general-

purpose cryptography and secure communication. OpenSSL is considered

an industry standard for secure and well-tested cryptographic

implementations of many cryptographic algorithms defined in various

standards and RFCs. The TOE does not use any proprietary implementation

40

of cryptographic standards. The following SFRs of the TOE are realized by

using OpenSSL:

• FCS_CKM.1/rsa

• FCS_CKM.1/random

• FCS_CKM.1/password_stretching

• FCS_CKM.1/derivation

• FCS_COP.1/hash

• FCS_COP.1/keyed_hash

• FCS_COP.1/key_derivation

• FCS_COP.1/enc_symmetric_noauth

• FCS_COP.1/enc_symmetric_auth

• FCS_COP.1/enc_asymmetric

• FDP_DAU.1

• FIA_SOS.2

The TOE requests and makes use of X.509 certificates signed by the cloud

servers or public certificate authorities for certain purposes. The security

model described in this document treats these as public keys and does not

assume that the certificates issued by the cloud servers can be trusted.

While the TOE checks the signatures of these certificates (which may result

in failed operations if the certificates are invalid or have expired), validating

these certificates and the cryptographic primitives used to do so are neither

included in the SFRs, nor are necessary to ensure that the security

requirements are met.

7.2 File management

TOE users can upload files to their encrypted containers with the upload

command. When a file is uploaded, unique keys are generated by:

• Generating a new random key, that is then stored alongside the file

as metadata, encrypted with another key in the container.

• Deriving a new key from another key in the container, storing the

parameters of the derivation alongside the encrypted file as

metadata.

The keys are then used to encrypt the contents and name of the file with

either:

• An authenticated encryption algorithm to protect the integrity and

the confidentiality of the file, with the tag stored alongside the

encrypted file as metadata.

• A non-authenticated encryption algorithm to protect the

confidentiality, and a keyed hash to protect the integrity of the

encrypted file, with the digest stored alongside the encrypted file as

metadata.

41

The encrypted file alongside all its metadata is then uploaded to cloud

servers for storage and later retrieval. There is no strict one-to-one mapping

between files uploaded by the user and objects stored on the server – a

single file uploaded by the user may be represented by multiple objects on

the server.

When TOE users download files using the download command, the process

is reversed – the unique keys that belong to the file are recovered by:

• Decrypting the encrypted key stored alongside the file as metadata

using another known key in the container.

• Deriving the key again from another known key in the container, using

the parameters of the derivation stored alongside the encrypted file

as metadata.

The recovered keys are then used with the same primitive that was used

for encryption and integrity protection to decrypt and verify the integrity of

the file. The decrypted contents of the file are saved to the local storage of

the user.

Directories are treated as special files by the TOE that store metadata about

other files, and all statements that relate to files are also applicable to

directories unless otherwise specified. Each container has exactly one root

directory. All files uploaded must belong to exactly one directory, except

the root directory (and the container key file, see next section). No two files

in a directory may have the same name – if a file is uploaded with the same

name as an existing file in a directory, that results in an error instead of the

TOE uploading the file. Whenever a file is downloaded or uploaded, its

parent directory may also be downloaded, modified, and then uploaded

again to reflect the changes in the directory. Upload and download

operations are performed on directories recursively – directories are

uploaded and downloaded as normal files would be during these operations.

TOE users can list files in a directory using the get-directory-contents

command. When this command is issued, the directory is non-recursively

downloaded to memory, the decrypted contents are parsed and are used to

display the list of files and directories in the directory to the user.

Empty directories may be created with the create-directory command.

The TOE uploads such directories as if the user initiated the upload of an

empty directory with the specified name.

Commands have optional and required path parameters to identify files to

download or upload. Internal paths that refer to files inside a container are

relative to the root directory of the container. These paths consist of the

names of the parent directories and the name of the file separated by a

path separator.

42

7.3 Container management

Containers TOE users have access to can be listed using the get-

containers command, asking the server to return the names of all such

containers. Container names are allocated by the cloud servers at the TOE’s

request. Containers may be shared between TOE users. Each container has

a key file that stores metadata and encrypted container keys, which can be

decrypted by a container key that is itself encrypted with the asymmetric

user keys of each user who has access to the container. When required, the

TOE downloads and decrypts these key files to access other keys required

to decrypt data in the container in the background.

TOE users can create encrypted containers using the create-container

command. After the cloud servers have allocated a name for the container,

the key file is assembled and uploaded alongside an empty root directory.

At this point, the key file’s container key is only encrypted with the key of

the user who created the container, making them the only user able to

access and modify data in the container.

TOE users can share existing containers with other users. To do so, the user

first must contact the invitee to obtain the identifier and fingerprint of their

asymmetric user key. Invitees can use the get-own-fingerprints

command on their own TOE to obtain these values. The invitation can be

issued using the invite-user-to-container command, specifying the e-

mail address, the key identifier, and the fingerprint. The TOE will first query

the servers for the asymmetric user key of the invitee and check if the

fingerprint supplied matches the fingerprint of the key retrieved from the

server. Once validated, the asymmetric user key is used to encrypt the

container key, then this encrypted container key is added to the key file,

which is uploaded to the cloud servers. The out of band fingerprint check

prevents third parties from spoofing the invitee’s public key and fooling the

user into leaking the container keys by encrypting them with a public key

under the attacker’s control.

TOE users can list containers they were invited to using the get-

container-invitations command. Users can ask the user who invited

them to a container to use the get-container-fingerprint command to

query the latest fingerprint of that container, that can then be used

alongside the container’s name with the acknowledge-container-

invitation command to accept the invitation. The out of band fingerprint

check prevents third parties from spoofing the invitation and fooling the

user into uploading data to a container the attacker has prepared with

known keys.

TOE users can revoke access from other users to existing containers they

have access to. To do so, the user first must query the fingerprint identifying

43

the user they want to remove from the container using the get-user-

fingerprints-in-container command. The command will return

fingerprints which do not necessarily match the fingerprints of the user key

of the users when they were invited, as their user keys may have changed

since then. The command will also try to display the e-mail addresses that

belong to the users associated with these fingerprints, indicating if their

validity could be cryptographically verified. The user may also verify these

fingerprints by asking the users through another channel to match them

with the output of the get-own-fingerprints command. Then, the user

can issue the kick-user-from-container command, which will remove

the container key in the key file encrypted with the key of the user being

removed, then rotate the key, encrypting it again for all remaining users in

the container.

Lazy re-encryption is utilized by the TOE for all data stored in the container.

If the container key encrypted with the users’ asymmetric keys changes,

either because a user was removed from the container or one of the

asymmetric keys changed, existing data remains encrypted with the old

key. All new data and metadata uploaded to the container from that point

on will be encrypted with the new key, or with a key that is encrypted by or

derived from the new key.

When a user creates a container, or accepts an invitation to a container,

the fingerprint of the container is encrypted using an authenticated

encryption algorithm with a symmetric user key, stored with the user’s

profile, and later decrypted and used to check the integrity of the container

key file. This check also ensures that only containers the user has

acknowledged an invite for (or has created) are treated as belonging to the

user. Container fingerprints generated at a certain time can validate the

integrity of the current or any future key file associated with the container.

The encrypted fingerprint is periodically updated with the latest fingerprint

(after the integrity of the key file has been validated) to speed up this

validation.

7.4 User management

The cloud servers used by the TOE require users to establish an account

before any other functionality of the TOE can be used. TOE users can initiate

the creation of a new user account with the register command. To create

a new account, the user needs to provide an e-mail address, a first and a

last name, as well as a password. The supplied password is checked to

ensure that it meets the minimum complexity requirements. If

requirements are met, the password goes through a password stretching

algorithm to protect TOE users against brute force attacks.

44

The stretched password is used to encrypt a newly generated user key,

which is used by the TOE with an authenticated encryption algorithm to

protect the confidentiality and integrity of the user’s profile. The user’s

profile is a collection of objects stored on the cloud servers. When stored

on cloud servers, all other user keys are either stored as profile objects,

encrypted with other user keys, or derived from other user keys. Objects in

the user’s profile are uploaded and downloaded in the background by the

TOE whenever other operations require their contents.

The TOE then generates an asymmetric user key that can be used by other

TOE users to invite the user to containers. The private part of this key is

added to the user’s profile. This user key is rotated in the background by

the TOE periodically and after certain operations. When this key is rotated,

the key files of all containers the user has access to are updated to reflect

this change, triggering lazy re-encryption as described in the previous

section.

The stretched password is also used to generate a token that can be used

by the server to check the identity of the user. The user’s name, e-mail

address, the token, the public part of the asymmetric key that can be used

by other TOE users to invite the user to containers, and the initial contents

of the user profile are all sent to the cloud servers, which will send an e-

mail to the user’s address with a link the user is expected to open to validate

that the user has control of the e-mail address that was supplied. The

account cannot be used until this validation is completed.

TOE users can use the login command to sign into their accounts and start

using the service. Users must provide their e-mail address and password to

log in. The password is stretched, then the stretched password is used to

recover the user’s token and the key to decrypt the user key that was used

to encrypt the user’s profile. The user’s e-mail address and the token are

used with the cloud servers to establish a session that will be used to

authenticate subsequent requests (the session-based authentication is used

as an additional security measure, like TLS, and is not required to ensure

that the security requirements described in this document are met). A new

asymmetric user key is generated and is used to encrypt the user key to

the user’s profile. The public part of this key is sent to the cloud servers and

tied to the session that has been established. The password, the token and

the key derived from the stretched password that was used to decrypt the

user profile is no longer used after this point.

All operations with the password during login and registration are performed

locally. The raw password, the stretched password and the keys derived

from the stretched password never leave the TOE.

45

TOE users can issue the logout command to terminate their session with

the cloud servers.

7.5 Secure communication

The TOE uses state-of-the-art cryptographic solutions defined in SFRs

mapped to this functionality to secure the confidentiality and integrity of

transmitted data between TOE clients. Data protected with these

cryptographic solutions are end-to-end encrypted between the TOE clients,

therefore their confidentiality and integrity are protected against the cloud

servers too.

In scope of the TOE and its documentation, export shall be understood as

any data leaving the TOE towards the network and/or the Internet, and

import shall be understood as any data entering the TOE from the network

and/or the Internet.

8 Glossary of Terms

The document uses terms and definitions defined in the official Common

Criteria documentation.

9 Acronyms

Acronym Meaning

RFC A Request for Comments (RFC) is a publication in a series,

from the principal technical development and standards-
setting bodies for the Internet, most prominently the

Internet Engineering Task Force (IETF).

10 Bibliography

[CC_P1] Common Criteria, Part 1: Common Criteria for Information

Technology Security Evaluation, Part 1: Introduction and General Model,

Version 3.1, Revision 5, April 2017, CCMB-2017-04-001

[CC_P2] Common Criteria, Part 2: Common Criteria for Information

Technology Security Evaluation Part 2: Security Functional Components,

Version 3.1, Revision 5, April 2017, CCMB-2017-04-002

[CC_P3] Common Criteria, Part 3: Common Criteria for Information

Technology Security Evaluation, Part 3: Security Assurance Components,

Version 3.1, Revision 5, April 2017, CCMB-2017-04-003

[CEM] Common Methodology for Information Technology Security

Evaluation, Evaluation Methodology, Version 3.1, Revision 5, April 2017,

CCMB-2017-04-004

46

[SP800-38A] SP 800-38A – Recommendation for Block Cipher Modes of

Operation: Methods and Techniques, 2001

https://doi.org/10.6028/NIST.SP.800-38A

[SP800-38D] SP 800-38D – Recommendation for Block Cipher Modes of

Operation: Galois/Counter Mode (GCM) and GMAC, 2007-11

https://doi.org/10.6028/NIST.SP.800-38D

[SP800-56Br2] SP 800-56B – Recommendation for Pair-Wise Key-

Establishment Schemes Using Integer Factorization Cryptography, rev. 2

https://doi.org/10.6028/NIST.SP.800-56Br2

[SP800-90Ar1] SP 800-90A – Recommendation for Random Number

Generation Using Deterministic Random Bit Generators, rev. 1

https://doi.org/10.6028/NIST.SP.800-90Ar1

[SP800-133r2] SP 800-133 – Recommendation for Cryptographic Key

Generation, rev. 2

https://doi.org/10.6028/NIST.SP.800-133r2

[FIPS180-4] FIPS 180-4 – Secure Hash Standard (SHS), 2015-08

https://doi.org/10.6028/NIST.FIPS.180-4

[FIPS198-1] FIPS 198-1 – The Keyed-Hash Message Authentication Code

(HMAC), 2008-07

https://doi.org/10.6028/NIST.FIPS.198-1

[RFC7914] RFC 7914 – The scrypt Password-Based Key Derivation Function,

2016-08

https://datatracker.ietf.org/doc/html/rfc7914

[RFC8018] RFC 8018 – PKCS #5: Password-Based Cryptography

Specification Version 2.1, 2017-01

https://datatracker.ietf.org/doc/html/rfc8018

[GDPR] General Data Protection Regulation

Requirement source: Section 2: Article 32 & Article 34

https://eur-lex.europa.eu/legal-

content/EN/TXT/ELI/?eliuri=eli:reg:2016:679:oj

[HIPAA] Health Insurance Portability and Accountability Act of 1996

Requirement source: Policy 3.2 & 45 CFR § 164.312

https://www.cdc.gov/phlp/publications/topic/hipaa.html

https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.SP.800-133r2
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.198-1
https://datatracker.ietf.org/doc/html/rfc7914
https://datatracker.ietf.org/doc/html/rfc8018
https://eur-lex.europa.eu/legal-content/EN/TXT/ELI/?eliuri=eli:reg:2016:679:oj
https://eur-lex.europa.eu/legal-content/EN/TXT/ELI/?eliuri=eli:reg:2016:679:oj
https://www.cdc.gov/phlp/publications/topic/hipaa.html

47

[TISAX] TISAX Participant Handbook

https://enx.com/tphen.pdf

[BSI_C5] Cloud Computing Compliance Criteria Catalogue – C5:2020

Requirement source: Confidentiality of Authentication Information (PSS-

07), Secure key management (CRY-04), and Access to cloud customer data

(IDM-07)

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing

/ComplianceControlsCatalogue/2020/C5_2020.pdf

[CJIS] Criminal Justice Information Services (CJIS) Security Policy

Requirement source: 5.5 Access control and 5.10.1.2 Encryption

https://www.fbi.gov/file-repository/cjis_security_policy_v5-

9_20200601.pdf/view

[CMMC] Cybersecurity Maturity Model Certification 2.0

Requirement source: AU.L2-3.3.8, MP.L2-3.8.6, MP.L2-3.8.9 and SC.L2-

3.13.8

https://www.acq.osd.mil/cmmc/

[FEDRAMP] FedRAMP Security Controls Baseline

Requirement source: MP-5(4), SC-8(1) and SC-28(1)

https://www.fedramp.gov/assets/resources/documents/FedRAMP_Securit

y_Controls_Baseline.xlsx

[FINRA] Report on Selected Cybersecurity Practices – 2018

Requirement source: Technical controls and Data loss prevention sections

https://www.finra.org/sites/default/files/Cybersecurity_Report_2018.pdf

[ISO27001] ISO/IEC 27001:2022 Information security management

systems

Requirement source: 7.5.3

https://www.iso.org/standard/27001

[ITAR] 22 CFR § 120.54 - Activities that are not exports, reexports,

retransfers, or temporary imports

https://www.law.cornell.edu/cfr/text/22/120.54

[SP800-53] NIST Special Publication 800-53 Revision 5 - Security and

Privacy Controls for Information Systems and Organizations

Requirement source: SC-12, SC-13, AU-9(3), MA-4(6), SC-8(1), SC-8(2),

SC-8(3) & SC-8(4)

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

53r5.pdf

https://enx.com/tphen.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/ComplianceControlsCatalogue/2020/C5_2020.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/ComplianceControlsCatalogue/2020/C5_2020.pdf
https://www.fbi.gov/file-repository/cjis_security_policy_v5-9_20200601.pdf/view
https://www.fbi.gov/file-repository/cjis_security_policy_v5-9_20200601.pdf/view
https://www.acq.osd.mil/cmmc/
https://www.fedramp.gov/assets/resources/documents/FedRAMP_Security_Controls_Baseline.xlsx
https://www.fedramp.gov/assets/resources/documents/FedRAMP_Security_Controls_Baseline.xlsx
https://www.finra.org/sites/default/files/Cybersecurity_Report_2018.pdf
https://www.iso.org/standard/27001
https://www.law.cornell.edu/cfr/text/22/120.54
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf

48

[SOC2] TSP Section 100 - 2017 Trust Services Criteria for Security,

Availability, Processing Integrity, Confidentiality, and Privacy

https://us.aicpa.org/content/dam/aicpa/interestareas/frc/assuranceadviso

ryservices/downloadabledocuments/trust-services-criteria.pdf

[DTL] Criteria Catalogue for the Digital Trust Label

Requirement source: No. 1 & 2

https://digitaltrust-label.swiss/wp-content/uploads/2022/02/DTL-Criteria-

Catalogue.pdf

https://us.aicpa.org/content/dam/aicpa/interestareas/frc/assuranceadvisoryservices/downloadabledocuments/trust-services-criteria.pdf
https://us.aicpa.org/content/dam/aicpa/interestareas/frc/assuranceadvisoryservices/downloadabledocuments/trust-services-criteria.pdf
https://digitaltrust-label.swiss/wp-content/uploads/2022/02/DTL-Criteria-Catalogue.pdf
https://digitaltrust-label.swiss/wp-content/uploads/2022/02/DTL-Criteria-Catalogue.pdf

