
Windows 10 Security Target

Microsoft © 2016 Page 1 of 166

Microsoft Windows

Common Criteria Evaluation
Microsoft Windows 10

Security Target

Document Information
Version Number 1.0
Updated On January 26, 2016

Windows 10 Security Target

Microsoft © 2016 Page 2 of 166

This is a preliminary document and may be changed
substantially prior to final commercial release of the
software described herein.

The information contained in this document
represents the current view of Microsoft Corporation
on the issues discussed as of the date of publication.
Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft
cannot guarantee the accuracy of any information
presented after the date of publication.

This document is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the
responsibility of the user. This work is licensed under
the Creative Commons Attribution-NoDerivs-
NonCommercial License (which allows redistribution
of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd-nc/1.0/ or
send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.

Microsoft may have patents, patent applications,
trademarks, copyrights, or other intellectual property
rights covering subject matter in this document.
Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this
document does not give you any license to these
patents, trademarks, copyrights, or other intellectual
property.

The example companies, organizations, products,
people and events depicted herein are fictitious. No
association with any real company, organization,
product, person or event is intended or should be
inferred.

© 2016 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, Visual Basic, Visual
Studio, Windows, the Windows logo, Windows NT,
and Windows Server are either registered trademarks
or trademarks of Microsoft Corporation in the United
States and/or other countries.

The names of actual companies and products
mentioned herein may be the trademarks of their
respective owners.

http://creativecommons.org/licenses/by-nd-nc/1.0/

Windows 10 Security Target

Microsoft © 2016 Page 3 of 166

TABLE OF CONTENTS

SECURITY TARGET ...1

TABLE OF CONTENTS ..3

LIST OF TABLES ...7

1 SECURITY TARGET INTRODUCTION ..9

1.1 SECURITY TARGET, TOE, AND COMMON CRITERIA (CC) IDENTIFICATION ..9

1.2 CC CONFORMANCE CLAIMS ... 10

1.3 CONVENTIONS, TERMINOLOGY, ACRONYMS .. 10

1.3.1 CONVENTIONS .. 10

1.3.2 TERMINOLOGY .. 11

1.3.3 ACRONYMS... 14

1.4 ST OVERVIEW AND ORGANIZATION ... 14

2 TOE DESCRIPTION ... 15

2.1 SECURITY ENVIRONMENT AND TOE BOUNDARY .. 15

2.1.1 LOGICAL BOUNDARIES .. 15

2.1.2 PHYSICAL BOUNDARIES ... 16

2.2 TOE SECURITY SERVICES ... 16

3 SECURITY PROBLEM DEFINITION .. 19

3.1 THREATS TO SECURITY .. 19

3.2 ORGANIZATIONAL SECURITY POLICIES ... 19

3.3 SECURE USAGE ASSUMPTIONS .. 20

4 SECURITY OBJECTIVES ... 21

4.1 TOE SECURITY OBJECTIVES .. 21

4.2 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT .. 21

5 SECURITY REQUIREMENTS ... 23

5.1 TOE SECURITY FUNCTIONAL REQUIREMENTS ... 23

Windows 10 Security Target

Microsoft © 2016 Page 4 of 166

5.1.1 SECURITY AUDIT (FAU) .. 25

5.1.1.1 Audit Data Generation (FAU_GEN.1) .. 25

5.1.1.2 Audit Review (FAU_SAR.1) .. 29

5.1.1.3 Selective Audit (FAU_SEL.1) .. 29

5.1.1.4 Audit Storage Protection (FAU_STG.1) ... 29

5.1.1.5 Prevention of Audit Data Loss (FAU_STG.4) ... 29

5.1.2 CRYPTOGRAPHIC SUPPORT (FCS) ... 29

5.1.2.1 Cryptographic Key Generation (FCS_CKM.1(ASYM KA)) ... 29

5.1.2.2 WLAN Cryptographic Key Generation (FCS_CKM.1(WLAN384)) .. 30

5.1.2.3 WLAN Cryptographic Key Generation (FCS_CKM.1(WLAN704)) .. 30

5.1.2.4 Cryptographic Key Establishment (FCS_CKM.2(ASYM AU)) .. 30

5.1.2.5 Cryptographic Key Establishment for Group Temporal Key (FCS_CKM.2(GTK))......................... 30

5.1.2.6 Extended: Cryptographic Key Support (FCS_CKM_EXT.1(TPM12)) .. 31

5.1.2.7 Extended: Cryptographic Key Support (FCS_CKM_EXT.1(TPM20)) .. 31

5.1.2.8 Extended: Cryptographic Key Random Generation (FCS_CKM_EXT.2) 31

5.1.2.9 Extended: Cryptographic Key Generation (FCS_CKM_EXT.3) ... 31

5.1.2.10 Extended: Key Destruction (FCS_CKM_EXT.4) .. 31

5.1.2.11 Extended: TSF Wipe (FCS_CKM_EXT.5) ... 32

5.1.2.12 Extended: Salt Generation (FCS_CKM_EXT.6) .. 32

5.1.2.13 Cryptographic Operation for Data Encryption/Decryption (FCS_COP.1(SYM)) 32

5.1.2.14 Cryptographic Operation for Hashing (FCS_COP.1(HASH)) .. 33

5.1.2.15 Cryptographic Operation for Signature Algorithms (FCS_COP.1(SIGN)) 33

5.1.2.16 Cryptographic Operation for Keyed Hash Algorithms (FCS_COP.1(HMAC)) 33

5.1.2.17 Cryptographic Operation for Password-Based Key Derivation (FCS_COP.1(PBKD32)) 33

5.1.2.18 Cryptographic Operation for Password-Based Key Derivation (FCS_COP.1(PBKD64)) 34

5.1.2.19 Extended: Initialization Vector Generation (FCS_IV_EXT.1) ... 34

5.1.2.20 Extended: Random Bit Generation (FCS_RBG_EXT.1) .. 34

5.1.2.21 Extended: Cryptographic Algorithm Services (FCS_SRV_EXT.1) ... 34

5.1.2.22 Extended: Cryptographic Key Storage (FCS_STG_EXT.1) .. 35

5.1.2.23 Extended: Encrypted Cryptographic Key Storage (FCS_STG_EXT.2) 35

5.1.2.24 Extended: Encrypted Integrity of Cryptographic Key Storage (FCS_STG_EXT.3) 35

5.1.2.25 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1) .. 36

5.1.2.26 Extended: TLS Protocol (FCS_TLSC_EXT.2) .. 36

5.1.2.27 Extended: HTTPS Protocol (FCS_HTTPS_EXT.1) .. 37

5.1.3 USER DATA PROTECTION (FDP) ... 37

5.1.3.1 Extended: Security Access Control (FDP_ACF_EXT.1) ... 37

5.1.3.2 Extended: Protected Data Encryption (FDP_DAR_EXT.1) ... 38

5.1.3.3 Extended: Subset Information Flow Control (FDP_IFC_EXT.1) ... 38

5.1.3.4 Extended: User Data Storage (FDP_STG_EXT.1) ... 38

5.1.3.5 Extended: Inter-TSF User Data Transfer Protection (FDP_UPC_EXT.1) 38

5.1.3.6 Extended: Limitation of Bluetooth Device Access (FDP_BLT_EXT.1) .. 38

5.1.4 IDENTIFICATION AND AUTHENTICATION (FIA)... 38

Windows 10 Security Target

Microsoft © 2016 Page 5 of 166

5.1.4.1 Authentication Failure Handling (FIA_AFL_EXT.1) .. 38

5.1.4.2 Extended: Bluetooth User Authorization (FIA_BLT_EXT.1) .. 38

5.1.4.3 Extended: Bluetooth Authentication (FIA_BLT_EXT.2) ... 39

5.1.4.4 Extended: Bluetooth Authentication (FIA_BLT_EXT.3) ... 39

5.1.4.5 Extended: PAE Authentication (FIA_PAE_EXT.1) .. 39

5.1.4.6 Extended: Password Management (FIA_PMG_EXT.1) .. 39

5.1.4.7 Extended: Authentication Throttling (FIA_TRT_EXT.1) ... 39

5.1.4.8 Protected Authentication Feedback (FIA_UAU.7) .. 39

5.1.4.9 Extended: Authentication for Cryptographic Operation (FIA_UAU_EXT.1) 39

5.1.4.10 Extended: Timing of Authentication (FIA_UAU_EXT.2) ... 39

5.1.4.11 Extended: Re-Authentication (FIA_UAU_EXT.3) ... 39

5.1.4.12 Extended: Validation of Certificates (FIA_X509_EXT.1) .. 40

5.1.4.13 Extended: X509 Certificate Authentication (FIA_X509_EXT.2) ... 40

5.1.4.14 Extended: Request Validation of Certificates (FIA_X509_EXT.3) .. 40

5.1.5 SECURITY MANAGEMENT (FMT) ... 41

5.1.5.1 Extended: Management of Security Functions Behavior (FMT_MOF_EXT.1) 41

5.1.5.2 Extended: Specification of Management Functions (FMT_SMF_EXT.1)..................................... 41

5.1.5.3 Extended: Specification of Remediation Actions (FMT_SMF_EXT.2) ... 44

5.1.6 PROTECTION OF THE TSF (FPT) ... 44

5.1.6.1 Extended: Anti-Exploitation Services (ASLR) (FPT_AEX_EXT.1) .. 44

5.1.6.2 Extended: Anti-Exploitation Services (Memory Page Permissions) (FPT_AEX_EXT.2) 44

5.1.6.3 Extended: Anti-Exploitation Services (Overflow Protection) (FPT_AEX_EXT.3) 45

5.1.6.4 Extended: Domain Isolation (FPT_AEX_EXT.4) ... 45

5.1.6.5 Extended: Application Processor Mediation (FPT_BBD_EXT.1) .. 45

5.1.6.6 Extended: Limitation of Bluetooth Profile Support (FPT_BLT_EXT.1) .. 45

5.1.6.7 Extended: Key Storage (FPT_KST_EXT.1) .. 45

5.1.6.8 Extended: No Key Transmission (FPT_KST_EXT.2) .. 45

5.1.6.9 Extended: No Plaintext Key Export (FPT_KST_EXT.3) ... 45

5.1.6.10 Extended: Self-Test Notification (FPT_NOT_EXT.1(AUDIT)) ... 45

5.1.6.11 Extended: Self-Test Notification (FPT_NOT_EXT.1(ATTEST)) .. 45

5.1.6.12 Reliable Time Stamps (FPT_STM.1) ... 46

5.1.6.13 Extended: TSF Cryptographic Functionality Testing (FPT_TST_EXT.1) 46

5.1.6.14 Extended: TSF Integrity Testing (FPT_TST_EXT.2) ... 46

5.1.6.15 Extended: Trusted Update: TSF Version Query (FPT_TUD_EXT.1) ... 46

5.1.6.16 Extended: Trusted Update Verification (FPT_TUD_EXT.2) ... 46

5.1.7 TOE ACCESS (FTA) .. 47

5.1.7.1 Extended: TSF- and User-initiated Locked State (FTA_SSL_EXT.1) ... 47

5.1.7.2 Extended: Wireless Network Access (FTA_WSE_EXT.1) ... 47

5.1.7.3 Default TOE Access Banners (FTA_TAB.1)... 47

5.1.8 TRUSTED PATH / CHANNELS (FTP) ... 47

5.1.8.1 Extended: Trusted Channel Communication (FTP_ITC_EXT.1) ... 47

5.2 TOE SECURITY ASSURANCE REQUIREMENTS .. 47

Windows 10 Security Target

Microsoft © 2016 Page 6 of 166

5.2.1 CC PART 3 ASSURANCE REQUIREMENTS .. 47

5.2.1.1 Timely Security Updates (ALC_TSU_EXT.1) ... 48

5.2.2 MOBILE DEVICE FUNDAMENTALS PP ASSURANCE ACTIVITIES .. 48

5.2.2.1 Security Audit (FAU) .. 49

5.2.2.2 Cryptographic Support (FCS) ... 50

5.2.2.3 User Data Protection (FDP) ... 80

5.2.2.4 Identification and Authentication (FIA) .. 83

5.2.2.5 Security Management (FMT) .. 90

5.2.2.6 Protection of the TSF (FPT) ... 102

5.2.2.7 TOE Access (FTA) ... 110

5.2.2.8 Trusted Path / Channels (FTP)... 111

6 TOE SUMMARY SPECIFICATION (TSS) ... 112

6.1 PRODUCT ARCHITECTURE .. 112

6.2 TOE SECURITY FUNCTIONS .. 112

6.3 AUDIT .. 112

6.3.1 AUDIT COLLECTION .. 113

6.3.2 SELECTIVE AUDIT ... 116

6.3.3 AUDIT LOG OVERFLOW PROTECTION .. 116

6.3.4 AUDIT LOG RESTRICTED ACCESS PROTECTION... 117

6.3.5 SFR MAPPING .. 117

6.4 CRYPTOGRAPHIC SUPPORT .. 117

6.4.1 CRYPTOGRAPHIC ALGORITHMS AND OPERATIONS ... 117

6.4.2 PROGRAMMING INTERFACES ... 121

6.4.3 TRUSTED PLATFORM MODULE ... 122

6.4.4 ENCRYPTING THE DEVICE WITH BITLOCKER .. 122

6.4.5 KEY STORAGE .. 123

6.4.6 PROTECTING DATA WITH DPAPI .. 124

6.4.7 NETWORKING ... 124

6.4.7.1 Network Protocols .. 125

6.4.8 SFR MAPPING .. 127

6.5 USER DATA PROTECTION ... 128

6.5.1 RESTRICTING ACCESS TO SYSTEM SERVICES .. 128

6.5.2 DATA AT REST PROTECTION ... 132

6.5.3 CERTIFICATE STORAGE .. 133

6.5.4 VPN CLIENT ... 133

6.5.5 SFR MAPPING .. 134

6.6 IDENTIFICATION AND AUTHENTICATION .. 134

6.6.1 PROTECTING USER DATA .. 134

6.6.2 X.509 CERTIFICATE VALIDATION AND GENERATION .. 135

Windows 10 Security Target

Microsoft © 2016 Page 7 of 166

6.6.3 SFR MAPPING .. 135

6.7 SECURITY MANAGEMENT .. 136

6.7.1 SFR MAPPING .. 140

6.8 PROTECTION OF THE TSF ... 141

6.8.1 SEPARATION AND DOMAIN ISOLATION .. 141

6.8.1.1 Supporting Hardware .. 142

6.8.2 PROTECTION FROM IMPLEMENTATION WEAKNESSES ... 145

6.8.3 TIME SERVICE ... 146

6.8.4 SELF-TESTS ... 146

6.8.5 WINDOWS CODE INTEGRITY .. 147

6.8.6 WINDOWS AND APPLICATION UPDATES .. 148

6.8.7 SFR MAPPING .. 149

6.9 TOE ACCESS .. 150

6.9.1 SFR MAPPING .. 151

6.10 TRUSTED PATH / CHANNELS ... 151

6.11 SECURITY RESPONSE PROCESS .. 152

7 PROTECTION PROFILE CONFORMANCE CLAIM .. 153

7.1 RATIONALE FOR CONFORMANCE TO PROTECTION PROFILE... 153

8 RATIONALE FOR MODIFICATIONS TO THE SECURITY REQUIREMENTS 154

8.1 FUNCTIONAL REQUIREMENTS ... 154

8.2 SECURITY ASSURANCE REQUIREMENTS ... 157

8.3 RATIONALE FOR THE TOE SUMMARY SPECIFICATION .. 157

9 APPENDIX A: LIST OF ABBREVIATIONS ... 160

10 APPENDIX B: INTERFACES AND BINARIES ... 165

LIST OF TABLES

Table 1 Definitions ... 14

Table 2 MDF PP Threats Addressed By Windows ... 19

Table 3 Organizational Security Policies .. 19

Table 4 Secure Usage Assumptions ... 20

Table 5 Security Objectives for the TOE .. 21

Table 6 Security Objectives for the Operational Environment ... 22

Table 7 TOE Security Functional Requirements .. 25

Table 8 Auditable Events .. 29

Windows 10 Security Target

Microsoft © 2016 Page 8 of 166

Table 9 Management Functions .. 44

Table 10 TOE Security Assurance Requirements ... 48

Table 11 Standard Fields in a Windows Audit Entry ... 113

Table 12 Audit Event Categories .. 116

Table 13 HMAC Characteristics .. 119

Table 14 Cryptographic Algorithm Standards and Evaluation Methods .. 120

Table 15 Types of Keys Used by Windows .. 121

Table 16 TLS RFCs Implemented by Windows ... 125

Table 17 General Use Capabilities ... 130

Table 18 Device Capabilities .. 131

Table 19 Special Use Capabilities ... 132

Table 20 Mobile Device Management Capabilities ... 140

Table 21 Supporting Hardware Specifications .. 144

Table 22 Rationale for Operations ... 154

Table 23 Requirement to Security Function Correspondence .. 157

Windows 10 Security Target

Microsoft © 2016 Page 9 of 166

1 Security Target Introduction
This section presents the following information required for a Common Criteria (CC) evaluation:

 Identifies the Security Target (ST) and the Target of Evaluation (TOE);

 Specifies the security target conventions and conformance claims; and,

 Describes the organization of the security target.

1.1 Security Target, TOE, and Common Criteria (CC) Identification
ST Title: Microsoft Windows Mobile Device 10 Security Target

ST Version: version 1.0, January 26, 2016

TOE Software Identification: The following Windows Operating Systems (OS):

 Microsoft Windows 10 Pro Edition (32-bit and 64-bit versions)

 Microsoft Windows 10 Enterprise Edition (64-bit version)

The following security updates and patches must be applied to the above Windows products:

 All critical updates as of September 15, 2015

TOE Hardware Identification: The following hardware platforms and components are included in the

evaluated configuration:

 Microsoft Surface Pro 3, Windows 10 Enterprise and Windows 10 Pro, 64-bit, Intel Core i7,

Marvell 8897 Wi-Fi a/b/g/n adapter, Bluetooth 4.0, Bluetooth LE, Intel TPM 2.0

 Microsoft Surface 3, Windows 10 Enterprise and Windows 10 Pro, 64-bit, Intel Atom Z8700,

Marvell 8897 Wi-Fi a/b/g/n adapter, Bluetooth 4.0, Bluetooth LE, Intel TPM 2.0

 Microsoft Surface 3 with LTE, Windows 10 Enterprise and Windows 10 Pro, 64-bit, Intel Atom

Z8700, LTE, Marvell 8897 Wi-Fi a/b/g/n adapter, 3G/4G Mobile Broadband (GSM, HSPA and LTE

protocol support), Bluetooth 4.0, Bluetooth LE, Intel TPM 2.0 [one variant for Verizon networks,

one variant which is SIM-unlocked]

 Dell Venue 8 Pro Tablet, Windows 10 Pro, 32-bit, Intel Atom (64-bit), Dual-Band 2x2 Wi-Fi b/g/n

adapter, Intel TPM 2.0

 HP Pro x2 612 Notebook PC, Windows 10 Enterprise and Windows 10 Pro, 64-bit, Intel i5, Intel

Dual Band Wireless 7260 Wi-Fi b/g/n adapter. Intel TPM 1.2

 Lenovo X1 Carbon, Windows 10 Enterprise and Windows 10 Pro, 64-bit, Intel i7, Intel Dual Band

Wireless 7260 Wi-Fi n adapter, Intel TPM 1.2

Panasonic FZ-G1 Toughpad, Windows 10 Enterprise, 64-bit, Intel Core i5, Wi-Fi 802.11

a/b/g/n/ac, Intel TPM 1.2.

All devices include IEEE 802.11 Wi-Fi and Bluetooth 4.0.

Windows 10 Security Target

Microsoft © 2016 Page 10 of 166

TOE Guidance Identification: The following administrator, user, and configuration guides were evaluated

as part of the TOE:

 Microsoft Windows Common Criteria Evaluation

 Common Criteria Supplemental Admin Guidance along with all the documents referenced

therein.

Evaluation Assurance: As specified in section and specific Assurance Activities associated with the

security functional requirements from section .

CC Identification: CC for Information Technology (IT) Security Evaluation, Version 3.1, Revision 4,

September 2012.

1.2 CC Conformance Claims
This TOE and ST are consistent with the following specifications:

 Common Criteria for Information Technology Security Evaluation Part 2: Security functional

requirements, Version 3.1, Revision 4, September 2012, extended (Part 2 extended)

 Common Criteria for Information Technology Security Evaluation Part 3: Security assurance

requirements Version 3.1, Revision 4 September 2012, extended with ALC_TSU_EXT.1 (Part 3

extended)

 Mobile Device Fundamentals Protection Profile, Version 2.0, September 17, 2014, (MDF PP)

 Evaluation Assurance Activities specified in Section and CC Part 3 assurance requirements

specified in section

1.3 Conventions, Terminology, Acronyms
This section specifies the formatting information used in the security target.

1.3.1 Conventions

The following conventions have been applied in this document:

 Security Functional Requirements (SFRs): Part 2 of the CC defines the approved set of operations

that may be applied to functional requirements: iteration, assignment, selection, and

refinement.

o Iteration: allows a component to be used more than once with varying operations.

o Assignment: allows the specification of an identified parameter.

o Selection: allows the specification of one or more elements from a list.

o Refinement: allows the addition of details.

The conventions for the assignment, selection, refinement, and iteration operations are

described in Section 5.

 Other sections of the security target use a bold font to highlight text of special interest, such as

captions.

Windows 10 Security Target

Microsoft © 2016 Page 11 of 166

1.3.2 Terminology

The following terminology is used in the security target:

Term Definition

Access Interaction between an entity and an object that results in the flow or
modification of data.

Access control Security service that controls the use of resources1 and the disclosure and
modification of data2.

Accountability Tracing each activity in an IT system to the entity responsible for the
activity.

Active Directory Active Directory manages enterprise identities, credentials, information
protection, system and application settings through AD Domain Services,
Federation Services, Certificate Services and Lightweight Directory
Services.

Administrator An authorized user who has been specifically granted the authority to
manage some portion or the entire TOE and thus whose actions may affect
the TOE Security Policy (TSP). Administrators may possess special
privileges that provide capabilities to override portions of the TSP.

Assurance A measure of confidence that the security features of an IT system are
sufficient to enforce the IT system’s security policy.

Attack An intentional act attempting to violate the security policy of an IT system.

Authentication A security measure that verifies a claimed identity.

Authentication data The information used to verify a claimed identity.

Authorization Permission, granted by an entity authorized to do so, to perform functions
and access data.

Authorized user An authenticated user who may, in accordance with the TOE Security
Policy, perform an operation.

Availability Timely3, reliable access to IT resources.

Compromise Violation of a security policy.

Confidentiality A security policy pertaining to disclosure of data.

Critical cryptographic
security parameters

Security-related information appearing in plaintext or otherwise
unprotected form and whose disclosure or modification can compromise
the security of a cryptographic module or the security of the information
protected by the module.

Cryptographic boundary An explicitly defined contiguous perimeter that establishes the physical
bounds (for hardware) or logical bounds (for software) of a cryptographic
module.

Cryptographic key (key) A parameter used in conjunction with a cryptographic algorithm that
determines:

 the transformation of plaintext data into ciphertext data

 the transformation of ciphertext data into plaintext data

 a digital signature computed from data

 the verification of a digital signature computed from data

1
 Hardware and software

2
 Stored or communicated

3
 According to a defined metric

Windows 10 Security Target

Microsoft © 2016 Page 12 of 166

 a data authentication code computed from data

Cryptographic module The set of hardware, software, and/or firmware that implements approved
security functions, including cryptographic algorithms and key generation,
which is contained within the cryptographic boundary.

Cryptographic module
security policy

A precise specification of the security rules under which a cryptographic
module must operate.

Defense-in-depth A security design strategy whereby layers of protection are utilized to
establish an adequate security posture for an IT system.

Discretionary Access
Control (DAC)

A means of restricting access to objects based on the identity of subjects
and groups to which the objects belong. The controls are discretionary
meaning that a subject with a certain access permission is capable of
passing that permission (perhaps indirectly) on to any other subject.

Edition A distinct variation of a Windows OS version. Examples of editions are
Windows Server 2012 [Standard] and Windows Server 2012 Datacenter.

Enclave A collection of entities under the control of a single authority and having a
homogeneous security policy. They may be logical, or based on physical
location and proximity.

Entity A subject, object, user or external IT device.

General-Purpose
Operating System

A general-purpose operating system is designed to meet a variety of goals,
including protection between users and applications, fast response time
for interactive applications, high throughput for server applications, and
high overall resource utilization.

Identity A means of uniquely identifying an authorized user of the TOE.

Integrated Windows
authentication

An authentication protocol formerly known as NTLM or Windows NT
Challenge/Response.

Named object An object that exhibits all of the following characteristics:

 The object may be used to transfer information between subjects
of differing user identities within the TOE Security Function (TSF).

 Subjects in the TOE must be able to request a specific instance of
the object.

 The name used to refer to a specific instance of the object must
exist in a context that potentially allows subjects with different
user identities to request the same instance of the object.

Object An entity under the control of the TOE that contains or receives
information and upon which subjects perform operations.

Operating environment The total environment in which a TOE operates. It includes the physical
facility and any physical, procedural, administrative and personnel
controls.

Persistent storage All types of data storage media that maintain data across system boots
(e.g., hard disk, removable media).

Public object An object for which the TSF unconditionally permits all entities “read”
access under the Discretionary Access Control SFP. Only the TSF or
authorized administrators may create, delete, or modify the public objects.

Resource A fundamental element in an IT system (e.g., processing time, disk space,
and memory) that may be used to create the abstractions of subjects and
objects.

SChannel A security package (SSP) that provides network authentication between

Windows 10 Security Target

Microsoft © 2016 Page 13 of 166

clients and servers.

Secure State Condition in which all TOE security policies are enforced.

Security attributes TSF data associated with subjects, objects and users that is used for the
enforcement of the TSP.

Security-enforcing A term used to indicate that the entity (e.g., module, interface, subsystem)
is related to the enforcement of the TOE security policies.

Security-supporting A term used to indicate that the entity (e.g., module, interface, subsystem)
is not security-enforcing; however, the entity’s implementation must still
preserve the security of the TSF.

Security context The security attributes or rules that are currently in effect. For SSPI, a
security context is an opaque data structure that contains security data
relevant to a connection, such as a session key or an indication of the
duration of the session.

Security package The software implementation of a security protocol. Security packages are
contained in security support provider libraries or security support
provider/authentication package libraries.

Security principal An entity recognized by the security system. Principals can include human
users as well as autonomous processes.

Security Support
Provider (SSP)

A dynamic-link library that implements the SSPI by making one or more
security packages available to applications. Each security package provides
mappings between an application's SSPI function calls and an actual
security model's functions. Security packages support security protocols
such as Kerberos authentication and Integrated Windows Authentication.

Security Support
Provider Interface (SSPI)

A common interface between transport-level applications. SSPI allows a
transport application to call one of several security providers to obtain an
authenticated connection. These calls do not require extensive knowledge
of the security protocol's details.

Security Target (ST) A set of security requirements and specifications to be used as the basis for
evaluation of an identified TOE.

Subject An active entity within the TOE Scope of Control (TSC) that causes
operations to be performed. Subjects can come in two forms: trusted and
untrusted. Trusted subjects are exempt from part or all of the TOE security
policies. Untrusted subjects are bound by all TOE security policies.

Target of Evaluation
(TOE)

An IT product or system and its associated administrator and user guidance
documentation that is the subject of an evaluation.

Threat Capabilities, intentions and attack methods of adversaries, or any
circumstance or event, with the potential to violate the TOE security
policy.

Unauthorized individual A type of threat agent in which individuals who have not been granted
access to the TOE attempt to gain access to information or functions
provided by the TOE.

Unauthorized user A type of threat agent in which individuals who are registered and have
been explicitly granted access to the TOE may attempt to access
information or functions that they are not permitted to access.

Universal Unique
Identifier (UUID)

UUID is an identifier that is unique across both space and time, with
respect to the space of all UUIDs. A UUID can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably

Windows 10 Security Target

Microsoft © 2016 Page 14 of 166

identifying very persistent objects across a network.

User Any person who interacts with the TOE.

User Principal Name
(UPN)

An identifier used by Microsoft Active Directory that provides a user name
and the Internet domain with which that username is associated in an e-
mail address format. The format is [AD username]@[associated domain];
an example would be john.smith@microsoft.com.

Uniform Resource
Locator (URL)

The address that is used to locate a Web site. URLs are text strings that
must conform to the guidelines in RFC 2396.

Version A Version refers to a release level of the Windows operating system.
Windows 7 and Windows 8 are different versions.

Vulnerability A weakness that can be exploited to violate the TOE security policy.

Table 1 Definitions

1.3.3 Acronyms

The acronyms used in this security target are specified in Appendix A: List of Abbreviations

Windows 10 Security Target

Microsoft © 2016 Page 15 of 166

Appendix A: List of Abbreviations.

1.4 ST Overview and Organization
The Windows 10 TOE provides the following security services:

 Cryptographic support

 User data protection

 Identification and Authentication (I&A)

 Protection of the TOE Security Functions (TSF)

 TOE access/session control

 Trusted path/channel

 Security management

 Audit

This security target contains the following additional sections:

 TOE Description (Section 2): Provides an overview of the TSF and boundary.

 Security Problem Definition (Section 3): Describes the threats, organizational security policies

and assumptions that pertain to the TOE.

 Security Objectives (Section 4): Identifies the security objectives that are satisfied by the TOE

and the TOE operational environment.

 Security Requirements (Section 5): Presents the security functional and assurance requirements

met by the TOE.

 TOE Summary Specification (TSS) (Section 6): Describes the security functions provided by the

TOE to satisfy the security requirements and objectives.

 Protection Profile Conformance Claim (Section 7): Presents the rationale concerning compliance

of the ST with the Mobile Device Fundamentals Protection Profile.

 Rationale for Modifications to the Security Requirements (Section 8): Presents the rationale for

the security objectives, requirements, and TOE Summary Specification as to their consistency,

completeness and suitability.

2 TOE Description
The mobile device TOE includes the Microsoft Windows 10 operating system, the Microsoft Surface Pro

3, Microsoft Surface 3, Microsoft Surface 3 with LTE, Dell Venue 8 Pro Tablet, HP Pro x2 612 Notebook

PC, Lenovo X1 Carbon, Panasonic FZ-G1 Toughpad, and those applications necessary to manage, support

and configure the mobile device.

Microsoft Windows 10 editions are preemptive multitasking, multiprocessor, and multi-user operating

systems. In general, operating systems provide users with a convenient interface to manage underlying

hardware. They control the allocation and manage computing resources such as processors, memory,

and Input/Output (I/O) devices. Windows 10 also referred to as “Windows”, expand these basic

Windows 10 Security Target

Microsoft © 2016 Page 16 of 166

operating system capabilities to controlling the allocation and managing higher level IT resources such

as security principals (user or machine accounts), files, printing objects, services, window station,

desktops, cryptographic keys, network ports traffic, directory objects, and web content. Multi-user

operating systems such as Windows keep track of which user is using which resource, grant resource

requests, account for resource usage, and mediate conflicting requests from different programs and

users.4

Windows 10 is suited for business desktops, notebook, convertible, and tablet computers. It is the

workstation product and while it can be used by itself, it is designed to serve as a client within Windows

domains.

The hardware devices used in this evaluation are tablets, convertibles, and notebook computers which

are used as mobile devices.

2.1 Security Environment and TOE Boundary
The TOE includes both physical and logical boundaries. Its operational environment is that of a

networked environment with IEEE 802.11 (Wi-Fi), mobile broadband networks (3G/4G and LTE) and

Bluetooth networks.

2.1.1 Logical Boundaries

The logical boundary of the TOE includes:

 The Boot Manager, which is invoked by the computer’s bootstrapping code.

 The Windows Loader which loads the operating system into the computer’s memory.

 Windows OS Resume which reloads an image of the executing operating system from a

hibernation file as part of resuming from a hibernated state.

 The Windows Kernel which contains device drivers for the Windows NT File System, full volume

encryption, the crash dump filter, and the kernel-mode cryptographic library.

 The IPv4 / IPv6 network stack in the kernel.

 Windows Explorer for Windows 10 which can be used to manage the OS and check the integrity

of Windows files and updates.

 The Windows Trusted Installer which installs updates to the Windows operating system.

 The Key Isolation Service which protects secret and private keys.

 The App Container which is the execution environment for the Windows Store Applications

which are the only applications covered by this evaluation.

2.1.2 Physical Boundaries

Physically, each TOE tablet or convertible consists of an Intel-based computer. Windows 10 can execute

on Intel-based processors. Refer to section 1.1 for the specific list of hardware and processors included

in the evaluation.

4
 Some of the links in the security target was written for earlier Windows versions however the content in all those

documents apply to Windows 10.

Windows 10 Security Target

Microsoft © 2016 Page 17 of 166

A set of devices may be attached as part of the TOE:

 Display Monitors

 Fixed Disk Drives (including disk drives and solid state drives)

 Removable Disk Drives (including USB storage)

 Network Adaptor

 Keyboard

 Mouse

 Printer

 Audio Adaptor

 CD-ROM Drive

 Smart Card Reader

 Trusted Platform Module (TPM) version 1.2 or 2.0

2.2 TOE Security Services
This section summarizes the security services provided by the TOE:

 Security Audit: Windows has the ability to collect audit data, review audit logs, protect audit

logs from overflow, and restrict access to audit logs. Audit information generated by the system

includes the date and time of the event, the user identity that caused the event to be generated,

and other event specific data. Authorized administrators can review audit logs and have the

ability to search and sort audit records. Authorized Administrators can also configure the audit

system to include or exclude potentially auditable events to be audited based on a wide range of

characteristics. In the context of this evaluation, the protection profile requirements cover

generating audit events, selecting which events should be audited, and providing secure storage

for audit event entries.

 Cryptographic Support: Windows provides FIPS-validated cryptographic functions that support

encryption/decryption, cryptographic signatures, cryptographic hashing, cryptographic key

agreement (which is not studied in this evaluation), and random number generation. The TOE

additionally provides support for public keys, credential management and certificate validation

functions and provides support for the National Security Agency’s Suite B cryptographic

algorithms. Windows also provides extensive auditing support of cryptographic operations and a

key isolation service designed to limit the potential exposure of secret and private keys. In

addition to using cryptography for its own security functions, Windows offers access to the

cryptographic support functions for user-mode and kernel-mode programs. Public key

certificates generated and used by Windows authenticate users and machines as well as protect

both user and system data in transit.

o Software-based disk encryption: Windows implements BitLocker to provide encrypted

data storage for fixed and removable volumes and protects the disk volume’s encryption

key with one or more intermediate keys and authorization factor

Windows 10 Security Target

Microsoft © 2016 Page 18 of 166

o IPsec: Windows implements IPsec to provide protected, authenticated, confidential, and

tamper-proof networking between two peer computers.5

 User Data Protection: In the context of this evaluation Windows protects user data at rest and

provides secure storage of X.509v3 certificates.

 Identification and Authentication: In the context of this evaluation, Windows provides the

ability to use, store, and protect X.509 certificates that are used for TLS and authenticates the

user to their mobile device.

 Protection of the TOE Security Functions: Windows provides a number of features to ensure

the protection of TOE security functions. Windows protects against unauthorized data

disclosure and modification by using a suite of Internet standard. Windows ensures process

isolation security for all processes through private virtual address spaces, execution context, and

security context. The Windows data structures defining process address space, execution

context, memory protection, and security context are stored in protected kernel-mode memory.

Windows includes self-testing features that ensure the integrity of executable program images

and its cryptographic functions. Finally, Windows provides a trusted update mechanism to

update Windows binaries itself.

 TOE Access: Windows provides the ability for a user to lock their session either immediately or

after a defined interval. Windows constantly monitors the mouse, keyboard, and touch display

for activity and locks the computer after a set period of inactivity. Windows allows an

authorized administrator to configure the system to display a logon banner before the logon

dialog.

 Trusted Path for Communications: Windows uses a suite of protocols to provide a Virtual

Private Network Connection (VPN) between itself, acting as a VPN client, and a VPN gateway in

addition to providing protected communications for HTTPS and TLS.

 Security Management: Windows includes several functions to manage security policies. Policy

management is controlled through a combination of access control, membership in

administrator groups, and privileges.

The combination of these services enables Windows 10 to meets “Enterprise-owned device for general-

purpose enterprise use” case and the “Enterprise-owned device for specialized, high-security use case”

described in the MDF PP.

5
 Windows implements IPsec however it was not included in the Mobile Device Fundamentals PP evaluation because there is a

separate protection profile for IPsec VPN clients.

Windows 10 Security Target

Microsoft © 2016 Page 19 of 166

3 Security Problem Definition
The security problem definition consists of the threats to security, organizational security policies, and

usage assumptions as they relate to Windows. The assumptions, threats, and policies are copied from

the Mobile Device Fundamentals Protection Profile (“MDF PP”).

3.1 Threats to Security
Table 2 presents known or presumed threats to protected resources that are addressed by Windows

based on conformance to the Mobile Device Fundamentals Protection Profile.

Threat Description

T.EAVESDROP If positioned on a wireless communications channel or elsewhere
on the network, attackers may monitor and gain access to data
exchanged between the Mobile Device and other endpoints.

T.NETWORK An attacker may initiate communications with the Mobile Device
or alter communications between the Mobile Device and other
endpoints.

T.PHYSICAL Loss of confidentiality of user data and credentials may be a result
of an attacker gaining physical access to a Mobile Device.

T.FLAWAPP Malicious or exploitable code could be used knowingly or
unknowingly by a developer, possibly resulting in the capability of
attacks against the platform’s system software.

T.PERSISTENT An attacker gains and continues to have access the device,
resulting it loss of integrity and possible control by both an
adversary and legitimate owner.

Table 2 MDF PP Threats Addressed By Windows

3.2 Organizational Security Policies
An organizational security policy is a set of rules or procedures imposed by an organization upon its

operations to protect its sensitive data and IT assets. Table 3 describes organizational security policies

which are necessary for conformance to the protection profile.

Security Policy Description

[None] There are no Organizational Security Policies for the protection
profile.

Table 3 Organizational Security Policies

Windows 10 Security Target

Microsoft © 2016 Page 20 of 166

3.3 Secure Usage Assumptions
Table 4 describes the core security aspects of the environment in which Windows is intended to be

used. It includes information about the physical, personnel, procedural, and connectivity aspects of the

environment.

The following specific conditions are assumed to exist in an environment where the TOE is employed in

order to conform to the protection profile:

Assumption Description

A.CONFIG It is assumed that the TOE’s security functions are configured
correctly in a manner to ensure that the TOE security policies will
be enforced on all applicable network traffic flowing among the
attached networks.

A.NOTIFY It is assumed that the mobile user will immediately notify the
administrator if the Mobile Device is lost or stolen.

A.PRECAUTION It is assumed that the mobile user exercises precautions to reduce
the risk of loss or theft of the Mobile Device.

Table 4 Secure Usage Assumptions

Windows 10 Security Target

Microsoft © 2016 Page 21 of 166

4 Security Objectives
This section defines the security objectives of Windows and its supporting environment. Security

objectives, categorized as either TOE security objectives or objectives by the supporting environment,

reflect the stated intent to counter identified threats, comply with any organizational security policies

identified, or address identified assumptions. All of the identified threats, organizational policies, and

assumptions are addressed under one of the categories below.

4.1 TOE Security Objectives
Table 5 describes the security objectives for Windows which are needed to comply with the MDF PP.

Security Objective Source

O.COMMS The TOE will provide the capability to communicate using one (or
more) standard protocols as a means to maintain the
confidentiality of data that are transmitted outside of the TOE.

O.STORAGE The TOE will provide the capability to encrypt all user and
enterprise data and authentication keys to ensure the
confidentiality of data that it stores.

O.CONFIG The TOE will provide the capability to configure and apply security
policies. This ensures the Mobile Device can protect user and
enterprise data that it may store or process.

O.AUTH The TOE will provide the capability to authenticate the user and
endpoints of a trusted path to ensure they are communicating
with an authorized entity with appropriate privileges.

O.INTEGRITY The TOE will provide the capability to perform self-tests to ensure
the integrity of critical functionality, software/firmware and data
has been maintained. The TOE will also provide a means to verify
the integrity of downloaded updates.

Table 5 Security Objectives for the TOE

4.2 Security Objectives for the Operational Environment
The TOE is assumed to be complete and self-contained and, as such, is not dependent upon any other

products to perform properly. However, certain objectives with respect to the general operating

environment must be met. Table 6 describes the security objectives for the operational environment as

specified in the protection profile.

Environment Objective Description

OE.CONFIG TOE administrators will configure the Mobile Device security
functions correctly to create the intended security policy.

OE.NOTIFY The Mobile User will immediately notify the administrator if the
Mobile Device is lost or stolen.

Windows 10 Security Target

Microsoft © 2016 Page 22 of 166

OE.PRECAUTION The Mobile User exercises precautions to reduce the risk of loss or
theft of the Mobile Device.

Table 6 Security Objectives for the Operational Environment

Windows 10 Security Target

Microsoft © 2016 Page 23 of 166

5 Security Requirements
The section defines the Security Functional Requirements (SFRs) and Security Assurance Requirements

(SARs) for the TOE. The requirements in this section have been drawn from the Mobile Device

Fundamentals Protection Profile, Version 2.0, September 17, 2014, or the Common Criteria.

Where requirements are drawn from the protection profile, the requirements are copied verbatim,

except for some changes to required identifiers to match the iteration convention of this document,

from that protection profile and only operations performed in this security target are identified.

The extended requirements, extended component definitions and extended requirement conventions in

this security target are drawn from the protection profile; the security target reuses the conventions

from the protection profile which include the use of the word “Extended” and the “_EXT” identifier to

denote extended functional requirements. The security target assumes that the protection profile

correctly defines the extended components and so they are not reproduced in the security target.

Where applicable the following conventions are used to identify operations:

 Iteration: Iterated requirements (components and elements) are identified with letter following

the base component identifier. For example, iterations of FMT_MOF.1 are identified in a

manner similar to FMT_MOF.1(Audit) (for the component) and FCS_COP.1.1(Audit) (for the

elements).

 Assignment: Assignments are identified in brackets and bold (e.g., [assigned value]).

 Selection: Selections are identified in brackets, bold, and italics (e.g., [selected value]).

o Assignments within selections are identified using the previous conventions, except that

the assigned value would also be italicized and extra brackets would occur (e.g.,

[selected value [assigned value]]).

 Refinement: Refinements are identified using bold text (e.g., added text) for additions and

strike-through text (e.g., deleted text) for deletions.

5.1 TOE Security Functional Requirements
This section specifies the SFRs for the TOE.

Requirement Class Requirement Component

Security Audit (FAU) Audit Data Generation (FAU_GEN.1)

Audit Review (FAU_SAR.1)

Security Audit Event Selection (FAU_SEL.1)

Audit Storage Protection (FAU_STG.1)

Prevention of Audit Data Loss (FAU_STG.4)

Cryptographic
Support (FCS)

Cryptographic Key Generation for Key Establishment (FCS_CKM.1(ASYM KA))

WLAN Cryptographic Key Generation for WLAN (FCS_CKM.1(WLAN384))

WLAN Cryptographic Key Generation for WLAN (FCS_CKM.1(WLAN704))

Cryptographic Key Establishment (FCS_CKM.2(ASYM AU))

Cryptographic Key Establishment for Group Temporal Key (FCS_CKM.2(GTK))

Extended: Cryptographic Key Support for Root Encryption Key

Windows 10 Security Target

Microsoft © 2016 Page 24 of 166

(FCS_CKM_EXT.1(TPM12))

Extended: Cryptographic Key Support for Root Encryption Key
(FCS_CKM_EXT.1(TPM20))

Extended: Cryptographic Key Random Generation for Data Encryption Keys
(FCS_CKM_EXT.2)

Extended: Cryptographic Key Generation for Key Encryption Keys
(FCS_CKM_EXT.3)

Extended: Key Destruction (FCS_CKM_EXT.4)

Extended: TSF Wipe (FCS_CKM_EXT.5)

Extended: Salt Generation (FCS_CKM_EXT.6)

Cryptographic Operation for Data Encryption/Decryption (FCS_COP.1(SYM))

Cryptographic Operation for Hashing (FCS_COP.1(HASH))

Cryptographic Operation for Signature Algorithms (FCS_COP.1(SIGN))

Cryptographic Operation for Keyed Hash Algorithms (FCS_COP.1(HMAC))

Cryptographic Operation for Password Based Key Derivation
(FCS_COP.1(PBKD32))

Cryptographic Operation for Password Based Key Derivation
(FCS_COP.1(PBKD64))

Extended: Initialization Vector Generation (FCS_IV_EXT.1)

Extended: Random Bit Generation (FCS_RBG_EXT.1)

Extended: Cryptographic Algorithm Services (FCS_SRV_EXT.1)

Extended: Cryptographic Key Storage (FCS_STG_EXT.1)

Extended: Encrypted Cryptographic Key Storage (FCS_STG_EXT.2)

Extended: Encrypted Integrity of Cryptographic Key Storage (FCS_STG_EXT.3)

Extended: EAS TLS Protocol (FCS_TLSC_EXT.1)

Extended: TLS Protocol (FCS_TLSC_EXT.2)

Extended: HTTPS Protocol (FCS_HTTPS_EXT.1)

User Data Protection
(FDP)

Extended: Security Attribute Based Access Control (FDP_ACF_EXT.1)

Extended: Data at Rest Encryption (FDP_DAR_EXT.1)

Extended: Subset Information Flow Control (FDP_IFC_EXT.1)

Extended: User Data Storage (FDP_STG_EXT.1)

Extended: Inter-TSF User Data Transfer Protection (FDP_UPC_EXT.1)

Extended: Limitation of Bluetooth Device Access (FDP_BLT_EXT.1)

Identification &
Authentication (FIA)

Authorization Failure Handling (FIA_AFL_EXT.1)

Extended: Bluetooth User Authorization (FIA_BLT_EXT.1)

Extended: Bluetooth Authentication (FIA_BLT_EXT.1)

Extended: Bluetooth Authentication (FIA_BLT_EXT.2)

Extended: Bluetooth Authentication (FIA_BLT_EXT.3)

Extended: PAE Authentication (FIA_PAE_EXT.1)

Extended: Password Management (FIA_PMG_EXT.1)

Extended: Authentication Throttling (FIA_TRT_EXT.1)

Protected Authorization Feedback (FIA_UAU.7)

Extended: Authentication for Cryptographic Operation (FIA_UAU_EXT.1)

Extended: Timing of Authentication (FIA_UAU_EXT.2)

Extended: Re-Authentication (FIA_UAU_EXT.3)

Extended: Validation of Certificates (FIA_X509_EXT.1)

Windows 10 Security Target

Microsoft © 2016 Page 25 of 166

Extended: X.509 Certificate Authentication (FIA_X509_EXT.2)

Extended: Request Validation of Certificates (FIA_X509_EXT.3)

Security
Management (FMT)

Extended: Management of Security Functions Behavior (FMT_MOF_EXT.1)

Extended: Specification of Management Functions (FMT_SMF_EXT.1)

Extended: Specification of Remediation Actions (FMT_SMF_EXT.2)

Protection of the TSF
(FPT)

Extended: Anti-Exploitation Services for Address Space Layout Randomization
(FPT_AEX_EXT.1)

Extended: Anti-Exploitation Services for Memory Page Permissions
(FPT_AEX_EXT.2)

Extended: Anti-Exploitation Services for Stack Overflow Protection
(FPT_AEX_EXT.3)

Extended: Domain Isolation (FPT_AEX_EXT.4)

Extended: Application Processor Mediation (FPT_BBD_EXT.1)

Extended: Limitation of Bluetooth Profile Support (FPT_BLT_EXT.1)

Extended: Key Storage (FPT_KST_EXT.1)

Extended: No Key Transmission (FPT_KST_EXT.2)

Extended: No Plaintext Key Export (FPT_KST_EXT.3)

Extended: Self-Test Event Notification (FPT_NOT_EXT.1(AUDIT))

Extended: Self-Test Event Notification (FPT_NOT_EXT.1(ATTEST))

Reliable Time Stamps (FPT_STM.1)

Extended: TSF Cryptographic Functionality Testing (FPT_TST_EXT.1)

Extended: TSF Integrity Testing (FPT_TST_EXT.2)

Extended: Trusted Update: TSF Version Query (FPT_TUD_EXT.1)

Extended: Trusted Update Verification (FPT_TUD_EXT.2)

TOE Access (FTA) Extended: TSF- and User-initiated Locked State (FTA_SSL_EXT.1)

Extended: Wireless Network Access (FTA_WSE_EXT.1)

Default TOE Access Banners (FTA_TAB.1)

Trusted
Path/Channels (FTP)

Extended: Trusted Channel Communication (FTP_ITC_EXT.1)

Table 7 TOE Security Functional Requirements

5.1.1 Security Audit (FAU)

5.1.1.1 Audit Data Generation (FAU_GEN.1)

FAU_GEN.1.1 The TSF shall be able to generate an audit record of the following auditable
events:

1. Start-up and shutdown of the audit functions;
2. All administrative actions;
3. Start-up and shutdown of the OS and kernel
4. Insertion or removal of removable media;
5. Establishment of a synchronizing connection;
6. Specifically defined auditable events in Table 5-2 Table 10;
7. [Audit records reaching an administrator-configurable percentage of

audit capacity, [none]].

FAU_GEN.1.2 The TSF shall record within each audit record at least the following
information:

Windows 10 Security Target

Microsoft © 2016 Page 26 of 166

1. Date and time of the event;
2. type of event;
3. subject identity;
4. the outcome (success or failure) of the event; and
5. additional information in Table 5-2 Table 10.

Requirement Auditable Events Additional Record Contents

FAU_GEN.1 None.

FAU_GEN.1 None.

FAU_SEL.1 All modifications to the audit
configuration that occur while
the audit collection functions
are operating.

No additional Information.

FAU_STG.1 None.

FAU_STG.4 None.

FCS_CKM_EXT.1(TPM12) [generation of a REK] No additional Information.

FCS_CKM_EXT.1(TPM20) [generation of a REK] No additional Information.

FCS_CKM_EXT.2 None.

FCS_CKM_EXT.3 None.

FCS_CKM_EXT.4 None.

FCS_CKM_EXT.5 Success or failure of the wipe. No additional Information.

FCS_CKM_EXT.6 None.

FCS_CKM.1(1) Failure of key generation
activity for authentication keys.

No additional Information.

FCS_CKM.1(2) None.

FCS_CKM.1(3) None.

FCS_CKM.2(1) None.

FCS_CKM.2(2) None.

FCS_COP.1 None.

FCS_HTTPS_EXT.1 Failure of the certificate validity
check.

Issuer Name and Subject Name
of certificate. [No additional
information].

FCS_IV_EXT.1 None.

FCS_RBG_EXT.1 Failure of the randomization
process.

No additional information.

FCS_SRV_EXT.1 None.

FCS_STG_EXT.1 Import or destruction of key.
[No other events]

Identity of key. Role and
identity of requestor.

FCS_STG_EXT.2 None.

FCS_STG_EXT.3 Failure to verify integrity of
stored key.

Identity of key being verified.

FCS_TLSC_EXT.1 Failure to establish an EAP-TLS
session.

Establishment/termination of
an EAP-TLS session.

Windows 10 Security Target

Microsoft © 2016 Page 27 of 166

FCS_TLSC_EXT.2 Failure to establish a TLS
session.

Reason for failure.

Failure to verify presented
identifier.

Presented identifier and
reference identifier.

Establishment/termination of a
TLS session.

Non-TOE endpoint of
connection.

FDP_ACF_EXT.1 None.

FDP_BLT_EXT.1 None.

FDP_DAR_EXT.1 Failure to encrypt/decrypt data. No additional information.

FDP_IFC_EXT.1 None.

FDP_STG_EXT.1 Addition or removal of
certificate from Trust Anchor
Database.

Subject name of certificate.

FDP_UPC_EXT.1 Application initiation of trusted
channel.

Name of application. Trusted
channel protocol. Non-TOE
endpoint of connection.

FIA_AFL_EXT.1 Excess of authentication failure
limit.

No additional information.

FIA_BLT_EXT.1 User authorization of Bluetooth
device.
User authorization for local
Bluetooth service.

User authorization decision.
Bluetooth address and name of
device.
Bluetooth profile.
Identity of local service.

FIA_BLT_EXT.2 Initiation of Bluetooth
connection.

Bluetooth address and name of
device.

Failure of Bluetooth connection. Reason for failure.

FIA_PAE_EXT.1 None.

FIA_PMG_EXT.1 None.

FIA_TRT_EXT.1 None.

FIA_UAU_EXT.1 None.

FIA_UAU_EXT.2 Action performed before
authentication.

No additional information.

FIA_UAU_EXT.3 User changes Password
Authentication Factor.

No additional information.

FIA_UAU.7 None.

FIA_X509_EXT.1 Failure to validate X.509v3
certificate.

Reason for failure of validation.

FIA_X509_EXT.2 Failure to establish connection
to determine revocation status.

No additional information.

FIA_X509_EXT.3 None.

FIA_X509_EXT.4 Generation of Certificate
Enrollment Request
Success or failure of enrollment.
Update of EST Trust Anchor

Issuer and Subject name of EST
Server. Method of
authentication. Issuer and
Subject name of certificate used

Windows 10 Security Target

Microsoft © 2016 Page 28 of 166

Database to authenticate. Content of
Certificate Request Message
Issuer and Subject name of
added certificate or reason for
failure.
Subject name of added Root CA.

FMT_MOF_EXT.1.1 None.

FMT_MOF_EXT.1.2 None.

FMT_SMF_EXT.1 Change of settings. Role of user that changed
setting. Value of new setting.

Success or failure of function. Role of user that performed
function.
Function performed.
Reason for failure

Initiation of software update. Version of update.

Initiation of application
installation or update.

Name and version of
application.

FMT_SMF_EXT.2 Unenrollment. Identity of administrator.
Remediation action performed.

FPT_AEX_EXT.1 None.

FPT_AEX_EXT.2 None.

FPT_AEX_EXT.3 None.

FPT_AEX_EXT.4 Blocked attempt to modify TSF
data.

Identity of subject. Identity of
TSF data.

FPT_BBD_EXT.1 None.

FPT_BLT_EXT.1 None.

FPT_KST_EXT.1 None.

FPT_KST_EXT.2 None.

FPT_KST_EXT.3 None.

FPT_NOT_EXT.1(AUDIT) [Measurement of TSF
software].

[Integrity verification value].

FPT_NOT_EXT.1(ATTEST) [Measurement of TSF
software].

[Integrity verification value].

FPT_STM.1 None.

FPT_TST_EXT.1 Initiation of self-test.
Failure of self-test.

None

FPT_TST_EXT.2 Start-up of TOE. Boot Mode.

[Detected integrity violations]. [The TSF code that caused the
integrity violation].

FPT_TUD_EXT.1 None.

FPT_TUD_EXT.2 Success or failure of signature
verification for software
updates.

Success or failure of signature
verification for applications.

Windows 10 Security Target

Microsoft © 2016 Page 29 of 166

FTA_SSL_EXT.1 None.

FTA_TAB.1 Change in banner setting. No additional information.

FTA_WSE_EXT.1 All attempts to connect to
access points.

Identity of access point.

FTP_ITC_EXT.1 Initiation and termination of
trusted channel.

Trusted channel protocol. Non-
TOE endpoint of connection.

Table 8 Auditable Events

5.1.1.2 Audit Review (FAU_SAR.1)

FAU_SAR.1.1 The TSF shall provide [the administrator] with the capability to read [all
audited events and record contents] from the audit records.

FAU_SAR.1.2 The TSF shall provide the audit records in a manner suitable for the user to
interpret the information.

5.1.1.3 Selective Audit (FAU_SEL.1)

FAU_SEL.1.1 The TSF shall be able to select the set of events to be audited from the set of
all auditable events based on the following attributes:

a) event type;
b) success of auditable security events;
c) failure of auditable security events; and
d) [subject or user identity].

5.1.1.4 Audit Storage Protection (FAU_STG.1)

FAU_STG.1.1 The TSF shall protect the stored audit records in the audit trail from
unauthorized deletion.

FAU_STG.1.2 The TSF shall be able to prevent unauthorized modifications to the stored
audit records in the audit trail.

5.1.1.5 Prevention of Audit Data Loss (FAU_STG.4)

FAU_STG.4.1 The TSF shall overwrite the oldest stored audit records if the audit trail is full.

5.1.2 Cryptographic Support (FCS)

5.1.2.1 Cryptographic Key Generation (FCS_CKM.1(ASYM KA))

Application Note: FCS_CKM.1(ASYM KA) corresponds to FCS_CKM.1(1) in the MDF protection profile.

FCS_CKM.1.1(ASYM
KA)

The TSF shall generate asymmetric cryptographic keys in accordance with a
specified cryptographic key generation algorithm [

 [RSA schemes] using cryptographic key sizes of [2048-bit or greater]
that meet the following: [

o FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Appendix
B.3;

o];

 [ECC schemes] using [“NIST curves” P-256, P-384 and [P-521]] that
meet the following: [FIPS PUB 186-4, “Digital Signature Standard
(DSS)”, Appendix B.4];

 [FFC schemes] using cryptographic key sizes of [2048-bit or greater]

Windows 10 Security Target

Microsoft © 2016 Page 30 of 166

that meet the following: [FIPS PUB 186-4, “Digital Signature
Standard (DSS)”, Appendix B.1]

]

5.1.2.2 WLAN Cryptographic Key Generation (FCS_CKM.1(WLAN384))

Application Note: FCS_CKM.1(WLAN384) corresponds to FCS_CKM.1(2) in the MDF protection profile.

FCS_CKM.1.1(WLAN384) The TSF shall generate symmetric cryptographic keys in accordance with a
specified cryptographic key generation algorithm [PRF-384] and specified
cryptographic key sizes [128 bits] using a Random Bit Generator as
specified in FCS_RBG_EXT.1 that meet the following: [IEEE 802.11-2012].

5.1.2.3 WLAN Cryptographic Key Generation (FCS_CKM.1(WLAN704))

Application Note: FCS_CKM.1(WLAN) corresponds to FCS_CKM.1(3) in the MDF protection profile.

FCS_CKM.1.1(WLAN704) The TSF shall generate symmetric cryptographic keys in accordance with a
specified cryptographic key generation algorithm [PRF-704] and specified
cryptographic key sizes [256 bits] using a Random Bit Generator as
specified in FCS_RBG_EXT.1 that meet the following: [IEEE 802.11ac-
2013].6

5.1.2.4 Cryptographic Key Establishment (FCS_CKM.2(ASYM AU))

Application Note: FCS_CKM.2(ASYM AU) corresponds to FCS_CKM.2(1) in the MDF protection profile.

FCS_CKM.2.1(ASYM
AU)

The TSF shall perform cryptographic key establishment in accordance with a
specified cryptographic key establishment method:

 [RSA-based key establishment schemes] that meets the following:
[NIST Special Publication 800-56B, “Recommendation for Pair-Wise
Key Establishment Schemes Using Integer Factorization
Cryptography”];

and [

 [Elliptic curve-based key establishment schemes] that meets the
following: [NIST Special Publication 800-56A, “Recommendation for
Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography”];

 [Finite field-based key establishment schemes] that meets the
following: [NIST Special Publication 800-56A, “Recommendation for
Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography”];

].

5.1.2.5 Cryptographic Key Establishment for Group Temporal Key (FCS_CKM.2(GTK))

Application Note: FCS_CKM.2(GTK) corresponds to FCS_CKM.2(2) in the MDF protection profile.

FCS_CKM.2.1(GTK) The TSF shall decrypt Group Temporal Key (GTK) in accordance with a
specified cryptographic key distribution method [AES Key Wrap in an EAPOL-
Key frame] that meets the following: [NIST SP 800-38F, IEEE 802.11-2012 for
the packet format and timing considerations] and does not expose the

6
 The Venue 8 Pro does not implement IEEE 802.11ac.

Windows 10 Security Target

Microsoft © 2016 Page 31 of 166

cryptographic keys.

5.1.2.6 Extended: Cryptographic Key Support (FCS_CKM_EXT.1(TPM12))

FCS_CKM_EXT.1.1(TPM12) The TSF shall support a [hardware-isolated] REK with a [asymmetric] key
of strength [112 bits].

FCS_CKM_EXT.1.2(TPM12) System software on the TSF shall be able only to request
[encryption/decryption] by the key and shall not be able to read, import,
or export a REK.

FCS_CKM_EXT.1.3(TPM12) A REK shall be generated by a RBG in accordance with FCS_RBG_EXT.1.
FCS_CKM_EXT.1.4(TPM12) A REK shall not be able to be read from or exported from the hardware.

Application.

5.1.2.7 Extended: Cryptographic Key Support (FCS_CKM_EXT.1(TPM20))

FCS_CKM_EXT.1.1(TPM20) The TSF shall support a [hardware-isolated] REK with a [symmetric] key
of strength [256 bits].

FCS_CKM_EXT.1.2(TPM20) System software on the TSF shall be able only to request [NIST SP 800-
108 key derivation] by the key and shall not be able to read, import, or
export a REK.

FCS_CKM_EXT.1.3(TPM20) A REK shall be generated by a RBG in accordance with FCS_RBG_EXT.1.
FCS_CKM_EXT.1.4(TPM20) A REK shall not be able to be read from or exported from the hardware.

Application.

5.1.2.8 Extended: Cryptographic Key Random Generation (FCS_CKM_EXT.2)

FCS_CKM_EXT.2.1 All DEKs shall be randomly generated with entropy corresponding to the
security strength of AES key sizes of [256] bits.

5.1.2.9 Extended: Cryptographic Key Generation (FCS_CKM_EXT.3)

FCS_CKM_EXT.3.1 The TSF shall use [asymmetric KEKs of [112 bits of security strength] security
strength, [256-bit] symmetric KEKs] corresponding to at least the security
strength of the keys encrypted by the KEK.

FCS_CKM_EXT.3.2 The TSF shall generate all KEKs using one of the following methods:
a) derive the KEK from a Password Authentication Factor using PBKDF

and
[

b) generate the KEK using an RBG that meets this profile (as specified in
FCS_RBG_EXT.1)

c) generate the KEK using a key generation scheme that meets this
profile (as specified in FCS_CKM.1(1))7

d) Combine the KEK from other KEKs in a way that preserves the
effective entropy of each factor by [using an XOR operation,
encrypting one key with another]

].

5.1.2.10 Extended: Key Destruction (FCS_CKM_EXT.4)

FCS_CKM_EXT.4.1 The TSF shall destroy cryptographic keys in accordance with the specified
cryptographic key destruction methods:

 by clearing the KEK encrypting the target key,

7
 FCS_CKM.1(ASYM KA) corresponds to FCS_CKM.1(1) in the MDF protection profile.

Windows 10 Security Target

Microsoft © 2016 Page 32 of 166

 in accordance with the following rules:
o For volatile memory, the destruction shall be executed by a

single direct overwrite [consisting of zeroes].
o For non-volatile EEPROM, the destruction shall be executed by

a single direct overwrite consisting of a pseudo random
pattern using the TSF’s RBG (as specified in FCS_RBG_EXT.1),
followed a read-verify.

o For non-volatile flash memory that is not wear-leveled, the
destruction shall be executed [by a block erase followed by a
read-verify].

o For non-volatile flash memory that is wear-leveled, the
destruction shall be executed [by a block erase].

o For non-volatile memory other than EEPROM and flash, the
destruction shall be executed by overwriting three or more
times with a random pattern that is changed before each
write.

FCS_CKM_EXT.4.2 The TSF shall destroy all plaintext keying material and critical security
parameters when no longer needed.

5.1.2.11 Extended: TSF Wipe (FCS_CKM_EXT.5)

FCS_CKM_EXT.5.1 The TSF shall wipe all protected data by [

 Cryptographically erasing the encrypted DEKs and/or the KEKs in
non-volatile memory by following the requirements in
FCS_CKM_EXT.4.1;

 Overwriting all protected data according to the following rules:

 For EEPROM, the destruction shall be executed by a single direct
overwrite consisting of a pseudo random pattern using the TSF’s
RBG (as specified in FCS_RBG_EXT.1, followed a read-verify.

 For flash memory the destruction shall be executed [by a block
erase followed by a read-verify].

 For non-volatile memory other than EEPROM and flash, the
destruction shall be executed by overwriting three or more times
with a random pattern that is changed before each write.]

FCS_CKM_EXT.5.2 The TSF shall perform a power cycle on conclusion of the wipe procedure.

5.1.2.12 Extended: Salt Generation (FCS_CKM_EXT.6)

FCS_CKM_EXT.6.1 The TSF shall generate all salts using a RBG that meets FCS_RBG_EXT.1.

5.1.2.13 Cryptographic Operation for Data Encryption/Decryption (FCS_COP.1(SYM))

Application Note: FCS_COP.1(SYM) corresponds to FCS_COP.1(1) in the MDF protection profile.

FCS_COP.1.1(SYM) The TSF shall perform [encryption/decryption] in accordance with a specified
cryptographic algorithm

 AES-CBC (as defined in FIPS PUB 197, and NIST SP 800-38A) mode,

 AES-CCMP (as defined in FIPS PUB 197, NIST SP 800-38C and IEEE
802.11-2012), and

[

 AES Key Wrap (KW) (as defined in NIST SP 800-38F),

Windows 10 Security Target

Microsoft © 2016 Page 33 of 166

 AES Key Wrap with Padding (KWP) (as defined in NIST SP 800-38F),

 AES-GCM (as defined in NIST SP 800-38D),

 AES-CCM (as defined in NIST SP 800-38C),

 AES-XTS (as defined in NIST SP 800-38E) mode,
]

and cryptographic key sizes 128-bit key sizes and [256-bit key sizes].

5.1.2.14 Cryptographic Operation for Hashing (FCS_COP.1(HASH))

Application Note: FCS_COP.1(HASH) corresponds to FCS_COP.1(2) in the MDF protection profile.

FCS_COP.1.1(HASH) The TSF shall perform [cryptographic hashing] in accordance with a specified
cryptographic algorithm SHA-1 and [SHA-256, SHA-384, SHA-512] and
message digest sizes 160 and [256, 384, 512 bits] that meet the following:
[FIPS Pub 180-4].

5.1.2.15 Cryptographic Operation for Signature Algorithms (FCS_COP.1(SIGN))

Application Note: FCS_COP.1(SIGN) corresponds to FCS_COP.1(3) in the MDF protection profile.

FCS_COP.1.1(SIGN) The TSF shall perform [cryptographic signature services (generation and
verification)] in accordance with a specified cryptographic algorithm

 [RSA schemes] using cryptographic key sizes [of 2048-bit or greater]
that meet the following: [FIPS PUB 186-4, “Digital Signature Standard
(DSS)”, Section 4]

and [

 [ECDSA schemes] using [“NIST curves” P-256, P-384 and [P-521]] that
meet the following: [FIPS PUB 186-4, “Digital Signature Standard
(DSS)”, Section 5];

].

5.1.2.16 Cryptographic Operation for Keyed Hash Algorithms (FCS_COP.1(HMAC))

Application Note: FCS_COP.1(HMAC) corresponds to FCS_COP.1(4) in the MDF protection profile.

FCS_COP.1.1(HMAC) The TSF shall perform [keyed-hash message authentication] in accordance
with a specified cryptographic algorithm HMAC-SHA-1 and [HMAC-SHA-256,
HMAC-SHA-384, HMAC-SHA-512] and cryptographic key sizes [128 and 256
bits] and message digest sizes 160 and [256, 384, 512] bits that meet the
following: [FIPS Pub 198-1, "The Keyed-Hash Message Authentication Code,
and FIPS Pub 180-4, “Secure Hash Standard].

5.1.2.17 Cryptographic Operation for Password-Based Key Derivation (FCS_COP.1(PBKD32))

Application Note: FCS_COP.1(PBKD32) corresponds to FCS_COP.1(5) in the MDF protection profile.

FCS_COP.1(PBKD32) The TSF shall perform [Password-based Key Derivation Functions] in
accordance with a specified cryptographic algorithm [HMAC-[SHA-1, SHA-256,
SHA-384, SHA-512]], with [3,300] iterations, and output cryptographic key

Windows 10 Security Target

Microsoft © 2016 Page 34 of 166

sizes [128, 256] that meet the following: [NIST SP 800-132]8

5.1.2.18 Cryptographic Operation for Password-Based Key Derivation (FCS_COP.1(PBKD64))

Application Note: FCS_COP.1(PBKD64) corresponds to FCS_COP.1(5) in the MDF protection profile.

FCS_COP.1(PBKD64) The TSF shall perform [Password-based Key Derivation Functions] in
accordance with a specified cryptographic algorithm [HMAC-[SHA-1, SHA-256,
SHA-384, SHA-512]], with [8,000] iterations, and output cryptographic key
sizes [128, 256] that meet the following: [NIST SP 800-132]

5.1.2.19 Extended: Initialization Vector Generation (FCS_IV_EXT.1)

FCS_IV_EXT.1.1 The TSF shall generate IVs in accordance with Table 14: References and IV
Requirements for NIST-approved Cipher Modes.9

5.1.2.20 Extended: Random Bit Generation (FCS_RBG_EXT.1)

FCS_RBG_EXT.1.1 The TSF shall perform all deterministic random bit generation services in
accordance with [NIST Special Publication 800-90A using [CTR_DRBG (AES)]].

FCS_RBG_EXT.1.2 The deterministic RBG shall be seeded by an entropy source that accumulates
entropy from [a software-based noise source, TSF-hardware-based noise
source] with a minimum of 256 bits] of entropy at least equal to the greatest
security strength (according to NIST SP 800-57) of the keys and hashes that it
will generate.

FCS_RBG_EXT.1.3 The TSF shall be capable of providing output of the RBG to applications
running on the TSF that request random bits.

5.1.2.21 Extended: Cryptographic Algorithm Services (FCS_SRV_EXT.1)

FCS_SRV_EXT.1.1 The TSF shall provide a mechanism for applications to request the TSF to
perform the following cryptographic operations:

 All mandatory and [selected algorithms] in FCS_CKM.2(ASYM AU 1)

 The following algorithms in FCS_COP.1(SYM 1): AES-CBC, [AES Key
Wrap, AES Key Wrap with Padding, AES-GCM, AES-CCM

 All mandatory and selected algorithms in FCS_COP.1(SIGN 3)

 All mandatory and selected algorithms in FCS_COP.1(HASH 2)

 All mandatory and selected algorithms in FCS_COP.1(HMAC 4)
[

 All mandatory and [selected algorithms] in FCS_CKM.1(ASYM KA 1),

 The selected algorithms in FCS_COP.1(PBKD 5)
].

FCS_SRV_EXT.1.2 The TSF shall provide a mechanism for applications to request the TSF to
perform the following cryptographic operations:

 Algorithms in FCS_COP.1(SYM 1)

 Algorithms in FCS_COP.1(SIGN 3)
by keys stored in the secure key storage.

8
 For 32-bit Windows the iteration count is 3,300 because the processor run at slower speeds than current 64-bit

processors.
9
 This refers to Table 14 of the MDF PP.

Windows 10 Security Target

Microsoft © 2016 Page 35 of 166

5.1.2.22 Extended: Cryptographic Key Storage (FCS_STG_EXT.1)

FCS_STG_EXT.1.1 The TSF shall provide [hardware-isolated, software-based] secure key storage
for asymmetric private keys and [symmetric keys, persistent secrets].

FCS_STG_EXT.1.2 The TSF shall be capable of importing keys/secrets into the secure key storage
upon request of [the user, the administrator] and [applications running on
the TSF].

FCS_STG_EXT.1.3 The TSF shall be capable of destroying keys/secrets in the secure key storage
upon request of [the user, the administrator].

FCS_STG_EXT.1.4 The TSF shall have the capability to allow only the application that imported
the key/secret the use of the key/secret. Exceptions may only be explicitly
authorized by [the administrator].

FCS_STG_EXT.1.5 The TSF shall allow only the application that imported the key/secret to
request that the key/secret be destroyed. Exceptions may only be explicitly
authorized by [the user, the administrator].

5.1.2.23 Extended: Encrypted Cryptographic Key Storage (FCS_STG_EXT.2)

FCS_STG_EXT.2.1 The TSF shall encrypt all DEKs and KEKs and [long-term trusted channel key
material, all software-based key storage] by KEKs that are
[

1) Protected by the REK with [
a. encryption by a REK,
b. encryption by a KEK chaining to a REK],

2) Protected by the REK and the password with [
a. encryption by a REK and the password-derived KEK,
b. encryption by a KEK chaining to a REK and the password-

derived KEK]
].

FCS_STG_EXT.2.2 DEKs and KEKs and [long-term trusted channel key material, all software-
based key storage] shall be encrypted using one of the following methods:
[using a SP800-56B key establishment scheme, using AES in the [GCM, CCM,
CBC mode]].

5.1.2.24 Extended: Encrypted Integrity of Cryptographic Key Storage (FCS_STG_EXT.3)

FCS_STG_EXT.3.1 The TSF shall protect the integrity of any encrypted DEKs and KEKs and [long-
term trusted channel key material, all software-based key storage] by [

 [GCM, CCM, Key Wrap, Key Wrap with Padding] cipher mode for
encryption according to FCS_STG_EXT.2;

 a hash (FCS_COP.1(2)) of the stored key that is encrypted by a key
protected by FCS_STG_EXT.2;

 a keyed hash (FCS_COP.1(4)) using a key protected by a key
protected by FCS_STG_EXT.2;

 a digital signature of the stored key using an asymmetric key
protected according to FCS_STG_EXT.2].

FCS_STG_EXT.3.2 The TSF shall verify the integrity of the [hash, digital signature, MAC] of the

stored key prior to use of the key.

Windows 10 Security Target

Microsoft © 2016 Page 36 of 166

5.1.2.25 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1)

FCS_TLSC_EXT.1.1 The TSF shall implement TLS 1.0 and [TLS 1.1 (RFC 4346), TLS 1.2 (RFC 5246)]
supporting the following ciphersuites:

 Mandatory Ciphersuites:
o TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246

 [Optional Ciphersuites:
o TLS_RSA_WITH_AES_256_CBC_SHA as defined in RFC 5246
o TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA as defined in

RFC 4492
o TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA as defined in

RFC 4492
o TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246
o TLS_RSA_WITH_AES_256_CBC_ SHA256 as defined in RFC

5246
o TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined

in RFC 5289
o TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined

in RFC 5289
o TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined

in RFC 5289
o TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined

in RFC 5289
].

FCS_TLSC_EXT.1.2 The TSF shall verify that the server certificate presented for EAP-TLS [chains to
one of the specified CAs, contains the specified FQDN of the acceptable
authentication server certificate.].

FCS_TLSC_EXT.1.3 The TSF shall not establish a trusted channel if the peer certificate is invalid.
FCS_TLSC_EXT.1.4 The TSF shall support mutual authentication using X.509v3 certificates.
FCS_TLSC_EXT.1.5 The TSF shall present the Supported Elliptic Curves Extension in the Client Hello

with the following NIST curves: [secp256r1, secp384r1, secp521r1] and no
other curves.

FCS_TLSC_EXT.1.6 The TSF shall present the signature_algorithms extension in the Client Hello
with the supported_signature_algorithms value containing the following hash
algorithms: [SHA256, SHA384, SHA512] and no other hash algorithms.

FCS_TLSC_EXT.1.7 The TSF shall support secure renegotiation through use of the
“renegotiation_info” TLS extension in accordance with RFC 5746. .

FCS_TLSC_EXT.1.8 The TSF shall include [renegotiation_info extension] in the ClientHello
message.

5.1.2.26 Extended: TLS Protocol (FCS_TLSC_EXT.2)

FCS_ TLSC _EXT.2.1 The TSF shall implement TLS 1.2 (RFC 5246) supporting the following
ciphersuites: [

 Mandatory Ciphersuites:
o TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246

 [Optional Ciphersuites:
o TLS_RSA_WITH_AES_256_CBC_SHA as defined in RFC 5246
o TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA as defined in

Windows 10 Security Target

Microsoft © 2016 Page 37 of 166

RFC 4492
o TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA as defined in

RFC 4492
o TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC

5246
o TLS_RSA_WITH_AES_256_CBC_ SHA256 as defined in RFC

5246
o TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined

in RFC 5289
o TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined

in RFC 5289
o TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined

in RFC 5289
o TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined

in RFC 5289
].

FCS_ TLSC _EXT.2.2 The TSF shall verify that the presented identifier matches the reference
identifier according to RFC 6125.

FCS_ TLSC _EXT.2.3 The TSF shall not establish a trusted channel if the peer certificate is invalid.
FCS_ TLSC_EXT.2.4 The TSF shall support mutual authentication using X.509v3 certificates.
FCS_ TLSC_EXT.2.5 The TSF shall present the Supported Elliptic Curves Extension in the Client

Hello with the following NIST curves: [secp256r1, secp384r1, secp521r1] and
no other curves.

FCS_TLSC_EXT.2.6 The TSF shall present the signature_algorithms extension in the Client Hello
with the supported_signature_algorithms value containing the following hash
algorithms: [SHA256, SHA384, SHA512] and no other hash algorithms.

FCS_TLSC_EXT.2.7 The TSF shall support secure renegotiation through use of the
“renegotiation_info” TLS extension in accordance with RFC 5746.

FCS_TLSC_EXT.2.8 The TSF shall include [renegotiation_info extension] in the ClientHello
message.

5.1.2.27 Extended: HTTPS Protocol (FCS_HTTPS_EXT.1)

FCS_HTTPS_EXT.1.1 The TSF shall implement the HTTPS protocol that complies with RFC 2818.
FCS_HTTPS_EXT.1.2 The TSF shall implement HTTPS using TLS (FCS_TLSC_EXT.2).
FCS_HTTPS_EXT.1.3 The TSF shall notify the application and [not establish the connection, request

application authorization to establish the connection] if the peer certificate
is deemed invalid.

5.1.3 User Data Protection (FDP)

5.1.3.1 Extended: Security Access Control (FDP_ACF_EXT.1)

FDP_ACF_EXT.1.1 The TSF shall provide a mechanism to restrict the system services that are
accessible to an application.

FDP_ACF_EXT.1.2 The TSF shall provide an access control policy that prevents [application
processes,] from accessing [private] data stored by other [application
processes]. Exceptions may only be explicitly authorized for such sharing by
[the user, the administrator].

Windows 10 Security Target

Microsoft © 2016 Page 38 of 166

FDP_ACF_EXT.1.3 The TSF shall enforce an access control policy that prohibits an application
from granting both write and execute permission to a file on the device.

5.1.3.2 Extended: Protected Data Encryption (FDP_DAR_EXT.1)

FDP_DAR_EXT.1.1 Encryption shall cover all protected data.
FDP_DAR_EXT.1.2 Encryption shall be performed using DEKs with AES in the [CBC] mode with key

size [128, 256] bits.

5.1.3.3 Extended: Subset Information Flow Control (FDP_IFC_EXT.1)

FDP_IFC_EXT.1.1 The TSF shall [provide an interface to VPN clients to enable all IP traffic (other
than IP traffic required to establish the VPN connection) to flow through the
IPsec VPN client].

5.1.3.4 Extended: User Data Storage (FDP_STG_EXT.1)

FDP_STG_EXT.1.1 The TSF shall provide protected storage for the Trust Anchor Database.

5.1.3.5 Extended: Inter-TSF User Data Transfer Protection (FDP_UPC_EXT.1)

FDP_UPC_EXT.1.1 The TSF provide a means for non-TSF applications executing on the TOE to use
TLS, HTTPS, Bluetooth BR/EDR, and [Bluetooth LE] to provide a protected
communication channel between the non-TSF application and another IT
product that is logically distinct from other communication channels, provides
assured identification of its end points, protects channel data from disclosure,
and detects modification of the channel data.

FDP_UPC_EXT.1.2 The TSF shall permit the non-TSF applications to initiate communication via
the trusted channel.

5.1.3.6 Extended: Limitation of Bluetooth Device Access (FDP_BLT_EXT.1)

FDP_BLT_EXT.1.1 The TSF shall limit the applications that may communicate with a particular
paired Bluetooth device.

5.1.4 Identification and Authentication (FIA)

5.1.4.1 Authentication Failure Handling (FIA_AFL_EXT.1)

FIA_AFL_EXT.1.1 The TSF shall detect when a configurable positive integer within [a range of
acceptable values from 1 to 999] of unsuccessful authentication attempts
occur related to last successful authentication by that user.

FIA_AFL_EXT.1.2 When the defined number of unsuccessful authentication attempts has been
surpassed, the TSF shall perform wipe of all protected data.

FIA_AFL_EXT.1.3 The TSF shall maintain the number of unsuccessful authentication attempts
that have occurred upon power off.

5.1.4.2 Extended: Bluetooth User Authorization (FIA_BLT_EXT.1)

FIA_BLT_EXT.1.1 The TSF shall require explicit user authorization before pairing with a remote
Bluetooth device.

FIA_BLT_EXT.1.2 The TSF shall require explicit user authorization before granting trusted
remote devices access to services associated with the following Bluetooth
profiles: [all Bluetooth profiles], and shall require explicit user authorization
before granting untrusted remote devices access to services associated with

Windows 10 Security Target

Microsoft © 2016 Page 39 of 166

the following Bluetooth profiles: [all Bluetooth profiles].

5.1.4.3 Extended: Bluetooth Authentication (FIA_BLT_EXT.2)

FIA_BLT_EXT.2.1 The TSF shall require Bluetooth mutual authentication between devices prior
to any data transfer over the Bluetooth link.

5.1.4.4 Extended: Bluetooth Authentication (FIA_BLT_EXT.3)

FIA_BLT_EXT.3.1 The TSF shall discard connection attempts from a Bluetooth device address
(BD_ADDR) to which a current connection already exists.

5.1.4.5 Extended: PAE Authentication (FIA_PAE_EXT.1)

FIA_PAE_EXT.1.1 The TSF shall conform to IEEE Standard 802.1X for a Port Access Entity (PAE) in
the “Supplicant” role.

5.1.4.6 Extended: Password Management (FIA_PMG_EXT.1)

FIA_PMG_EXT.1.1 The TSF shall support the following for the Password Authentication Factor:

1. Passwords shall be able to be composed of any combination of [upper
and lower case letters], numbers, and special characters: [“!”, “@”,
“#”, “$”, “%”, “^”, “&”, “*”, “(“, “)”];

2. Password length up to [at least 14] characters shall be supported.

5.1.4.7 Extended: Authentication Throttling (FIA_TRT_EXT.1)

FIA_TRT_EXT.1.1 The TSF shall limit automated user authentication attempts by [enforcing a
delay between incorrect authentication attempts]. The minimum delay shall
be such that no more than 10 attempts can be attempted per 500
milliseconds.

5.1.4.8 Protected Authentication Feedback (FIA_UAU.7)

FIA_UAU.7.1 The TSF shall provide only [obscured feedback to the device’s display] to the
user while the authentication is in progress.

5.1.4.9 Extended: Authentication for Cryptographic Operation (FIA_UAU_EXT.1)

FIA_UAU_EXT.1.1 The TSF shall require the user to present the Password Authentication Factor
prior to decryption of protected data and encrypted DEKs, KEKs and [no other
keys] at startup.

5.1.4.10 Extended: Timing of Authentication (FIA_UAU_EXT.2)

FIA_UAU_EXT.2.1 The TSF shall allow [no actions] on behalf of the user to be performed before
the user is authenticated.

FIA_UAU_EXT.2.2 The TSF shall require each user to be successfully authenticated before
allowing any other TSF-mediated actions on behalf of that user.

5.1.4.11 Extended: Re-Authentication (FIA_UAU_EXT.3)

FIA_UAU_EXT.3.1 The TSF shall require the user to enter the correct Password Authentication
Factor when the user changes the Password Authentication Factor, and
following TSF- and user-initiated locking in order to transition to the unlocked
state, and [no other conditions].

Windows 10 Security Target

Microsoft © 2016 Page 40 of 166

5.1.4.12 Extended: Validation of Certificates (FIA_X509_EXT.1)

FIA_X509_EXT.1.1 The TSF shall validate certificates in accordance with the following rules:

 RFC 5280 certificate validation and certificate path validation.

 The certificate path must terminate with a certificate in the Trust
Anchor Database.

 The TSF shall validate a certificate path by ensuring the presence of
the basicConstraints extension and that the CA flag is set to TRUE for
all CA certificates.

 The TSF shall validate the revocation status of the certificate using [the
Online Certificate Status Protocol (OCSP) as specified in RFC 2560, a
Certificate Revocation List (CRL) as specified in RFC 5759].

 The TSF shall validate the extendedeyUsage field according to the
following rules:

o Certificates used for trusted updates and executable code
integrity verification shall have the Code Signing purpose (id-
kp 3 with OID 1.3.6.1.5.5.7.3.3) in the extendedKeyUsage field.

o Server certificates presented for TLS shall have the Server
Authentication purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in
the extendedKeyUsage field.

FIA_X509_EXT.1.2 The TSF shall only treat a certificate as a CA certificate if the basicConstraints
extension is present and the CA flag is set to TRUE.

5.1.4.13 Extended: X509 Certificate Authentication (FIA_X509_EXT.2)

FIA_X509_EXT.2.1 The TSF shall use X.509v3 certificates as defined by RFC 5280 to support
authentication for EAP-TLS exchanges, and [TLS, HTTPS]], and [code signing for
system software updates, code signing for mobile applications, code signing
for integrity verification, no additional uses].10

FIA_X509_EXT.2.2 When the TSF cannot establish a connection to determine the validity of a
certificate, the TSF shall [allow the administrator to choose whether to accept
the certificate in these cases, allow the user to choose whether to accept the
certificate in these cases, not accept the certificate].

FIA_X509_EXT.2.3 The TSF shall generate a Certificate Request Message as specified in RFC 2986
and be able to provide the following information in the request: public key and
[device-specific information, Common Name, Organization, Organizational
Unit, Country].

FIA_X509_EXT.2.4 The TSF shall validate the chain of certificates from the Root CA upon receiving
the CA Certificate Response.

5.1.4.14 Extended: Request Validation of Certificates (FIA_X509_EXT.3)

FIA_X509_EXT.3.1 The TSF shall provide a certificate validation service to applications.
FIA_X509_EXT.3.2 The TSF shall respond to the requesting application with the success or failure

of the validation.

10

 Windows implements IPsec however it was not included in the Mobile Device Fundamentals PP evaluation because there is a
separate protection profile for IPsec VPN clients.

Windows 10 Security Target

Microsoft © 2016 Page 41 of 166

5.1.5 Security Management (FMT)

5.1.5.1 Extended: Management of Security Functions Behavior (FMT_MOF_EXT.1)

FMT_MOF_EXT.1.1 The TSF shall restrict the ability to perform the functions in column 3 of Table
1 to the user.

FMT_MOF_EXT.1.2 The TSF shall restrict the ability to perform the functions in column 5 of Table
1 to the administrator when the device is enrolled and according to the
administrator-configured policy.

5.1.5.2 Extended: Specification of Management Functions (FMT_SMF_EXT.1)

FMT_SMF_EXT.1.1 The TSF shall be capable of performing the following management functions:

M: Mandatory

O: Optional / Objective

Management Function FMT_SMF
EXT.1

FMT_MOF
EXT.1.1

Admin FMT_MOF
EXT.1.2

1. configure password policy:
a. minimum password length
b. minimum password complexity
c. maximum password lifetime

M - M M

2. configure session locking policy:
a. screen-lock enabled/disabled
b. screen lock timeout
c. number of authentication failures

M - M M

3. enable/disable the VPN protection:
a. across device
[
b. on a per-app basis
c. no other method]

M O O O

4. enable/disable [GPS, Wi-Fi, Bluetooth,
mobile broadband]

M O O O

5. enable/disable camera, microphone]:
a. across device
[
b. on a per-app basis
c. no other method]

M - M M

6. specify wireless networks (SSIDs) to which
the TSF may connect

M - M O

7. configure security policy for each wireless
network:

a. [specify the CA(s) from which the TSF
will accept WLAN authentication
server certificate(s), specify the
FQDN(s) of acceptable WLAN
authentication server certificate(s)]

M - M O

Windows 10 Security Target

Microsoft © 2016 Page 42 of 166

Management Function FMT_SMF
EXT.1

FMT_MOF
EXT.1.1

Admin FMT_MOF
EXT.1.2

b. security type
c. authentication protocol
d. client credentials to be used for

authentication

8. transition to the locked state M - M -

9. TSF wipe of protected data M - M -

10. configure application installation policy by [
a. restricting the sources of

applications,
b. specifying a set of allowed

applications based on [assignment:
application characteristics] (an
application whitelist),

c. denying installation of applications]

M - M M

11. import keys/secrets into the secure key
storage

M O O -

12. destroy imported keys/secrets and [[any
other keys/secrets]] in the secure key
storage

M O O -

13. import X.509v3 certificates into the Trust
Anchor Database

M - M O

14. remove imported X.509v3 certificates and
[[all X.509v3 certificates]] in the Trust
Anchor Database

M O O -

15. enroll the TOE in management M M - -

16. remove applications M - M O

17. update system software M - M O

18. install applications M - M O

19. remove Enterprise applications M - M -

20. configure the Bluetooth trusted channel:
a. disable/enable the Discoverable

mode (for BR/EDR)
b. change the Bluetooth device name
[
c. allow/disallow additional wireless
technologies to be used with Bluetooth,
d. disable/enable Advertising (for LE),
e. disable/enable the Connectable mode
f. disable/enable the Bluetooth services
and/or profiles available on the device,
g. specify minimum level of security for
each pairing ,
h. configure allowable methods of Out of
Band pairing
i. no other Bluetooth configuration]

M O O O

Windows 10 Security Target

Microsoft © 2016 Page 43 of 166

Management Function FMT_SMF
EXT.1

FMT_MOF
EXT.1.1

Admin FMT_MOF
EXT.1.2

21. enable/disable display notification in the
locked state of: [

a. email notifications,
b. calendar appointments,
c. contact associated with phone call

notification,
d. text message notification,
e. other application-based

notifications,
f. all notifications]

M O O O

22. enable/disable all data signaling over [USB
hardware ports]

O O O O

23. enable/disable [none] O O O O

24. enable/disable developer modes O O O O

25. enable data-at rest protection O O O O

26. enable removable media’s data-at-rest
protection

O O O O

27. enable/disable bypass of local user
authentication

O O O O

28. wipe Enterprise data O O O -

29. approve [import, removal] by applications of
X.509v3 certificates in the Trust Anchor
Database

O O O O

30. configure whether to establish a trusted
channel or disallow establishment if the TSF
cannot establish a connection to determine
the validity of a certificate

M O O O

31. enable/disable the cellular protocols used to
connect to cellular network base stations

O O O O

32. read audit logs kept by the TSF O O O -

33. configure [certificate] used to validate digital
signature on applications

O O O O

34. approve exceptions for shared use of
keys/secrets by multiple applications

M O O O

35. approve exceptions for destruction of
keys/secrets by applications that did not
import the key/secret

M O O O

36. configure the unlock banner O - O O

37. configure the auditable items O - O O

38. retrieve TSF-software integrity verification
values

O O O O

39. enable/disable [selection:
a. USB mass storage mode,
b. USB data transfer without user

O O O O

Windows 10 Security Target

Microsoft © 2016 Page 44 of 166

Management Function FMT_SMF
EXT.1

FMT_MOF
EXT.1.1

Admin FMT_MOF
EXT.1.2

authentication,
c. USB data transfer without

authentication of the connecting
system]

40. enable/disable backup to [remote system] O O O O

41. enable/disable [selection:
a. Hotspot functionality authenticated

by [selection: pre-shared key,
passcode, no authentication],

b. USB tethering authenticated by
[selection: pre-shared key, passcode,
no authentication]]

O O O O

42. approve exceptions for sharing data between
[selection: application processes, groups of
application processes]

O O O O

43. place applications into application process
groups based on [assignment: application
characteristics]

O O O O

44. enable/disable location services:
a. across device
[
b. on a per-app basis
c. no other method]

M O O O

45. [none] O O O O

Table 9 Management Functions

5.1.5.3 Extended: Specification of Remediation Actions (FMT_SMF_EXT.2)

FMT_SMF_EXT.2.1 The TSF shall offer [alert the administrator, remove Enterprise applications,]
upon unenrollment and [no other triggers].

5.1.6 Protection of the TSF (FPT)

5.1.6.1 Extended: Anti-Exploitation Services (ASLR) (FPT_AEX_EXT.1)

FPT_AEX_EXT.1.1 The TSF shall provide address space layout randomization (ASLR) to
applications.

FPT_AEX_EXT.1.2 The base address of any user-space memory mapping will consist of at least 8
unpredictable bits.

FPT_AEX_EXT.1.3 The TSF shall provide [address space layout randomization (ASLR) to the
kernel].

FPT_AEX_EXT.1.4 The base address of any kernel-space memory mapping will consist of at least
4 unpredictable bits.

5.1.6.2 Extended: Anti-Exploitation Services (Memory Page Permissions) (FPT_AEX_EXT.2)

FPT_AEX_EXT.2.1 The TSF shall be able to enforce read, write, and execute permissions on every

Windows 10 Security Target

Microsoft © 2016 Page 45 of 166

page of physical memory.
FPT_AEX_EXT.2.2 The TSF shall prevent write and execute permissions from being

simultaneously granted to any page of physical memory [with no exceptions].

5.1.6.3 Extended: Anti-Exploitation Services (Overflow Protection) (FPT_AEX_EXT.3)

FPT_AEX_EXT.3.1 TSF processes that execute in a non-privileged execution domain on the
application processor shall implement stack-based buffer overflow protection.

FPT_AEX_EXT.3.2 The TSF shall include heap-based buffer overflow protections in the runtime
environment it provides to processes that execute on the application
processor.

5.1.6.4 Extended: Domain Isolation (FPT_AEX_EXT.4)

FPT_AEX_EXT.4.1 The TSF shall protect itself from modification by untrusted subjects.
FPT_AEX_EXT.4.2 The TSF shall enforce isolation of address space between applications.

5.1.6.5 Extended: Application Processor Mediation (FPT_BBD_EXT.1)

FPT_BBD_EXT.1.1 The TSF shall prevent code executing on any baseband processor (BP) from
accessing application processor (AP) resources except when mediated by the
AP. {optional requirement, Appendix D}

5.1.6.6 Extended: Limitation of Bluetooth Profile Support (FPT_BLT_EXT.1)

FPT_BLT_EXT.1.1 The TSF shall disable support for [all] Bluetooth profiles when they are not
currently being used by an application on the Mobile Device, and shall require
explicit user action to enable them.

5.1.6.7 Extended: Key Storage (FPT_KST_EXT.1)

FPT_KST_EXT.1.1 The TSF shall not store any plaintext key material in readable nonvolatile
memory.

5.1.6.8 Extended: No Key Transmission (FPT_KST_EXT.2)

FPT_KST_EXT.2.1 The TSF shall not transmit any plaintext key material outside the security
boundary of the TOE.

5.1.6.9 Extended: No Plaintext Key Export (FPT_KST_EXT.3)

FPT_KST_EXT.3.1 The TSF shall ensure it is not possible for the TOE user(s) to export plaintext
keys.

5.1.6.10 Extended: Self-Test Notification (FPT_NOT_EXT.1(AUDIT))

FPT_NOT_EXT.1.1(AUDIT) The TSF shall transition to non-operational mode and [log failures in the
audit record] when the following types of failures occur:

 failures of the self-test(s)

 TSF software integrity verification failures

 [no other failures].

5.1.6.11 Extended: Self-Test Notification (FPT_NOT_EXT.1(ATTEST))

FPT_NOT_EXT.1.1(ATTEST) The TSF shall transition to non-operational mode and [log failures in the
audit record, notify the administrator] when the following types of
failures occur:

 failures of the self-test(s)

Windows 10 Security Target

Microsoft © 2016 Page 46 of 166

 TSF software integrity verification failures

 [no other failures].
FPT_NOT_EXT.1.2(ATTEST) The TSF shall [log, provide the administrator with] TSF-software

integrity verification values.11
FPT_NOT_EXT.1.3(ATTEST) The TSF shall cryptographically sign all integrity verification values.12

5.1.6.12 Reliable Time Stamps (FPT_STM.1)

FPT_STM.1.1 The TSF shall be able to provide reliable time stamps for its own use.

5.1.6.13 Extended: TSF Cryptographic Functionality Testing (FPT_TST_EXT.1)

FPT_TST_EXT.1.1 The TSF shall run a suite of self-tests during initial start-up (on power on) to
demonstrate the correct operation of all cryptographic functionality.

5.1.6.14 Extended: TSF Integrity Testing (FPT_TST_EXT.2)

FPT_TST_EXT.2.1 The TSF shall verify the integrity of the bootchain up through the Application
Processor OS kernel, and [all executable code stored in mutable media,
operating system executable code and application executable code], stored
in mutable media prior to its execution through the use of [a digital signature
using a hardware-protected asymmetric key].

FPT_TST_EXT.2.2 The TSF shall not execute code if the code signing certificate is deemed invalid.

5.1.6.15 Extended: Trusted Update: TSF Version Query (FPT_TUD_EXT.1)

FPT_TUD_EXT.1.1 The TSF shall provide authorized users the ability to query the current version
of the TOE firmware/software.

FPT_TUD_EXT.1.2 The TSF shall provide authorized users the ability to query the current version
of the hardware model of the device.

FPT_TUD_EXT.1.3 The TSF shall provide authorized users the ability to query the current version
of installed mobile applications.

5.1.6.16 Extended: Trusted Update Verification (FPT_TUD_EXT.2)

FPT_TUD_EXT.2.1 The TSF shall verify software updates to the Application Processor system
software and [no other processor system software] using a digital signature by
the manufacturer prior to installing those updates.

FPT_TUD_EXT.2.2 The TSF shall [update only by verified software] the TSF boot integrity [key].
FPT_TUD_EXT.2.3 The TSF shall verify that the digital signature verification key used for TSF

updates [is validated to a public key in the Trust Anchor Database].
FPT_TUD_EXT.2.4 The TSF shall verify mobile application software using a digital signature

mechanism prior to installation.
FPT_TUD_EXT.2.5 The TSF shall by default only install mobile applications cryptographically

verified by [a built-in X.509v3 certificate].
FPT_TUD_EXT.2.6 The TSF shall not install code if the code signing certificate is deemed invalid.
FPT_TUD_EXT.2.7 The TSF shall verify that software updates to the TSF are a current or later

version than the current version of the TSF.

11

 This requirement applies only to devices with a TPM 2.0 and when the devices are enrolled as described in the
deployment guidance.
12

 This requirement applies only to devices with a TPM 2.0 and when the devices are enrolled as described in the
deployment guidance.

Windows 10 Security Target

Microsoft © 2016 Page 47 of 166

5.1.7 TOE Access (FTA)

5.1.7.1 Extended: TSF- and User-initiated Locked State (FTA_SSL_EXT.1)

FTA_SSL_EXT.1.1 The TSF shall transition to a locked state after a time interval of inactivity.
FTA_SSL_EXT.1.2 The TSF shall transition to a locked state after initiation by either the user or

the administrator.
FTA_SSL_EXT.1.3 The TSF shall, upon transitioning to the locked state, perform the following

operations:
a) clearing or overwriting display devices, obscuring the previous contents;
b) [Disabling any activity of the user’s data access / TSF controlled display
devices other than unlocking the session and displaying application status].

5.1.7.2 Extended: Wireless Network Access (FTA_WSE_EXT.1)

FTA_WSE_EXT.1.1 The TSF shall be able to attempt connections to wireless networks specified as
acceptable networks as configured by the administrator in FMT_SMF_EXT.1.

5.1.7.3 Default TOE Access Banners (FTA_TAB.1)

FTA_TAB.1.1 Before establishing a user session, the TSF shall display an advisory warning
message regarding unauthorized use of the TOE. {optional requirement,
Appendix D}

5.1.8 Trusted Path / Channels (FTP)

5.1.8.1 Extended: Trusted Channel Communication (FTP_ITC_EXT.1)

FTP_ITC_EXT.1.1 The TSF shall use 802.11-2012, 802.1X, and EAP-TLS and [TLS, HTTPS protocol]
to provide a communication channel between itself and another trusted IT
product that is logically distinct from other communication channels, provides
assured identification of its end points, protects channel data from disclosure,
and detects modification of the channel data.

FTP_ITC_EXT.1.2 The TSF shall permit the TSF to initiate communication via the trusted channel.
FTP_ITC_EXT.1.3 The TSF shall initiate communication via the trusted channel for wireless

access point connections, administrative communication, configured
enterprise connections, and [no other connections].

5.2 TOE Security Assurance Requirements

5.2.1 CC Part 3 Assurance Requirements

The following table is the collection of CC Part 3 assurance requirements from the Mobile Device

Fundamentals Protection Profile.

Requirement Class Requirement Component

ASE: Security Target ASE_INT.1: ST introduction

ASE_CCL.1: Conformance claims

ASE_OBJ.1: Security objectives

ASE_ECD.1: Extended components definition

ASE_REQ.1: Stated security requirements

Windows 10 Security Target

Microsoft © 2016 Page 48 of 166

ASE_SPD.1: Security Problem Definition

ASE_TSS.1: TOE summary specification

ADV: Design ADV_FSP.1: Basic functional specification

AGD: Guidance Documents AGD_OPE.1: Operational user guidance

AGD_PRE.1: Preparative procedures

ALC: Life-cycle Support ALC_CMC.1: Labeling of the TOE

ALC_CMS.1: TOE CM Coverage

ALC_TSU_EXT.1: Timely Security Updates

ATE: Testing ATE_IND.1: Independent testing - sample

AVA: Vulnerability Assessment AVA_VAN.1: Vulnerability survey

Table 10 TOE Security Assurance Requirements

5.2.1.1 Timely Security Updates (ALC_TSU_EXT.1)

Developer action elements:

ALC_TSU_EXT.1.1D The developer shall provide a description in the TSS of how timely security updates

are made to the TOE.

Content and presentation elements:

ALC_TSU_EXT.1.1C The description shall include the process for creating and deploying security updates

for the TOE software/firmware.

Application Note: The software to be described includes the operating systems of the application

processor and the baseband processor, as well as any firmware and applications. The process

description includes the TOE developer processes as well as any third-party (carrier) processes. The

process description includes each deployment mechanism (e.g., over- the-air updates, per-carrier

updates, downloaded updates).

ALC_TSU_EXT.1.2C The description shall express the time window as the length of time, in days,

between public disclosure of a vulnerability and the public availability of security updates to the TOE.

Application Note: The total length of time may be presented as a summation of the periods of time that

each party (e.g., TOE developer, mobile carrier) on the critical path consumes. The time period until

public availability per deployment mechanism may differ; each is described.

ALC_TSU_EXT.1.3C The description shall include the mechanisms publicly available for reporting security

issues pertaining to the TOE.

Application Note: The reporting mechanism could include web sites, email addresses, as well as a

means to protect the sensitive nature of the report (e.g., public keys that could be used to encrypt the

details of a proof-of-concept exploit).

5.2.2 Mobile Device Fundamentals PP Assurance Activities

This section copies the assurance activities from the protection profile in order to ease reading and

comparisons between the protection profile and the security target.

Windows 10 Security Target

Microsoft © 2016 Page 49 of 166

5.2.2.1 Security Audit (FAU)

5.2.2.1.1 Audit Data Generation (FAU_GEN.1)

The evaluator shall check the administrative guide and ensure that it lists all of the auditable events and

provides a format for audit records. Each audit record format type must be covered, along with a brief

description of each field. The evaluator shall check to make sure that every audit event type mandated

by the PP is described and that the description of the fields contains the information required in

FAU_GEN.1.2.

The evaluator shall also make a determination of the administrative actions that are relevant in the

context of this PP including those listed in the Management section. The evaluator shall examine the

administrative guide and make a determination of which administrative commands are related to the

configuration (including enabling or disabling) of the mechanisms implemented in the TOE that are

necessary to enforce the requirements specified in the PP. The evaluator shall document the

methodology or approach taken while determining which actions in the administrative guide are

security relevant with respect to this PP. The evaluator may perform this activity as part of the activities

associated with ensuring the AGD_OPE guidance satisfies the requirements.

The evaluator shall test the TOE’s ability to correctly generate audit records by having the TOE generate

audit records for the events listed in the provided table and administrative actions. This should include

all instances of an event. The evaluator shall test that audit records are generated for the establishment

and termination of a channel for each of the cryptographic protocols contained in the ST. For

administrative actions, the evaluator shall test that each action determined by the evaluator above to be

security relevant in the context of this PP is auditable. When verifying the test results, the evaluator

shall ensure the audit records generated during testing match the format specified in the administrative

guide, and that the fields in each audit record have the proper entries.

The evaluator shall test the TOE’s ability to correctly generate audit records in each of the supported

auxiliary modes, exercising as much of the TOE functionality as is available in that mode and ensuring

that the audit records are correctly generated.

Note that the testing here can be accomplished in conjunction with the testing of the security

mechanisms directly. For example, testing performed to ensure that the administrative guidance

provided is correct verifies that AGD_OPE.1 is satisfied and should address the invocation of the

administrative actions that are needed to verify the audit records are generated as expected.

5.2.2.1.2 Audit Review (FAU_SAR.1)

The assurance activity for this requirement is performed in conjunction with test 32 of FMT_SMF_EXT.1.

5.2.2.1.3 Selective Audit (FAU_SEL.1)

The evaluator shall review the administrative guidance to ensure that the guidance itemizes all event

types, as well as describes all attributes that are to be selectable in accordance with the requirement, to

include those attributes listed in the assignment. The administrative guidance shall also contain

instructions on how to set the pre-selection as well as explain the syntax (if present) for multi-value pre-

selection. The administrative guidance shall also identify those audit records that are always recorded,

regardless of the selection criteria currently being enforced.

Windows 10 Security Target

Microsoft © 2016 Page 50 of 166

The evaluator shall also perform the following tests:

Test 1: For each attribute listed in the requirement, the evaluator shall devise a test to show that

selecting the attribute causes only audit events with that attribute (or those that are always recorded, as

identified in the administrative guidance) to be recorded.

Test 2: [conditional] If the TSF supports specification of more complex audit pre-selection criteria (e.g.,

multiple attributes, logical expressions using attributes) then the evaluator shall devise tests showing

that this capability is correctly implemented. The evaluator shall also, in the test plan, provide a short

narrative justifying the set of tests as representative and sufficient to exercise the capability.

5.2.2.1.4 Audit Storage Protection (FAU_STG.1)

The evaluator shall ensure that the TSS lists the location of all logs and the access controls of those files

such that unauthorized modification and deletion are prevented.

Test 1: The evaluator shall attempt to delete the audit trail as an unauthorized user and shall verify that

the attempt fails.

Test 2: The evaluator shall attempt to modify the audit trail as an unauthorized application and shall

verify that the attempt fails.

5.2.2.1.5 Prevention of Audit Data Loss (FAU_STG.4)

The evaluator shall examine the TSS to ensure that it describes the size limits on the audit records, the

detection of a full audit trail, and the action(s) taken by the TSF when the audit trail is full. The evaluator

shall ensure that the action(s) results in the deletion or overwrite of the oldest stored record.

5.2.2.2 Cryptographic Support (FCS)

5.2.2.2.1 Cryptographic Key Generation (FCS_CKM.1(ASYM KA))13

The evaluator shall ensure that the TSS identifies the key sizes supported by the TOE. If the ST specifies

more than one scheme, the evaluator shall examine the TSS to verify that it identifies the usage for each

scheme.

The evaluator shall verify that the AGD guidance instructs the administrator how to configure the TOE to

use the selected key generation scheme(s) and key size(s) for all uses defined in this PP.

Assurance Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on factory products.

Key Generation for FIPS PUB 186-4 RSA Schemes

The evaluator shall verify the implementation of RSA Key Generation by the TOE using the Key

Generation test. This test verifies the ability of the TSF to correctly produce values for the key

components including the public verification exponent e, the private prime factors p and q, the public

modulus n and the calculation of the private signature exponent d.

Key Pair generation specifies 5 ways (or methods) to generate the primes p and q. These include:

13

 FCS_CKM.1(ASYM KA) corresponds to FCS_CKM.1(1) in the MDF protection profile.

Windows 10 Security Target

Microsoft © 2016 Page 51 of 166

1. Random Primes:

 Provable primes

 Probable primes

2. Primes with Conditions:

 Primes p1, p2, q1,q2, p and q shall all be provable primes

 Primes p1, p2, q1, and q2 shall be provable primes and p and q shall be probable primes

 Primes p1, p2, q1,q2, p and q shall all be probable primes

To test the key generation method for the Random Provable primes method and for all the Primes with

Conditions methods, the evaluator must seed the TSF key generation routine with sufficient data to

deterministically generate the RSA key pair. This includes the random seed(s), the public exponent of

the RSA key, and the desired key length. For each key length supported, the evaluator shall have the TSF

generate 25 key pairs. The evaluator shall verify the correctness of the TSF’s implementation by

comparing values generated by the TSF with those generated from a known good implementation.

If possible, the Random Probable primes method should also be verified against a known good

implementation as described above. Otherwise, the evaluator shall have the TSF generate 10 keys pairs

for each supported key length nlen and verify:

 n = p*q,

 p and q are probably prime according to Miller-Rabin tests,

 GCD(p-1,e) = 1,

 GCD(q-

 p-q| > 2^(nlen/2 - 100),

 p >= squareroot(2)*(2^(nlen/2 -1)),

 q >= squareroot(2)*(2^(nlen/2 -1)),

 2^(nlen/2) < d < LCM(p-1,q-1),

 e*d = 1 mod LCM(p-1,q-1).

Key Generation for ANSI X9.31-1998 RSA Schemes

If the TSF implements the ANSI X9.31-1998 scheme, the evaluator shall check to ensure that the TSS

describes how the key-pairs are generated. In order to show that the TSF implementation complies with

ANSI X9.31-1998, the evaluator shall ensure that the TSS contains the following information:

 The TSS shall list all sections of the standard to which the TOE complies;

 For each applicable section listed in the TSS, for all statements that are not "shall" (that is, "shall

not", "should", and "should not"), if the TOE implements such options it shall be described in the

TSS. If the included functionality is indicated as "shall not" or "should not" in the standard, the

TSS shall provide a rationale for why this will not adversely affect the security policy

implemented by the TOE;

 For each applicable section of Appendix B, any omission of functionality related to "shall" or

“should” statements shall be described.

Key Generation for Elliptic Curve Cryptography (ECC)

Windows 10 Security Target

Microsoft © 2016 Page 52 of 166

FIPS 186-4 ECC Key Generation Test

For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall require the

implementation under test (IUT) to generate 10 private/public key pairs. The private key shall be

generated using an approved random bit generator (RBG). To determine correctness, the

evaluator shall submit the generated key pairs to the public key verification (PKV) function of a

known good implementation.

FIPS 186-4 Public Key Verification (PKV) Test

For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall generate 10

private/public key pairs using the key generation function of a known good implementation and

modify five of the public key values so that they are incorrect, leaving five values unchanged

(i.e., correct). The evaluator shall obtain in response a set of 10 PASS/FAIL values

Key Generation for Finite-Field Cryptography (FFC)

The evaluator shall verify the implementation of the Parameters Generation and the Key Generation for

FFC by the TOE using the Parameter Generation and Key Generation test. This test verifies the ability of

the TSF to correctly produce values for the field prime p, the cryptographic prime q (dividing p-1), the

cryptographic group generator g, and the calculation of the private key x and public key y.

The Parameter generation specifies 2 ways (or methods) to generate the cryptographic prime q and the

field prime p:

Cryptographic and Field Primes:

 Primes q and p shall both be provable primes

 Primes q and field prime p shall both be probable primes

and two ways to generate the cryptographic group generator g:

Cryptographic Group Generator:

 Generator g constructed through a verifiable process

 Generator g constructed through an unverifiable process.

The Key generation specifies 2 ways to generate the private key x:

Private Key:

 len(q) bit output of RBG where 1 <=x <= q-1

 len(q) + 64 bit output of RBG, followed by a mod q-1 operation where 1<= x<=q-1.

The security strength of the RBG must be at least that of the security offered by the FFC parameter set.

To test the cryptographic and field prime generation method for the provable primes method and/or

the group generator g for a verifiable process, the evaluator must seed the TSF parameter generation

routine with sufficient data to deterministically generate the parameter set.

Windows 10 Security Target

Microsoft © 2016 Page 53 of 166

For each key length supported, the evaluator shall have the TSF generate 25 parameter sets and key

pairs. The evaluator shall verify the correctness of the TSF’s implementation by comparing values

generated by the TSF with those generated from a known good implementation. Verification must also

confirm

 -1

 g^q mod p = 1

 g^x mod p = y

for each FFC parameter set and key pair.

5.2.2.2.2 WLAN Cryptographic Key Generation (FCS_CKM.1(WLAN384))14

The cryptographic primitives will be verified through assurance activities specified elsewhere in this PP.

The evaluator shall verify that the TSS describes how the primitives defined and implemented by this PP

are used by the TOE in establishing and maintaining secure connectivity to the wireless clients. The TSS

shall also provide a description of the developer’s method(s) of assuring that their implementation

conforms to the cryptographic standards; this includes not only testing done by the developing

organization, but also any third-party testing that is performed (e.g. WPA2 certification). The evaluator

shall ensure that the description of the testing methodology is of sufficient detail to determine the

extent to which the details of the protocol specifics are tested.

The evaluator shall also perform the following test using a packet sniffing tool to collect frames between

a wireless access point and TOE:

Step 1: The evaluator shall configure the access point to an unused channel and configure the WLAN

sniffer to sniff only on that channel (i.e., lock the sniffer on the selected channel). The sniffer should

also be configured to filter on the MAC address of the TOE and/or access point.

Step 2: The evaluator shall configure the TOE to communicate with the access point using IEEE 802.11-

2012 and a 256-bit (64 hex values 0-9 or a-f) pre-shared key, setting up the connections as described in

the operational guidance. The pre-shared key is only used for testing.

Step 3: The evaluator shall start the sniffing tool, initiate a connection between the TOE and access

point, and allow the TOE to authenticate, associate and successfully complete the 4way handshake with

the access point.

Step 4: The evaluator shall set a timer for 1 minute, at the end of which the evaluator shall disconnect

the TOE from the access point and stop the sniffer.

Step 5: The evaluator shall identify the 4-way handshake frames (denoted EAPOL-key in Wireshark

captures) and derive the PTK from the 4-way handshake frames and pre-shared key as specified in IEEE

802.11-2012.

Step 6: The evaluator shall select the first data frame from the captured packets that was sent between

the access point and TOE after the 4-way handshake successfully completed, and without the frame

control value 0x4208 (the first 2 bytes are 08 42). The evaluator shall use the PTK to decrypt the data

14 FCS_CKM.1(WLAN384) corresponds to FCS_CKM.1(2) in the MDF protection profile.

Windows 10 Security Target

Microsoft © 2016 Page 54 of 166

portion of the packet as specified in IEEE 802.11-2012, and shall verify that the decrypted data contains

ASCII-readable text.

Step 7: The evaluator shall repeat Step 7 for the next 2 data frames between the TOE and access point,

and without frame control value 0x4208.

5.2.2.2.3 WLAN Cryptographic Key Generation (FCS_CKM.1(WLAN704))15

The cryptographic primitives will be verified through assurance activities specified elsewhere in this PP.

The evaluator shall verify that the TSS describes how the primitives defined and implemented by this PP

are used by the TOE in establishing and maintaining secure connectivity to the wireless clients. The TSS

shall also provide a description of the developer’s method(s) of assuring that their implementation

conforms to the cryptographic standards; this includes not only testing done by the developing

organization, but also any third-party testing that is performed (e.g. WPA2 certification). The evaluator

shall ensure that the description of the testing methodology is of sufficient detail to determine the

extent to which the details of the protocol specifics are tested.

The evaluator shall also perform the following test:

Step 1 - The evaluator shall use a packet sniffing tool between the wireless access point and TOE. The

evaluator shall turn on the sniffing tool and successfully connect the TOE to the access point.

Step 2 – The evaluator shall verify the TOE advertises 00-0F-AC:12 as a supported Authentication and

Key Management (AKM) suite and either 00-0F-AC:9 or 00-0F-AC:10 as a supported cipher suite in

capture 802.11 beacon and probe response messages.

5.2.2.2.4 Cryptographic Key Establishment (FCS_CKM.2.1(ASYM AU))16

The evaluator shall ensure that the supported key establishment schemes correspond to the key

generation schemes identified in FCS_CKM.1.1(1). If the ST specifies more than one scheme, the

evaluator shall examine the TSS to verify that it identifies the usage for each scheme.

The evaluator shall verify that the AGD guidance instructs the administrator how to configure the TOE to

use the selected key establishment scheme(s).

Assurance Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on factory products.

Key Establishment Schemes

The evaluator shall verify the implementation of the key establishment schemes supported by the TOE

using the applicable tests below.

SP800-56A Key Establishment Schemes

The evaluator shall verify a TOE's implementation of SP800-56A key agreement schemes using the

following Function and Validity tests. These validation tests for each key agreement scheme verify that a

TOE has implemented the components of the key agreement scheme according to the specifications in

the Recommendation. These components include the calculation of the DLC primitives (the shared

15

 FCS_CKM.1(WLAN) corresponds to FCS_CKM.1(3) in the MDF protection profile.
16

 FCS_CKM.2(ASYM AU) corresponds to FCS_CKM.2(1) in the MDF protection profile.

Windows 10 Security Target

Microsoft © 2016 Page 55 of 166

secret value Z) and the calculation of the derived keying material (DKM) via the Key Derivation Function

(KDF). If key confirmation is supported, the evaluator shall also verify that the components of key

confirmation have been implemented correctly, using the test procedures described below. This

includes the parsing of the DKM, the generation of MACdata and the calculation of MACtag.

Function Test

The Function test verifies the ability of the TOE to implement the key agreement schemes

correctly. To conduct this test the evaluator shall generate or obtain test vectors from a known

good implementation of the TOE supported schemes. For each supported key agreement

scheme-key agreement role combination, KDF type, and, if supported, key confirmation role-

key confirmation type combination, the tester shall generate 10 sets of test vectors. The data

set consists of one set of domain parameter values (FFC) or the NIST approved curve (ECC) per

10 sets of public keys. These keys are static, ephemeral or both depending on the scheme being

tested.

The evaluator shall obtain the DKM, the corresponding TOE’s public keys (static and/or

ephemeral), the MAC tag(s), and any inputs used in the KDF, such as the Other Information field

OI and TOE id fields.

If the TOE does not use a KDF defined in SP 800-56A, the evaluator shall obtain only the public

keys and the hashed value of the shared secret.

The evaluator shall verify the correctness of the TSF’s implementation of a given scheme by

using a known good implementation to calculate the shared secret value, derive the keying

material DKM, and compare hashes or MAC tags generated from these values.

If key confirmation is supported, the TSF shall perform the above for each implemented

approved MAC algorithm.

Validity Test

The Validity test verifies the ability of the TOE to recognize another party’s valid and invalid key

agreement results with or without key confirmation. To conduct this test, the evaluator shall

obtain a list of the supporting cryptographic functions included in the SP800-56A key agreement

implementation to determine which errors the TOE should be able to recognize. The evaluator

generates a set of 24 (FFC) or 30 (ECC) test vectors consisting of data sets including domain

parameter values or NIST approved curves, the evaluator’s public keys, the TOE’s public/private

key pairs, MACTag, and any inputs used in the KDF, such as the other info and TOE id fields.

The evaluator shall inject an error in some of the test vectors to test that the TOE recognizes

invalid key agreement results caused by the following fields being incorrect: the shared secret

value Z, the DKM, the other information field OI, the data to be MACed, or the generated

MACTag. If the TOE contains the full or partial (only ECC) public key validation, the evaluator will

also individually inject errors in both parties’ static public keys, both parties’ ephemeral public

keys and the TOE’s static private key to assure the TOE detects errors in the public key validation

function and/or the partial key validation function (in ECC only). At least two of the test vectors

Windows 10 Security Target

Microsoft © 2016 Page 56 of 166

shall remain unmodified and therefore should result in valid key agreement results (they should

pass).

The TOE shall use these modified test vectors to emulate the key agreement scheme using the

corresponding parameters. The evaluator shall compare the TOE’s results with the results using

a known good implementation verifying that the TOE detects these errors.

SP800-56B Key Establishment Schemes

The evaluator shall verify that the TSS describes whether the TOE acts as a sender, a recipient, or both

for RSA-based key establishment schemes.

If the TOE acts as a sender, the following assurance activity shall be performed to ensure the proper

operation of every TOE supported combination of RSA-based key establishment scheme:

To conduct this test the evaluator shall generate or obtain test vectors from a known good

implementation of the TOE supported schemes. For each combination of supported key

establishment scheme and its options (with or without key confirmation if supported, for each

supported key confirmation MAC function if key confirmation is supported, and for each

supported mask generation function if KTS-OAEP is supported), the tester shall generate 10 sets

of test vectors. Each test vector shall include the RSA public key, the plaintext keying material,

any additional input parameters if applicable, the MacKey and MacTag if key confirmation is

incorporated, and the outputted ciphertext. For each test vector, the evaluator shall perform a

key establishment encryption operation on the TOE with the same inputs (in cases where key

confirmation is incorporated, the test shall use the MacKey from the test vector instead of the

randomly generated MacKey used in normal operation) and ensure that the outputted

ciphertext is equivalent to the ciphertext in the test vector.

If the TOE acts as a receiver, the following assurance activities shall be performed to ensure the proper

operation of every TOE supported combination of RSA-based key establishment scheme:

To conduct this test the evaluator shall generate or obtain test vectors from a known good

implementation of the TOE supported schemes. For each combination of supported key

establishment scheme and its options (with our without key confirmation if supported, for each

supported key confirmation MAC function if key confirmation is supported, and for each

supported mask generation function if KTSOAEP is supported), the tester shall generate 10 sets

of test vectors. Each test vector shall include the RSA private key, the plaintext keying material

(KeyData), any additional input parameters if applicable, the MacTag in cases where key

confirmation is incorporated, and the outputted ciphertext. For each test vector, the evaluator

shall perform the key establishment decryption operation on the TOE and ensure that the

outputted plaintext keying material (KeyData) is equivalent to the plaintext keying material in

the test vector. In cases where key confirmation is incorporated, the evaluator shall perform the

key confirmation steps and ensure that the outputted MacTag is equivalent to the MacTag in

the test vector.

The evaluator shall ensure that the TSS describes how the TOE handles decryption errors. In accordance

with NIST Special Publication 800-56B, the TOE must not reveal the particular error that occurred, either

through the contents of any outputted or logged error message or through timing variations. If KTS-

Windows 10 Security Target

Microsoft © 2016 Page 57 of 166

OAEP is supported, the evaluator shall create separate contrived ciphertext values that trigger each of

the three decryption error checks described in NIST Special Publication 800-56B section 7.2.2.3, ensure

that each decryption attempt results in an error, and ensure that any outputted or logged error message

is identical for each. If KTS-KEM-KWS is supported, the evaluator shall create separate contrived

ciphertext values that trigger each of the three decryption error checks described in NIST Special

Publication 800-56B section 7.2.3.3, ensure that each decryption attempt results in an error, and ensure

that any outputted or logged error message is identical for each

5.2.2.2.5 Cryptographic Key Establishment (FCS_CKM.2(GTK))17

The evaluator shall check the TSS to ensure that it describes how the GTK is unwrapped prior to being

installed for use on the TOE using the AES implementation specified in this PP. The evaluator shall also

perform the following test using a packet sniffing tool to collect frames between a wireless access point

and TOE (which may be performed in conjunction with the assurance activity for FCS_CKM.1.1(2):

Step 1: The evaluator shall configure the access point to an unused channel and configure the WLAN

sniffer to sniff only on that channel (i.e., lock the sniffer on the selected channel). The sniffer should

also be configured to filter on the MAC address of the TOE and/or access point.

Step 2: The evaluator shall configure the TOE to communicate with the access point using IEEE 802.11-

2012 and a 256-bit (64 hex values 0-9 or a-f) pre-shared key, setting up the connections as described in

the operational guidance. The pre-shared key is only used for testing.

Step 3: The evaluator shall start the sniffing tool, initiate a connection between the TOE and access

point, and allow the TOE to authenticate, associate and successfully complete the 4way handshake with

the access point.

Step 4: The evaluator shall set a timer for 1 minute, at the end of which the evaluator shall disconnect

the TOE from the access point and stop the sniffer.

Step 5: The evaluator shall identify the 4-way handshake frames (denoted EAPOL-key in Wireshark

captures) and derive the PTK and GTK from the 4-way handshake frames and preshared key as specified

in IEEE 802.11-2012.

Step 6: The evaluator shall select the first data frame from the captured packets that was sent between

the access point and TOE after the 4-way handshake successfully completed, and with the frame control

value 0x4208 (the first 2 bytes are 08 42). The evaluator shall use the GTK to decrypt the data portion of

the selected packet as specified in IEEE 802.11-2012, and shall verify that the decrypted data contains

ASCII-readable text.

Step 7: The evaluator shall repeat Step 7 for the next 2 data frames with frame control value 0x4208.

5.2.2.2.6 Extended: Cryptographic Key Support (FCS_CKM_EXT.1)

FCS_CKM_EXT.1.1, FCS_CKM_EXT.1.2, FCS_CKM_EXT.1.3

The evaluator shall review the TSS to determine that a REK is supported by the product, that the TSS

includes a description of the protection provided by the product for a REK, and that the TSS includes a

description of the method of generation of a REK.

17

 FCS_CKM.2(GTK) corresponds to FCS_CKM.2(2) in the MDF protection profile.

Windows 10 Security Target

Microsoft © 2016 Page 58 of 166

The evaluator shall verify that the description of the protection of a REK describes how any reading,

import, and export of that REK is prevented. (For example, if the hardware protecting the REK is

removable, the description should include how other devices are prevented from reading the REK.) The

evaluator shall verify that the TSS describes how encryption/decryption/derivation actions are isolated

so as to prevent applications and system-level processes from reading the REK while allowing

encryption/decryption/derivation by the key.

If “hardware-isolated” is selected and REK(s) are isolated from the rich OS by a separate processor

execution environment, the evaluator shall verify that the description includes how the rich OS is

prevented from accessing the memory containing REK key material, which software is allowed access to

the REK, how any other software in the execution environment is prevented from reading that key

material, and what other mechanisms prevent the REK key material from being written to shared

memory locations between the rich OS and the separate execution environment.

If key derivation is performed using a REK, the evaluator shall ensure that the TSS description includes a

description of the key derivation function and shall verify the key derivation uses an approved derivation

mode and key expansion algorithm according to SP 800-108. (Additional key expansion algorithms are

defined in other NIST Special Publications.)

The evaluator shall verify that the generation of a REK meets the FCS_RBG_EXT.1.1 and

FCS_RBG_EXT.1.2 requirements:

 If REK(s) is/are generated on-device, the TSS shall include a description of the generation

mechanism including what triggers a generation, how the functionality described by

FCS_RBG_EXT.1 is invoked, and whether a separate instance of the RBG is used for REK(s).

 If REK(s) is/are generated off-device, the TSS shall include evidence that the RBG meets

FCS_RBG_EXT.1. This will likely necessitate a second set of RBG documentation equivalent to the

documentation provided for the RBG assurance activities. In addition, the TSS shall describe the

manufacturing process that prevents the device manufacturer from accessing any REKs.

FCS_CKM_EXT.1.4

The assurance activity for this element is performed in conjunction with the assurance activity for the

other elements in this component.

5.2.2.2.7 Extended: Cryptographic Key Random Generation (FCS_CKM_EXT.2)

The evaluator shall review the TSS to determine that it describes how the functionality described by

FCS_RBG_EXT.1 is invoked to generate DEKs. The evaluator uses the description of the RBG functionality

in FCS_RBG_EXT.1 or documentation available for the operational environment to determine that the

key size being requested is identical to the key size and mode to be used for the encryption/decryption

of the data.

5.2.2.2.8 Extended: Cryptographic Key Generation (FCS_CKM_EXT.3)

The evaluator shall examine the key hierarchy TSS to ensure that the formation of all KEKs is described

and that the key sizes match that described by the ST author.

Windows 10 Security Target

Microsoft © 2016 Page 59 of 166

 The evaluator shall review the TSS to verify that it contains a description of the PBKDF use to

derive KEKs. This description must include the size and storage location of salts. This activity

may be performed in combination with that for FCS_COP.1(5).

 If the KEK is generated by an RBG, the evaluator shall review the TSS to determine that it

describes how the functionality described by FCS_RBG_EXT.1 is invoked. The evaluator uses the

description of the RBG functionality in FCS_RBG_EXT.1 or documentation available for the

operational environment to determine that the key size being requested is greater than or equal

to the key size and mode to be used for the encryption/decryption of the data.

 If the KEK is generated according to an asymmetric key scheme, the evaluator shall review the

TSS to determine that it describes how the functionality described by FCS_CKM.1(1) is invoked.

The evaluator uses the description of the key generation functionality in FCS_CKM.1(1) or

documentation available for the operational environment to determine that the key strength

being requested is greater than or equal to 112 bits.

 If the KEK is formed from a combination, the evaluator shall verify that the TSS describes the

method of combination and that this method is either an XOR, a KDF, or encryption. If a KDF is

used, the evaluator shall ensure that the TSS description includes a description of the key

derivation function and shall verify the key derivation uses an approved derivation mode and

key expansion algorithm according to SP 800-108. (Additional key expansion algorithms are

defined in other NIST Special Publications.)

5.2.2.2.9 Extended: Key Destruction (FCS_CKM_EXT.4)

The evaluator shall check to ensure the TSS lists each type of plaintext key material (DEKs, software-

based key storage, KEKs, trusted channel keys, passwords, etc.) and its origin and storage location.

The evaluator shall verify that the TSS describes when each type of key material is cleared (for example,

on system power off, on wipe function, on disconnection of trusted channels, when no longer needed by

the trusted channel per the protocol, when transitioning to the locked state, and possibly including

immediately after use, while in the locked state, etc.).

The evaluator shall also verify that, for each type of key, the type of clearing procedure that is

performed (cryptographic erase, overwrite with zeros, overwrite with random pattern, or block erase) is

listed. If different types of memory are used to store the materials to be protected, the evaluator shall

check to ensure that the TSS describes the clearing procedure in terms of the memory in which the data

are stored (for example, "secret keys stored on flash are cleared by overwriting once with zeros, while

secret keys stored on the internal persistent storage device are cleared by overwriting three times with

a random pattern that is changed before each write"). For block erases, the evaluator shall also ensure

that the block erase command used is listed and shall verify that the command used also addresses any

copies of the plaintext key material and that may be created in order to optimize the use of flash

memory.

Assurance Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on factory products.

For each software and firmware key clearing situation (including on system power off, on wipe function,

on disconnection of trusted channels, when no longer needed by the trusted channel per the protocol,

Windows 10 Security Target

Microsoft © 2016 Page 60 of 166

when transitioning to the locked state, and possibly including immediately after use, while in the locked

state) the evaluator shall repeat the following tests. Note that at this time hardware-bound keys are

explicitly excluded from testing.

Test 1: The evaluator shall utilize appropriate combinations of specialized operational environment and

development tools (debuggers, simulators, etc.) for the TOE and instrumented TOE builds to test that

keys are cleared correctly, including all intermediate copies of the key that may have been created

internally by the TOE during normal cryptographic processing with that key.

Cryptographic TOE implementations in software shall be loaded and exercised under a debugger to

perform such tests. The evaluator shall perform the following test for each key subject to clearing,

including intermediate copies of keys that are persisted encrypted by the TOE:

1. Load the instrumented TOE build in a debugger.

2. Record the value of the key in the TOE subject to clearing.

3. Cause the TOE to perform a normal cryptographic processing with the key from #1.

4. Cause the TOE to clear the key.

5. Cause the TOE to stop the execution but not exit.

6. Cause the TOE to dump the entire memory footprint of the TOE into a binary file.

7. Search the content of the binary file created in #4 for instances of the known key value from #1.

The test succeeds if no copies of the key from #1 are found in step #7 above and fails otherwise.

The evaluator shall perform this test on all keys, including those persisted in encrypted form, to ensure

intermediate copies are cleared.

Test 2: In cases where the TOE is implemented in firmware and operates in a limited operating

environment that does not allow the use of debuggers, the evaluator shall utilize a simulator for the TOE

on a general purpose operating system. The evaluator shall provide a rationale explaining the

instrumentation of the simulated test environment and justifying the obtained test results.

5.2.2.2.10 Extended: TSF Wipe (FCS_CKM_EXT.5)

The evaluator shall check to ensure the TSS describes how the device is wiped; and the type of clearing

procedure that is performed (cryptographic erase or overwrite) and, if overwrite is performed, the

overwrite procedure (overwrite with zeros, overwrite three or more times by a different alternating

pattern, overwrite with random pattern, or block erase). If different types of memory are used to store

the data to be protected, the evaluator shall check to ensure that the TSS describes the clearing

procedure in terms of the memory in which the data are stored (for example, "data stored on flash are

cleared by overwriting once with zeros, while data stored on the internal persistent storage device are

cleared by overwriting three times with a random pattern that is changed before each write").

Assurance Activity Note: The following test may require the developer to provide access to a test

platform that provides the evaluator with tools that are typically not found on consumer Mobile Device

products.

The evaluator shall perform one of the following tests. The test before and after the wipe command

shall be identical. This test shall be repeated for each type of memory used to store the data to be

protected.

Windows 10 Security Target

Microsoft © 2016 Page 61 of 166

Method 1 for File-based Methods:

Test: The evaluator shall enable encryption according to the AGD guidance. The evaluator shall create a

user data (protected data or sensitive data) file, for example, by using an application. The evaluator shall

use a tool provided by the developer to examine this data stored in memory (for example, by examining

a decrypted files). The evaluator shall initiate the wipe command according to the AGD guidance

provided for FMT_SMF_EXT.1. The evaluator shall use a tool provided by the developer to examine the

same data location in memory to verify that the data has been wiped according to the method

described in the TSS (for example, the files are still encrypted and cannot be accessed).

Method 2 for Volume-based Methods:

Test: The evaluator shall enable encryption according to the AGD guidance. The evaluator shall create a

unique data string, for example, by using an application. The evaluator shall use a tool provided by the

developer to search decrypted data for the unique string. The evaluator shall initiate the wipe command

according to the AGD guidance provided for FMT_SMF_EXT.1. The evaluator shall use a tool provided by

the developer to search for the same unique string in decrypted memory to verify that the data has

been wiped according to the method described in the TSS (for example, the files are still encrypted and

cannot be accessed).

5.2.2.2.11 Extended: Salt Generation (FCS_CKM_EXT.6)

The evaluator shall verify that the TSS contains a description regarding the salt generation, including

which algorithms on the TOE require salts. The evaluator shall confirm that the salt is generating using

an RBG described in FCS_RBG_EXT.1. For PBKDF derivation of KEKs, this assurance activity may be

performed in conjunction with FCS_CKM_EXT.3.2.

5.2.2.2.12 Cryptographic Operation for Data Encryption/Decryption (FCS_COP.1(SYM))18

Assurance Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on factory products.

AES-CBC Tests

AES-CBC Known Answer Tests

There are four Known Answer Tests (KATs), described below. In all KATs, the plaintext, ciphertext, and IV

values shall be 128-bit blocks. The results from each test may either be obtained by the evaluator

directly or by supplying the inputs to the implementer and receiving the results in response. To

determine correctness, the evaluator shall compare the resulting values to those obtained by submitting

the same inputs to a known good implementation.

KAT-1. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10

plaintext values and obtain the ciphertext value that results from AES-CBC encryption of the

given plaintext using a key value of all zeros and an IV of all zeros.

Five plaintext values shall be encrypted with a 128-bit all-zeros key, and the other five shall be

encrypted with a 256-bit all-zeros key.

18

 FCS_COP.1(SYM) corresponds to FCS_COP.1(1) in the MDF protection profile.

Windows 10 Security Target

Microsoft © 2016 Page 62 of 166

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for

encrypt, using 10 ciphertext values as input and AES-CBC decryption.

KAT-2. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10 key

values and obtain the ciphertext value that results from AES-CBC encryption of an all-zeros

plaintext using the given key value and an IV of all zeros. Five of the keys shall be 128-bit keys,

and the other five shall be 256-bit keys.

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for

encrypt, using an all-zero ciphertext value as input and AES-CBC decryption.

KAT-3. To test the encrypt functionality of AES-CBC, the evaluator shall supply the two sets of

key values described below and obtain the ciphertext value that results from AES encryption of

an all-zeros plaintext using the given key value and an IV of all zeros. The first set of keys shall

have 128 128-bit keys, and the second set shall have 256 256-bit keys. Key i in each set shall

have the leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1,N].

To test the decrypt functionality of AES-CBC, the evaluator shall supply the two sets of key and

ciphertext value pairs described below and obtain the plaintext value that results from AES-CBC

decryption of the given ciphertext using the given key and an IV of all zeros. The first set of

key/ciphertext pairs shall have 128 128-bit key/ciphertext pairs, and the second set of

key/ciphertext pairs shall have 256 256-bit key/ciphertext pairs. Key i in each set shall have the

leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1,N]. The ciphertext value in

each pair shall be the value that results in an all-zeros plaintext when decrypted with its

corresponding key.

KAT-4. To test the encrypt functionality of AES-CBC, the evaluator shall supply the set of 128

plaintext values described below and obtain the two ciphertext values that result from AES-CBC

encryption of the given plaintext using a 128-bit key value of all zeros with an IV of all zeros and

using a 256-bit key value of all zeros with an IV of all zeros, respectively. Plaintext value i in each

set shall have the leftmost i bits be ones and the rightmost 128-i bits be zeros, for i in [1,128].

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for

encrypt, using ciphertext values of the same form as the plaintext in the encrypt test as input

and AES-CBC decryption.

AES-CBC Multi-Block Message Test

The evaluator shall test the encrypt functionality by encrypting an i-block message where 1 < i <=10. The

evaluator shall choose a key, an IV and plaintext message of length i blocks and encrypt the message,

using the mode to be tested, with the chosen key and IV. The ciphertext shall be compared to the result

of encrypting the same plaintext message with the same key and IV using a known good

implementation.

The evaluator shall also test the decrypt functionality for each mode by decrypting an i-block message

where 1 < i <=10. The evaluator shall choose a key, an IV and a ciphertext message of length i blocks and

decrypt the message, using the mode to be tested, with the chosen key and IV. The plaintext shall be

Windows 10 Security Target

Microsoft © 2016 Page 63 of 166

compared to the result of decrypting the same ciphertext message with the same key and IV using a

known good implementation.

AES-CBC Monte Carlo Tests

The evaluator shall test the encrypt functionality using a set of 200 plaintext, IV, and key 3tuples. 100 of

these shall use 128 bit keys, and 100 shall use 256 bit keys. The plaintext and IV values shall be 128-bit

blocks. For each 3-tuple, 1000 iterations shall be run as follows:

Input: PT, IV, Key

for i = 1 to 1000:

if i == 1:

CT[1] = AES-CBC-Encrypt(Key, IV, PT)

PT = IV

else:

CT[i] = AES-CBC-Encrypt(Key, PT)

PT = CT[i-1]

The ciphertext computed in the 1000th iteration (i.e., CT[1000]) is the result for that trial. This result

shall be compared to the result of running 1000 iterations with the same values using a known good

implementation.

The evaluator shall test the decrypt functionality using the same test as for encrypt, exchanging CT and

PT and replacing AES-CBC-Encrypt with AES-CBC-Decrypt.

AES-CCM Tests

The evaluator shall test the generation-encryption and decryption-verification functionality of AES-CCM

for the following input parameter and tag lengths:

128 bit and 256 bit keys

Two payload lengths. One payload length shall be the shortest supported payload length,

greater than or equal to zero bytes. The other payload length shall be the longest supported

payload length, less than or equal to 32 bytes (256 bits).

Two or three associated data lengths. One associated data length shall be 0, if supported. One

associated data length shall be the shortest supported payload length, greater than or equal to

zero bytes. One associated data length shall be the longest supported payload length, less than

or equal to 32 bytes (256 bits). If the implementation supports an associated data length of 216

bytes, an associated data length of 216 bytes shall be tested.

Nonce lengths. All supported nonce lengths between 7 and 13 bytes, inclusive, shall be tested.

Tag lengths. All supported tag lengths of 4, 6, 8, 10, 12, 14 and 16 bytes shall be tested.

Windows 10 Security Target

Microsoft © 2016 Page 64 of 166

To test the generation-encryption functionality of AES-CCM, the evaluator shall perform the following

four tests:

Test 1. For EACH supported key and associated data length and ANY supported payload, nonce

and tag length, the evaluator shall supply one key value, one nonce value and 10 pairs of

associated data and payload values and obtain the resulting ciphertext.

Test 2. For EACH supported key and payload length and ANY supported associated data, nonce

and tag length, the evaluator shall supply one key value, one nonce value and 10 pairs of

associated data and payload values and obtain the resulting ciphertext.

Test 3. For EACH supported key and nonce length and ANY supported associated data, payload

and tag length, the evaluator shall supply one key value and 10 associated data, payload and

nonce value 3-tuples and obtain the resulting ciphertext.

Test 4. For EACH supported key and tag length and ANY supported associated data, payload and

nonce length, the evaluator shall supply one key value, one nonce value and 10 pairs of

associated data and payload values and obtain the resulting ciphertext.

To determine correctness in each of the above tests, the evaluator shall compare the ciphertext with the

result of generation-encryption of the same inputs with a known good implementation. To test the

decryption-verification functionality of AES-CCM, for EACH combination of supported associated data

length, payload length, nonce length and tag length, the evaluator shall supply a key value and 15

nonce, associated data and ciphertext 3-tuples and obtain either a FAIL result or a PASS result with the

decrypted payload. The evaluator shall supply 10 tuples that should FAIL and 5 that should PASS per set

of 15. Additionally, the evaluator shall use tests from the IEEE 802.11-02/362r6 document “Proposed

Test vectors for IEEE 802.11 TGi”, dated September 10, 2002, Section 2.1 AESCCMP Encapsulation

Example and Section 2.2 Additional AES CCMP Test Vectors to further verify the IEEE 802.11-2007

implementation of AES-CCMP.

AES-GCM Test

The evaluator shall test the authenticated encrypt functionality of AES-GCM for each combination of the

following input parameter lengths:

128 bit and 256 bit keys

Two plaintext lengths. One of the plaintext lengths shall be a non-zero integer multiple of 128

bits, if supported. The other plaintext length shall not be an integer multiple of 128 bits, if

supported.

Three AAD lengths. One AAD length shall be 0, if supported. One AAD length shall be a non-zero

integer multiple of 128 bits, if supported. One AAD length shall not be an integer multiple of 128

bits, if supported.

Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV lengths tested.

The evaluator shall test the encrypt functionality using a set of 10 key, plaintext, AAD, and IV tuples for

each combination of parameter lengths above and obtain the ciphertext value and tag that results from

AES-GCM authenticated encrypt. Each supported tag length shall be tested at least once per set of 10.

Windows 10 Security Target

Microsoft © 2016 Page 65 of 166

The IV value may be supplied by the evaluator or the implementation being tested, as long as it is

known.

The evaluator shall test the decrypt functionality using a set of 10 key, ciphertext, tag, AAD, and IV 5-

tuples for each combination of parameter lengths above and obtain a Pass/Fail result on authentication

and the decrypted plaintext if Pass. The set shall include five tuples that Pass and five that Fail.

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to

the implementer and receiving the results in response. To determine correctness, the evaluator shall

compare the resulting values to those obtained by submitting the same inputs to a known good

implementation.

XTS-AES Test

The evaluator shall test the encrypt functionality of XTS-AES for each combination of the following input

parameter lengths:

256 bit (for AES-128) and 512 bit (for AES-256) keys

Three data unit (i.e., plaintext) lengths. One of the data unit lengths shall be a nonzero integer

multiple of 128 bits, if supported. One of the data unit lengths shall be an integer multiple of

128 bits, if supported. The third data unit length shall be either the longest supported data unit

length or 216 bits, whichever is smaller.

using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples and obtain the ciphertext

that results from XTS-AES encrypt.

The evaluator may supply a data unit sequence number instead of the tweak value if the

implementation supports it. The data unit sequence number is a base-10 number ranging between 0

and 255 that implementations convert to a tweak value internally.

The evaluator shall test the decrypt functionality of XTS-AES using the same test as for encrypt, replacing

plaintext values with ciphertext values and XTS-AES encrypt with XTSAES decrypt.

AES Key Wrap (AES-KW) and Key Wrap with Padding (AES-KWP) Test

The evaluator shall test the authenticated encryption functionality of AES-KW for EACH combination of

the following input parameter lengths:

128 and 256 bit key encryption keys (KEKs)

Three plaintext lengths. One of the plaintext lengths shall be two semi-blocks (128 bits). One of

the plaintext lengths shall be three semi-blocks (192 bits). The third data unit length shall be the

longest supported plaintext length less than or equal to 64 semi-blocks (4096 bits).

using a set of 100 key and plaintext pairs and obtain the ciphertext that results from AES-KW

authenticated encryption. To determine correctness, the evaluator shall use the AES-KW authenticated-

encryption function of a known good implementation.

Windows 10 Security Target

Microsoft © 2016 Page 66 of 166

The evaluator shall test the authenticated-decryption functionality of AES-KW using the same test as for

authenticated-encryption, replacing plaintext values with ciphertext values and AES-KW authenticated-

encryption with AES-KW authenticated-decryption.

The evaluator shall test the authenticated-encryption functionality of AES-KWP using the same test as

for AES-KW authenticated-encryption with the following change in the three plaintext lengths:

One plaintext length shall be one octet. One plaintext length shall be 20 octets (160 bits).

One plaintext length shall be the longest supported plaintext length less than or equal to 512

octets (4096 bits).

The evaluator shall test the authenticated-decryption functionality of AES-KWP using the same test as

for AES-KWP authenticated-encryption, replacing plaintext values with ciphertext values and AES-KWP

authenticated-encryption with AES-KWP authenticated-decryption

5.2.2.2.13 19Cryptographic Operation for Hashing (FCS_COP.1(HASH))

The evaluator checks the AGD documents to determine that any configuration that is required to be

done to configure the functionality for the required hash sizes is present. The evaluator shall check that

the association of the hash function with other TSF cryptographic functions (for example, the digital

signature verification function) is documented in the TSS.

The TSF hashing functions can be implemented in one of two modes. The first mode is the byte-oriented

mode. In this mode the TSF only hashes messages that are an integral number of bytes in length; i.e.,

the length (in bits) of the message to be hashed is divisible by 8. The second mode is the bit-oriented

mode. In this mode the TSF hashes messages of arbitrary length. As there are different tests for each

mode, an indication is given in the following sections for the bit-oriented vs. the byte-oriented testmacs.

The evaluator shall perform all of the following tests for each hash algorithm implemented by the TSF

and used to satisfy the requirements of this PP.

Assurance Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on factory products.

Short Messages Test - Bit-oriented Mode

The evaluators devise an input set consisting of m+1 messages, where m is the block length of the hash

algorithm. The length of the messages range sequentially from 0 to m bits. The message text shall be

pseudorandomly generated. The evaluators compute the message digest for each of the messages and

ensure that the correct result is produced when the messages are provided to the TSF.

Short Messages Test - Byte-oriented Mode

The evaluators devise an input set consisting of m/8+1 messages, where m is the block length of the

hash algorithm. The length of the messages range sequentially from 0 to m/8 bytes, with each message

being an integral number of bytes. The message text shall be pseudorandomly generated. The

evaluators compute the message digest for each of the messages and ensure that the correct result is

produced when the messages are provided to the TSF.

19

 FCS_COP.1(HASH) corresponds to FCS_COP.1(2) in the MDF protection profile.

Windows 10 Security Target

Microsoft © 2016 Page 67 of 166

Selected Long Messages Test - Bit-oriented Mode

The evaluators devise an input set consisting of m messages, where m is the block length of the hash

algorithm. The length of the ith message is 512 + 99*i, where 1 ≤ i ≤ m. The message text shall be

pseudorandomly generated. The evaluators compute the message digest for each of the messages and

ensure that the correct result is produced when the messages are provided to the TSF.

Selected Long Messages Test - Byte-oriented Mode

The evaluators devise an input set consisting of m/8 messages, where m is the block length of the hash

algorithm. The length of the ith message is 512 + 8*99*i, where 1 ≤ i ≤ m/8. The message text shall be

pseudorandomly generated. The evaluators compute the message digest for each of the messages and

ensure that the correct result is produced when the messages are provided to the TSF.

Pseudorandomly Generated Messages Test

This test is for byte-oriented implementations only. The evaluators randomly generate a seed that is n

bits long, where n is the length of the message digest produced by the hash function o be tested. The

evaluators then formulate a set of 100 messages and associated digests by following the algorithm

provided in Figure 1 of [SHAVS]. The evaluators then ensure that the correct result is produced when the

messages are provided to the TSF.

5.2.2.2.14 Cryptographic Operation for Signature Algorithms (FCS_COP.1(SIGN))20

Assurance Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on factory products.

ECDSA Algorithm Tests

ECDSA FIPS 186-4 Signature Generation Test

For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair, the

evaluator shall generate 10 1024-bit long messages and obtain for each message a public key

and the resulting signature values R and S. To determine correctness, the evaluator shall use the

signature verification function of a known good implementation.

ECDSA FIPS 186-4 Signature Verification Test

For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair, the

evaluator shall generate a set of 10 1024-bit message, public key and signature tuples and

modify one of the values (message, public key or signature) in five of the 10 tuples. The

evaluator shall obtain in response a set of 10 PASS/FAIL values.

RSA Signature Algorithm Tests

Signature Generation Test

The evaluator shall verify the implementation of RSA Signature Generation by the TOE using the

Signature Generation Test. To conduct this test the evaluator must generate or obtain 10

messages from a trusted reference implementation for each modulus size/SHA combination

20

 FCS_COP.1(SIGN) corresponds to FCS_COP.1(3) in the MDF protection profile.

Windows 10 Security Target

Microsoft © 2016 Page 68 of 166

supported by the TSF. The evaluator shall have the TOE use their private key and modulus value

to sign these messages. The evaluator shall verify the correctness of the TSF’s signature using a

known good implementation and the associated public keys to verify the signatures.

Signature Verification Test

The evaluator shall perform the Signature Verification test to verify the ability of the TOE to

recognize another party’s valid and invalid signatures. The evaluator shall inject errors into the

test vectors produced during the Signature Verification Test by introducing errors in some of the

public keys e, messages, IR format, and/or signatures. The TOE attempts to verify the signatures

and returns success or failure.

The evaluator shall use these test vectors to emulate the signature verification test using the

corresponding parameters and verify that the TOE detects these errors.

5.2.2.2.15 Cryptographic Operation for Keyed Hash Algorithms (FCS_COP.1(HMAC))21

The evaluator shall examine the TSS to ensure that it specifies the following values used by the HMAC

function: key length, hash function used, block size, and output MAC length used.

Assurance Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on factory products.

For each of the supported parameter sets, the evaluator shall compose 15 sets of test data. Each set

shall consist of a key and message data. The evaluator shall have the TSF generate HMAC tags for these

sets of test data. The resulting MAC tags shall be compared to the result of generating HMAC tags with

the same key and IV using a known good implementation.

5.2.2.2.16 Cryptographic Operation for Password-Based Key Derivation (FCS_COP.1(PBKD))22

The evaluator shall check that the TSS describes the method by which the password is first encoded and

then fed to the SHA algorithm. The settings for the algorithm (padding, blocking, etc.) shall be described,

and the evaluator shall verify that these are supported by the selections in this component as well as the

selections concerning the hash function itself. The evaluator shall verify that the TSS contains a

description of how the output of the hash function is used to form the submask that will be input into

the function and is the same length as the KEK as specified in FCS_CKM_EXT.3.

For the NIST SP 800-132-based conditioning of the passphrase, the required assurance activities will be

performed when doing the assurance activities for the appropriate requirements (FCS_COP.1.1(4)). If

any manipulation of the key is performed in forming the submask that will be used to form the KEK, that

process shall be described in the TSS.

No explicit testing of the formation of the submask from the input password is required.

The evaluator shall verify that the iteration count for PBKDFs performed by the TOE comply with NIST SP

800-132 by ensuring that the TSS contains a description of the estimated time required to derive key

material from passwords and how the TOE increases the computation time for password-based key

derivation (including but not limited to increasing the iteration count).

21

 FCS_COP.1(HMAC) corresponds to FCS_COP.1(4) in the MDF protection profile.
22

 FCS_COP.1(PBKD) corresponds to FCS_COP.1(5) in the MDF protection profile.

Windows 10 Security Target

Microsoft © 2016 Page 69 of 166

5.2.2.2.17 Extended: Initialization Vector Generation (FCS_IV_EXT.1)

The evaluator shall examine the key hierarchy section of the TSS to ensure that the encryption of all keys

is described and the formation of the IVs for each key encrypted by the same KEK meets FCS_IV_EXT.1.

5.2.2.2.18 Extended: Random Bit Generation (FCS_RBG_EXT.1)

FCS_RBG_EXT.1.1, FCS_RBG_EXT.1.2, FCS_RBG_EXT.1.3

Documentation shall be produced—and the evaluator shall perform the activities—in accordance with

Appendix E and the “Clarification to the Entropy Documentation and Assessment Annex”.

The evaluator shall verify that the API documentation provided according to Section 6.2.1 includes the

security functions described in FCS_RBG_EXT.1.3.

Assurance Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on factory products.

The evaluator shall perform the following tests, depending on the standard to which the RBG conforms.

Implementations Conforming to FIP 140-2 Annex C

The reference for the tests contained in this section is The Random Number Generator Validation

System (RNGVS). The evaluators shall conduct the following two tests. Note that the "expected values"

are produced by a reference implementation of the algorithm that is known to be correct. Proof of

correctness is left to each Scheme.

The evaluators shall perform a Variable Seed Test. The evaluators shall provide a set of 128 (Seed, DT)

pairs to the TSF RBG function, each 128 bits. The evaluators shall also provide a key (of the length

appropriate to the AES algorithm) that is constant for all 128 (Seed, DT) pairs. The DT value is

incremented by 1 for each set. The seed values shall have no repeats within the set. The evaluators

ensure that the values returned by the TSF match the expected values.

The evaluators shall perform a Monte Carlo Test. For this test, they supply an initial Seed and DT value

to the TSF RBG function; each of these is 128 bits. The evaluators shall also provide a key (of the length

appropriate to the AES algorithm) that is constant throughout the test. The evaluators then invoke the

TSF RBG 10,000 times, with the DT value being incremented by 1 on each iteration, and the new seed for

the subsequent iteration produced as specified in NIST-Recommended Random Number Generator

Based on ANSI X9.31 Appendix A.2.4 Using the 3-Key Triple DES and AES Algorithms, Section 3. The

evaluators ensure that the 10,000th value produced matches the expected value.

Implementations Conforming to NIST Special Publication 800-90A

The evaluator shall perform 15 trials for the RNG implementation. If the RNG is configurable, the

evaluator shall perform 15 trials for each configuration. The evaluator shall also confirm that the

operational guidance contains appropriate instructions for configuring the RNG functionality.

If the RNG has prediction resistance enabled, each trial consists of (1) instantiate DRBG, (2) generate the

first block of random bits (3) generate a second block of random bits (4) uninstantiate. The evaluator

verifies that the second block of random bits is the expected value. The evaluator shall generate eight

input values for each trial. The first is a count (0 – 14). The next three are entropy input, nonce, and

personalization string for the instantiate operation. The next two are additional input and entropy input

Windows 10 Security Target

Microsoft © 2016 Page 70 of 166

for the first call to generate. The final two are additional input and entropy input for the second call to

generate. These values are randomly generated. “generate one block of random bits” means to

generate random bits with number of returned bits equal to the Output Block Length (as defined in NIST

SP800-90A).

If the RNG does not have prediction resistance, each trial consists of (1) instantiate DRBG, (2) generate

the first block of random bits (3) reseed, (4) generate a second block of random bits (5) uninstantiate.

The evaluator verifies that the second block of random bits is the expected value. The evaluator shall

generate eight input values for each trial. The first is a count (0 – 14). The next three are entropy input,

nonce, and personalization string for the instantiate operation. The fifth value is additional input to the

first call to generate. The sixth and seventh are additional input and entropy input to the call to reseed.

The final value is additional input to the second generate call.

The following paragraphs contain more information on some of the input values to be

generated/selected by the evaluator.

Entropy input: the length of the entropy input value must equal the seed length.

Nonce: If a nonce is supported (CTR_DRBG with no Derivation Function does not use a nonce),

the nonce bit length is one-half the seed length.

Personalization string: The length of the personalization string must be <= seed length. If the

implementation only supports one personalization string length, then the same length can be

used for both values. If more than one string length is support, the evaluator shall use

personalization strings of two different lengths. If the implementation does not use a

personalization string, no value needs to be supplied.

Additional input: the additional input bit lengths have the same defaults and restrictions as the

personalization string lengths.

FCS_RBG_EXT.1.4

The evaluator shall verify that this function is included as an interface to the RBG in the documentation

required by Appendix E and that the behavior of the RBG following a call to this interface is described.

The evaluator shall also verify that the documentation of the RBG describes the conditions of use and

possible values for the Personalization String input to the SP 800-90A specified DRBG. The evaluator

shall also perform the following test.

Test 1: The evaluator shall write, or the developer shall provide, an application that adds data to the

RBG via the Personalization String. The evaluator shall verify that the request succeeds.

5.2.2.2.19 Extended: Cryptographic Algorithm Services (FCS_SRV_EXT.1)

FCS_SRV_EXT.1.1

The evaluator shall verify that the API documentation provided according to Section 6.2.1 includes the

security functions (cryptographic algorithms) described in these requirements.

The evaluator shall write, or the developer shall provide access to, an application that requests

cryptographic operations by the TSF. The evaluator shall verify that the results from the operation

match the expected results according to the API documentation. This application may be used to assist

Windows 10 Security Target

Microsoft © 2016 Page 71 of 166

in verifying the cryptographic operation assurance activities for the other algorithm services

requirements.

FCS_SRV_EXT.1.2

The evaluator shall verify that the API documentation for the secure key storage includes the

cryptographic operations by the stored keys.

The evaluator shall write, or the developer shall provide access to, an application that requests

cryptographic operations of stored keys by the TSF. The evaluator shall verify that the results from the

operation match the expected results according to the API documentation. The evaluator shall use these

APIs to test the functionality of the secure key storage according to the Assurance Activities in

FCS_STG_EXT.1.

5.2.2.2.20 Extended: Cryptographic Key Storage (FCS_STG_EXT.1)

The assurance activity for this component entails examination of the ST’s TSS to determine that the

TOE’s implements the required secure key storage. The evaluator shall ensure that the TSS contains a

description of the key storage mechanism that justifies the selection of “hardware”, “hardware-

isolated”, or “software-based.”

The evaluator shall review the AGD guidance to determine that it describes the steps needed to import

or destroy keys/secrets. The evaluator shall also verify that the API documentation provided according

to Section 6.2.1 includes the security functions (import, use, and destruction) described in these

requirements. The API documentation shall include the method by which applications restrict access to

their keys/secrets in order to meet FCS_STG_EXT.1.4.

The evaluator shall test the functionality of each security function:

Test 1: The evaluator shall import keys/secrets of each supported type according to the AGD guidance.

The evaluator shall write, or the developer shall provide access to, an application that generates a

key/secret of each supported type and calls the import functions. The evaluator shall verify that no

errors occur during import.

Test 2: The evaluator shall write, or the developer shall provide access to, an application that uses an

imported key/secret:

 For RSA, the secret shall be used to sign data.

 For ECDSA, the secret shall be used to sign data

In the future additional types will be required to be tested:

 For symmetric algorithms, the secret shall be used to encrypt data.

 For persistent secrets, the secret shall be compared to the imported secret.

The evaluator shall repeat this test with the application-imported keys/secrets and a different

application’s imported keys/secrets. The evaluator shall verify that the TOE requires approval before

allowing the application to use the key/secret imported by the user or by a different application:

 The evaluator shall deny the approvals to verify that the application is not able to use the

key/secret as described.

Windows 10 Security Target

Microsoft © 2016 Page 72 of 166

 The evaluator shall repeat the test, allowing the approvals to verify that the application is able

to use the key/secret as described.

If the ST Author has selected “common application developer”, this test is performed by either using

applications from different developers or appropriately (according to API documentation) not

authorizing sharing.

Test 3: The evaluator shall destroy keys/secrets of each supported type according to the AGD guidance.

The evaluator shall write, or the developer shall provide access to, an application that destroys an

imported key/secret.

The evaluator shall repeat this test with the application-imported keys/secrets and a different

application’s imported keys/secrets. The evaluator shall verify that the TOE requires approval before

allowing the application to destroy the key/secret imported by the administrator or by a different

application:

 The evaluator shall deny the approvals and verify that the application is still able to use the

key/secret as described.

 The evaluator shall repeat the test, allowing the approvals and verifying that the application is

no longer able to use the key/secret as described.

If the ST Author has selected “common application developer”, this test is performed by either using

applications from different developers or appropriately (according to API documentation) not

authorizing sharing.

5.2.2.2.21 Extended: Encrypted Cryptographic Key Storage (FCS_STG_EXT.2)

FCS_STG_EXT.2.1

The evaluator shall review the TSS to determine that the TSS includes key hierarchy description of the

protection of each DEK for data-at-rest, of software-based key storage, of long-term trusted channel

keys, and of KEK related to the protection of the DEKs, long-term trusted channel keys, and software-

based key storage. This description must include a diagram illustrating the key hierarchy implemented

by the TOE in order to demonstrate that the implementation meets FCS_STG_EXT.2. The description

shall indicate how the functionality described by FCS_RBG_EXT.1 is invoked to generate DEKs

(FCS_CKM_EXT.2), the key size (FCS_CKM_EXT.2 and FCS_CKM_EXT.3) for each key, how each KEK is

formed (generated, derived, or combined according to FCS_CKM_EXT.3), the integrity protection

method for each encrypted key (FCS_STG_EXT.3), and the IV generation for each key encrypted by the

same KEK (FCS_IV_EXT.1). More detail for each task follows the corresponding requirement.

FCS_STG_EXT.2.2

The evaluator shall examine the key hierarchy section of the TSS to ensure that each key (DEKs,

software-based key storage, and KEKs) is encrypted by keys of equal or greater security strength using

one of the selected methods.

The evaluator shall examine the key hierarchy description in the TSS section to verify that each DEK and

software-stored key is encrypted according to FCS_STG_EXT.2.

Windows 10 Security Target

Microsoft © 2016 Page 73 of 166

5.2.2.2.22 Extended: Encrypted Integrity of Cryptographic Key Storage (FCS_STG_EXT.3)

The evaluator shall examine the key hierarchy description in the TSS section to verify that each

encrypted key is integrity protected according to one of the options in FCS_STG_EXT.3.

5.2.2.2.23 Extended: EAP TLS Protocol (FCS_TLSC_EXT.1)

FCS_TLSC_EXT.1.1

The evaluator shall check the description of the implementation of this protocol in the TSS to ensure

that the ciphersuites supported are specified. The evaluator shall check the TSS to ensure that the

ciphersuites specified include those listed for this component. The evaluator shall also check the

operational guidance to ensure that it contains instructions on configuring the TOE so that TLS conforms

to the description in the TSS.

The evaluator shall also perform the following tests:

Test 1: The evaluator shall establish a TLS connection using each of the ciphersuites specified by the

requirement. This connection may be established as part of the establishment of a higher-level protocol,

e.g., as part of an EAP session. It is sufficient to observe the successful negotiation of a ciphersuite to

satisfy the intent of the test; it is not necessary to examine the characteristics of the encrypted traffic in

an attempt to discern the ciphersuite being used (for example, that the cryptographic algorithm is 128-

bit AES and not 256-bit AES).

Test 2: The evaluator shall attempt to establish the connection using a server with a server certificate

that contains the Server Authentication purpose in the extendedKeyUsage field and verify that a

connection is established. The evaluator will then verify that the client rejects an otherwise valid server

certificate that lacks the Server Authentication purpose in the extendedKeyUsage field and a connection

is not established. Ideally, the two certificates should be identical except for the extendedKeyUsage

field.

Test 3: The evaluator shall send a server certificate in the TLS connection that the does not match the

server-selected ciphersuite (for example, send a ECDSA certificate while using the

TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite or send a RSA certificate while using one of the ECDSA

ciphersuites.) The evaluator shall verify that the TOE disconnects after receiving the server’s Certificate

handshake message.

Test 4: The evaluator shall configure the server to select the TLS_NULL_WITH_NULL_NULL ciphersuite

and verify that the client denies the connection.

Test 5: The evaluator shall perform the following modifications to the traffic:

 Change the TLS version selected by the server in the Server Hello to a non-supported TLS version

(for example 1.3 represented by the two bytes 03 04) and verify that the client rejects the

connection.

 Modify at least one byte in the server’s nonce in the Server Hello handshake message, and verify

that the client rejects the Server Key Exchange handshake message (if using a DHE or ECDHE

ciphersuite) or that the server denies the client’s Finished handshake message.

Windows 10 Security Target

Microsoft © 2016 Page 74 of 166

 Modify the server’s selected ciphersuite in the Server Hello handshake message to be a

ciphersuite not presented in the Client Hello handshake message. The evaluator shall verify that

the client rejects the connection after receiving the Server Hello.

 Modify the signature block in the Server’s Key Exchange handshake message, and verify that the

client rejects the connection after receiving the Server Key Exchange message.

 Modify a byte in the Server Finished handshake message, and verify that the client sends a fatal

alert upon receipt and does not send any application data.

 Send a valid Server Finished message in plaintext and verify the client sends a fatal alert upon

receipt and does not send any application data. The server’s finished message shall contain valid

verify_data and shall parse correctly using a network protocol analysis tool.

FCS_TLSC_EXT.1.2

The evaluator shall check that the AGD guidance contains instructions for the administrator to configure

the list of Certificate Authorities that are allowed to sign certificates or to configure the FQDN of the

authentication server certificate that will be accepted by the TOE in the EAP-TLS exchange.

Additional tests may be added in the future to test compliance with RFC 5246. The evaluator shall also

perform the following test:

Test 1: Following the guidance provided by the AGD guidance, a CA or an FQDN will be configured as

“acceptable” for authentication server certificates and then the evaluator will start a wireless

connection and verify that the wireless client is able to successfully connect. The evaluator will then

configure the system such that an otherwise valid certificate is signed by a CA that is not allowed by the

TOE or presents a FQDN that is not allowed by the TOE. Attempts to authenticate to an authentication

server presenting such a certificate should result in the connection being refused. If the TOE supports

both methods of limiting the acceptable authentication servers, the evaluator shall repeat this test

twice, once with each method.

FCS_TLSC_EXT.1.3

The evaluator shall perform the following test:

Test 1: The evaluator shall demonstrate that using a certificate without a valid certification path results

in the function failing. Using the administrative guidance, the evaluator shall then load a certificate or

certificates to the Trust Anchor Database needed to validate the certificate to be used in the function,

and demonstrate that the function succeeds. The evaluator then shall delete one of the certificates, and

show that the function fails.

FCS_TLSC_EXT.1.4

The evaluator shall ensure that the TSS description required per FIA_X509_EXT.2.1 includes the use of

client-side certificates for TLS mutual authentication.

The evaluator shall verify that the AGD guidance required per FIA_X509_EXT.2.1 includes instructions for

configuring the client-side certificates for TLS mutual authentication.

The evaluator shall also perform the following test:

Test 1: The evaluator shall perform the following modification to the traffic:

Windows 10 Security Target

Microsoft © 2016 Page 75 of 166

 Configure the server to require mutual authentication and then modify a byte in a CA field in the

Server’s Certificate Request handshake message. The modified CA field must not be the CA used

to sign the client’s certificate. The evaluator shall verify the connection is unsuccessful.

FCS_TLSC_EXT.1.5

The evaluator shall verify that TSS describes the Supported Elliptic Curves Extension and whether the

required behavior is performed by default or may be configured. If the TSS indicates that the Supported

Elliptic Curves Extension must be configured to meet the requirement, the evaluator shall verify that

AGD guidance includes configuration of the Supported Elliptic Curves Extension.

The evaluator shall also perform the following test:

Test: The evaluator shall configure the server to perform an ECDHE key exchange message in the TLS

connection using a non-supported ECDHE curve (for example, P-192) and shall verify that the TOE

disconnects after receiving the server's Key Exchange handshake message.

FCS_TLSC_EXT.1.6

The evaluator shall verify that TSS describes the signature_algorithm extension and whether the

required behavior is performed by default or may be configured. If the TSS indicates that the

signature_algorithm extension must be configured to meet the requirement, the evaluator shall verify

that AGD guidance includes configuration of the signature_algorithm extension.

The evaluator shall also perform the following test:

 Test: The evaluator shall configure the server to send a certificate in the TLS connection that is

not supported according to the Client’s HashAlgorithm enumeration within the

signature_algorithms extension (for example, send a certificate with a SHA-1 signature). The

evaluator shall verify that the TOE disconnects after receiving the server’s Certificate handshake

message.

FCS_TLSC_EXT.1.7, FCS_TLSC_EXT.1.8

The evaluator shall perform the following tests:

Test 1: The evaluator shall use a network packet analyzer/sniffer to capture the traffic between the two

TLS endpoints. The evaluator shall verify that either the “renegotiation_info” field or the SCSV

ciphersuite is included in the ClientHello packet during the initial handshake.

Test 2: The evaluator shall verify the Client’s handling of ServerHello messages received during the

initial handshake that include the “renegotiation_info” extension. The evaluator shall modify the length

portion of this field in the ServerHello message to be non-zero and verify that the client sends a failure

and terminates the connection. The evaluator shall verify that a properly formatted field results in a

successful TLS connection.

Test 3: The evaluator shall verify that ServerHello messages received during secure renegotiation

contain the “renegotiation_info” extension. The evaluator shall modify either the “client_verify_data”

or “server_verify_data” value and verify that the client terminates the connection.

Windows 10 Security Target

Microsoft © 2016 Page 76 of 166

5.2.2.2.24 Extended: TLS Protocol (FCS_TLSC_EXT.2)

FCS_TLSC_EXT.2.1
The evaluator shall check the description of the implementation of this protocol in the TSS to ensure

that the ciphersuites supported are specified. The evaluator shall check the TSS to ensure that the

ciphersuites specified include those listed for this component. The evaluator shall also check the

operational guidance to ensure that it contains instructions on configuring the TOE so that TLS conforms

to the description in the TSS.

The evaluator shall write, or the ST author shall provide, an application for the purposes of testing TLS.

The evaluator shall also perform the following tests:

Test 1: The evaluator shall establish a TLS connection using each of the ciphersuites specified by the

requirement. This connection may be established as part of the establishment of a higher-level protocol,

e.g., as part of an EAP session. It is sufficient to observe the successful negotiation of a ciphersuite to

satisfy the intent of the test; it is not necessary to examine the characteristics of the encrypted traffic in

an attempt to discern the ciphersuite being used (for example, that the cryptographic algorithm is 128-

bit AES and not 256-bit AES).

Test 2: The evaluator shall attempt to establish the connection using a server with a server certificate

that contains the Server Authentication purpose in the extendedKeyUsage field and verify that a

connection is established. The evaluator will then verify that the client rejects an otherwise valid server

certificate that lacks the Server Authentication purpose in the extendedKeyUsage field and a connection

is not established. Ideally, the two certificates should be identical except for the extendedKeyUsage

field.

Test 3: The evaluator shall send a server certificate in the TLS connection that the does not match the

server-selected ciphersuite (for example, send a ECDSA certificate while using the

TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite or send a RSA certificate while using one of the ECDSA

ciphersuites.) The evaluator shall verify that the TOE disconnects after receiving the server’s Certificate

handshake message.

Test 4: The evaluator shall configure the server to select the TLS_NULL_WITH_NULL_NULL ciphersuite

and verify that the client denies the connection.

Test 5: The evaluator shall perform the following modifications to the traffic:

 Change the TLS version selected by the server in the Server Hello to a non-supported TLS version

(for example 1.3 represented by the two bytes 03 04) and verify that the client rejects the

connection.

 Modify at least one byte in the server’s nonce in the Server Hello handshake message, and verify

that the client rejects the Server Key Exchange handshake message (if using a DHE or ECDHE

ciphersuite) or that the server denies the client’s Finished handshake message.

 Modify the server’s selected ciphersuite in the Server Hello handshake message to be a

ciphersuite not presented in the Client Hello handshake message. The evaluator shall verify that

the client rejects the connection after receiving the Server Hello.

Windows 10 Security Target

Microsoft © 2016 Page 77 of 166

 (conditional) If a ECDHE or DHE ciphersuite is selected, modify the signature block in the Server’s

Key Exchange handshake message, and verify that the client rejects the connection after

receiving the Server Key Exchange message.

 Modify a byte in the Server Finished handshake message, and verify that the client sends a fatal

alert upon receipt and does not send any application data.

 Send a garbled message from the Server after the Server has issued the ChangeCipherSpec

message and verify that the client denies the connection.

FCS_TLSC_EXT.2.2

The evaluator shall ensure that the TSS describes the client’s method of establishing all reference

identifiers from the application-configured reference identifier, including which types of reference

identifiers are supported (e.g Common Name, DNS Name, URI Name, Service Name, or other

application-specific Subject Alternative Names) and whether IP addresses and wildcards are supported.

The evaluator shall ensure that this description identifies whether and the manner in which certificate

pinning is supported or used by the TOE.

The evaluator shall verify that the AGD guidance includes instructions for setting the reference identifier

to be used for the purposes of certificate validation in TLS. In particular, the AGD guidance should

describe the API used by applications for configuring the reference identifier.

The evaluator shall configure the reference identifier according to the AGD guidance and perform the

following tests during a TLS connection:

Test 1: The evaluator shall present a server certificate that does not contain an identifier in either the

Subject Alternative Name (SAN) or Common Name (CN) that matches the reference identifier. The

evaluator shall verify that the connection fails.

Test 2: The evaluator shall present a server certificate that contains a CN that matches the reference

identifier, contains the SAN extension, but does not contain an identifier in the SAN that matches the

reference identifier. The evaluator shall verify that the connection fails. The evaluator shall repeat this

test for each supported SAN type.

Test 3: The evaluator shall present a server certificate that contains a CN that matches the reference

identifier and does not contains the SAN extension. The evaluator shall verify that the connection

succeeds.

Test 4: The evaluator shall present a server certificate that contains a CN that does not match the

reference identifier but does contain an identifier in the SAN that matches. The evaluator shall verify

that the connection succeeds.

Test 5: The evaluator shall perform the following wildcard tests with each supported type of reference

identifier:

 The evaluator shall present a server certificate containing a wildcard that is not in the left-most

label of the presented identifier (e.g. foo.*.example.com) and verify that the connection fails.

 The evaluator shall present a server certificate containing a wildcard in the left-most label but

not preceding the public suffix (e.g. *.example.com). The evaluator shall configure the reference

Windows 10 Security Target

Microsoft © 2016 Page 78 of 166

identifier with a single left-most label (e.g. foo.example.com) and verify that the connection

succeeds. The evaluator shall configure the reference identifier without a left-most label as in

the certificate (e.g. example.com) and verify that the connection fails. The evaluator shall

configure the reference identifier with two left-most labels (e.g. bar.foo.example.com) and

verify that the connection fails.

 The evaluator shall present a server certificate containing a wildcard in the left-most label

immediately preceding the public suffix (e.g. *.com). The evaluator shall configure the reference

identifier with a single left-most label (e.g. foo.com) and verify that the connection fails. The

evaluator shall configure the reference identifier with two left-most labels (e.g. bar.foo.com)

and verify that the connection fails.

 Test 6: [conditional] If URI or Service name reference identifiers are supported, the evaluator shall

configure the DNS name and the service identifier. The evaluator shall present a server certificate

containing the correct DNS name and service identifier in the URIName or SRVName fields of the SAN

and verify that the connection succeeds. The evaluator shall repeat this test with the wrong service

identifier (but correct DNS name) and verify that the connection fails.

Test 7: [conditional] If pinned certificates are supported the evaluator shall present a certificate that

does not match the pinned certificate and verify that the connection fails.

FCS_TLSC_EXT.2.3

The evaluator shall perform the following test:

Test 1: The evaluator shall demonstrate that using a certificate without a valid certification path results

in the function failing. Using the administrative guidance, the evaluator shall then load a certificate or

certificates to the Trust Anchor Database needed to validate the certificate to be used in the function,

and demonstrate that the function succeeds. The evaluator then shall delete one of the certificates, and

show that the function fails.

FCS_TLSC_EXT.2.4
The evaluator shall ensure that the TSS description required per FIA_X509_EXT.2.1 includes the use of

client-side certificates for TLS mutual authentication.

The evaluator shall verify that the AGD guidance required per FIA_X509_EXT.2.1 includes instructions for

configuring the client-side certificates for TLS mutual authentication.

The evaluator shall also perform the following test:

Test 1: The evaluator shall perform the following modification to the traffic:

 Configure the server to require mutual authentication and then modify a byte in a CA field in the

Server’s Certificate Request handshake message. The modified CA field must not be the CA used

to sign the client’s certificate. The evaluator shall verify the connection is unsuccessful.

FCS_TLSC_EXT.2.5

Testing for this element are performed in conjunction with the assurance activities for FPT_TST_EXT.2.1.

Windows 10 Security Target

Microsoft © 2016 Page 79 of 166

FCS_TLSC_EXT.2.6

The evaluator shall verify that TSS describes the signature_algorithm extension and whether the

required behavior is performed by default or may be configured. If the TSS indicates that the

signature_algorithm extension must be configured to meet the requirement, the evaluator shall verify

that AGD guidance includes configuration of the signature_algorithm extension.

The evaluator shall also perform the following test:

 Test: The evaluator shall configure the server to send a certificate in the TLS connection that is

not supported according to the Client’s HashAlgorithm enumeration within the

signature_algorithms extension (for example, send a certificate with a SHA-1 signature). The

evaluator shall verify that the TOE disconnects after receiving the server’s Certificate handshake

message.

FCS_TLSC_EXT.276, FCS_TLSC_EXT.2.8

The evaluator shall perform the following tests:

Test 1: The evaluator shall use a network packet analyzer/sniffer to capture the traffic between the two

TLS endpoints. The evaluator shall verify that either the “renegotiation_info” field or the SCSV

ciphersuite is included in the ClientHello packet during the initial handshake.

Test 2: The evaluator shall verify the Client’s handling of ServerHello messages received during the

initial handshake that include the “renegotiation_info” extension. The evaluator shall modify the length

portion of this field in the ServerHello message to be non-zero and verify that the client sends a failure

and terminates the connection. The evaluator shall verify that a properly formatted field results in a

successful TLS connection.

Test 3: The evaluator shall verify that ServerHello messages received during secure renegotiation

contain the “renegotiation_info” extension. The evaluator shall modify either the “client_verify_data”

or “server_verify_data” value and verify that the client terminates the connection.

5.2.2.2.25 Extended: HTTPS Protocol (FCS_HTTPS_EXT.1)

Test 1: The evaluator shall attempt to establish an HTTPS connection with a webserver, observe the

traffic with a packet analyzer, and verify that the connection succeeds and that the traffic is identified as

TLS or HTTPS.

Other tests are performed in conjunction with FCS_TLSC_EXT.2.

Certificate validity shall be tested in accordance with testing performed for FIA_X509_EXT.1, and the

evaluator shall perform the following test:

Test 2: The evaluator shall demonstrate that using a certificate without a valid certification path results

in an application notification. Using the administrative guidance, the evaluator shall then load a

certificate or certificates to the Trust Anchor Database needed to validate the certificate to be used in

the function, and demonstrate that the function succeeds. The evaluator then shall delete one of the

certificates, and show that the application is notified of the validation failure.

Windows 10 Security Target

Microsoft © 2016 Page 80 of 166

5.2.2.3 User Data Protection (FDP)

5.2.2.3.1 Extended: Security Access Control (FDP_ACF_EXT.1)

FDP_ACF_EXT.1.1

The evaluator shall ensure the TSS lists all system services available for use by an application. The

evaluator shall also ensure that the TSS describes how applications interface with these system services,

and means by which these system services are protected by the TSF.

The TSS shall describe which of the following categories each system service falls in:

1) No applications are allowed access

2) Privileged applications are allowed access

3) Applications are allowed access by user authorization

4) All applications are allowed access

Privileged applications include any applications developed by the TSF developer. The TSS shall describe

how privileges are granted to third-party applications. For both types of privileged applications, the TSS

shall describe how and when the privileges are verified and how the TSF prevents unprivileged

applications from accessing those services.

For any services for which the user may grant access, the evaluator shall ensure that the TSS identifies

whether the user is prompted for authorization when the application is installed, or during runtime. The

evaluator shall ensure that the operational user guidance contains instructions for restricting application

access to system services.

Assurance Activity Note: The following tests require the vendor to provide access to a test platform that

provides the evaluator with tools that are typically not found on consumer Mobile Device products.

The evaluator shall write, or the developer shall provide, applications for the purposes of the following

tests.

Test 1: For each system service to which no applications are allowed access, the evaluator shall attempt

to access the system service with a test application and verify that the application is not able to access

that system service.

Test 2: For each system service to which only privileged applications are allowed access, the evaluator

shall attempt to access the system service with an unprivileged application and verify that the

application is not able to access that system service. The evaluator shall attempt to access the system

service with a privileged application and verify that the application can access the service.

Test 3: For each system service to which the user may grant access, the evaluator shall attempt to access

the system service with a test application. The evaluator shall ensure that either the system blocks such

accesses or prompts for user authorization. The prompt for user authorization may occur at runtime or

at installation time, and should be consistent with the behavior described in the TSS.

Test 4: For each system service listed in the TSS that is accessible by all applications, the evaluator shall

test that an application can access that system service.

Windows 10 Security Target

Microsoft © 2016 Page 81 of 166

FDP_ACF_EXT.1.2

The evaluator shall examine the TSS to verify that it describes which data sharing is permitted between

applications, which data sharing is not permitted, and how disallowed sharing is prevented.

Test: The evaluator shall write, or the developer shall provide, two applications, one which saves data

containing a unique string and the other which attempts to access that data. If “groups of applications”

is selected, the applications shall be placed into different groups. If “private data” is selected, the

application shall not write to a designated shared storage area. The evaluator shall verify that the

second application is unable to access the stored unique string. The evaluator shall grant access, either

as a user, the administrator, or by using a third application with a common application developer to the

first, and verify that the application is able to access the stored unique string.

FDP_ACF_EXT.1.3

Assurance Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device products.

Test 1: The evaluator shall write, or the developer shall provide, an application which attempts to store a

file with both write and execute permissions. The evaluator shall verify that this action fails and that the

permissions on the file are not simultaneously write and execute.

Test 2: The evaluator shall traverse the file system examining the permission on each TSF file to verify

that no file has both write and execute permissions set.

5.2.2.3.2 Extended: Protected Data Encryption (FDP_DAR_EXT.1)

FDP_DAR_EXT.1.1
The evaluator shall verify that the TSS section of the ST indicates which data is protected by the DAR

implementation and what data is considered TSF data. The evaluator shall ensure that this data includes

all protected data.

The evaluator shall review the AGD guidance to determine that the description of the configuration and

use of the DAR protection does not require the user to perform any actions beyond configuration and

providing the authentication credential. The evaluator shall also review the AGD guidance to determine

that the configuration does not require the user to identify encryption on a per-file basis.

Assurance Activity Note: The following test require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device products.

Test 1: The evaluator shall enable encryption according to the AGD guidance. The evaluator shall create

user data (non-system) either by creating a file or by using an application. The evaluator shall use a tool

provided by the developer to verify that this data is encrypted when the product is powered off, in

conjunction with Test 1 for FIA_UAU_EXT.1.

5.2.2.3.3 Extended: Subset Information Flow Control (FDP_IFC_EXT.1)

The evaluator shall verify that the TSS section of the ST describes the routing of IP traffic through

processes on the TSF when a VPN client is enabled. The evaluator shall ensure that the description

indicates which traffic does not go through the VPN and which traffic does and that a configuration

Windows 10 Security Target

Microsoft © 2016 Page 82 of 166

exists for each baseband protocol in which only the traffic identified by the ST author as necessary for

establishing the VPN connection (IKE traffic and perhaps HTTPS or DNS traffic) is not encapsulated by

the VPN protocol (IPsec). The evaluator shall verify that the TSS section describes any differences in the

routing of IP traffic when using any supported baseband protocols (e.g. WiFi or, LTE).

The evaluator shall verify that one (or more) of the following options is addressed by the

documentation:

 The description above indicates that if a VPN client is enabled, all configurations route all Data

Plane traffic through the tunnel interface established by the VPN client.

 The AGD guidance describes how the user and/or administrator can configure the TSF to meet

this requirement.

 The API documentation includes a security function that allows a VPN client to specify this

routing.

Test 1: If the ST author identifies any differences in the routing between WiFi and cellular protocols, the

evaluator shall repeat this test with a base station implementing one of the identified cellular protocols.

Step 1 - The evaluator shall enable a WiFi configuration as described in the AGD guidance (as required by

FTP_ITC_EXT.1). The evaluator shall use a packet sniffing tool between the wireless access point and an

Internet-connected network. The evaluator shall turn on the sniffing tool and perform actions with the

device such as navigating to websites, using provided applications, and accessing other Internet

resources. The evaluator shall verify that the sniffing tool captures the traffic generated by these

actions, turn off the sniffing tool, and save the session data.

Step 2 - The evaluator shall configure an IPsec VPN client that supports the routing specified in this

requirement, and if necessary, configure the device to perform the routing specified as described in the

AGD guidance. The evaluator shall turn on the sniffing tool, establish the VPN connection, and perform

the same actions with the device as performed in the first step. The evaluator shall verify that the

sniffing tool captures traffic generated by these actions, turn off the sniffing tool, and save the session

data.

Step 3 - The evaluator shall examine the traffic from both step one and step two to verify that all Data

Plane traffic is encapsulated by IPsec. The evaluator shall examine the Security Parameter Index (SPI)

value present in the encapsulated packets captured in Step two from the TOE to the Gateway and shall

verify this value is the same for all actions used to generate traffic through the VPN. Note that it is

expected that the SPI value for packets from the Gateway to the TOE is different than the SPI value for

packets from the TOE to the Gateway. The evaluator shall be aware that IP traffic on the cellular

baseband outside of the IPsec tunnel may be emanating from the baseband processor and shall verify

with the manufacturer that any identified traffic is not emanating from the application processor.

Step 4 - The evaluator shall perform an ICMP echo from the TOE to the IP address of another device on

the local wireless network and shall verify that no packets are sent using the sniffing tool. The evaluator

shall attempt to send packets to the TOE outside the VPN tunnel (i.e. not through the VPN gateway),

including from the local wireless network, and shall verify that the TOE discards them.

Windows 10 Security Target

Microsoft © 2016 Page 83 of 166

5.2.2.3.4 Extended: User Data Storage (FDP_STG_EXT.1)

The evaluator shall ensure the TSS describes the Trust Anchor Database implemented that contain

certificates used to meet the requirements of this PP. This description shall contain information

pertaining to how certificates are loaded into the store, and how the store is protected from

unauthorized access (for example, unix permissions) in accordance with the permissions established in

FMT_SMF_EXT.1 and FMT_MOF_EXT.1.1.

5.2.2.3.5 Extended: Inter-TSF User Data Transfer Protection (FDP_UPC_EXT.1)

The evaluator shall verify that the API documentation provided according to Section 6.2.1 includes the

security functions (protection channel) described in these requirements, and verify that the APIs

implemented to support this requirement include the appropriate settings/parameters so that the

application can both provide and obtain the information needed to assure mutual identification of the

endpoints of the communication as required by this component. The evaluator shall write, or the

developer shall provide access to, an application that requests protected channel services by the TSF.

The evaluator shall verify that the results from the protected channel match the expected results

according to the API documentation. This application may be used to assist in verifying the protected

channel assurance activities for the protocol requirements.

The evaluator shall examine the TSS to determine that it describes that all protocols listed in the TSS are

specified and included in the requirements in the ST. The evaluator shall confirm that the operational

guidance contains instructions necessary for configuring the protocol(s) selected for use by the

applications. The evaluator shall also perform the following tests:

Test 1: The evaluators shall ensure that the application is able to initiate communications with an

external IT entity using each protocol specified in the requirement, setting up the connections as

described in the operational guidance and ensuring that communication is successful.

Test 2: The evaluator shall ensure, for each communication channel with an authorized IT entity, the

channel data are not sent in plaintext.

5.2.2.3.6 Extended: Limitation of Bluetooth Device Access (FDP_BLT_EXT.1)

The evaluator shall ensure that the TSS describes the mechanism used to prevent unrestricted access to

paired Bluetooth devices (and/or their communication data) by every application with access to the

Bluetooth system service on the TOE (as listed in FDP_ACF_EXT.1). The evaluator shall verify that this

method either restricts access to a single application or provides explicit control of the applications that

may communicate with the paired Bluetooth device.

5.2.2.4 Identification and Authentication (FIA)

5.2.2.4.1 Authentication Failure Handling (FIA_AFL_EXT.1)

FIA_AFL_EXT.1.1, FIA_AFL_EXT.1.2

The evaluator shall ensure that the TSS describes that a value corresponding to the number of

unsuccessful authentication attempts since the last successful authentication is kept for each user for

each Password Authentication Factor interface. The evaluator shall ensure that this description also

includes if and how this value is maintained when the TOE is powered off. The evaluator shall ensure

that if the value is not maintained, the interface is after another interface in the boot sequence for

which the value is maintained.

Windows 10 Security Target

Microsoft © 2016 Page 84 of 166

The evaluator shall verify that the AGD guidance describes how the administrator configures the

maximum number of unsuccessful authentication attempts.

The evaluator shall perform the following tests for each available authentication factor interface:

Test 1: The evaluator shall configure according to the AGD guidance the device with a maximum number

of unsuccessful authentication attempts. The evaluator shall enter the locked state and enter incorrect

passwords until the wipe occurs. The evaluator shall verify that the number of password entries

corresponds to the configured maximum and that the wipe is implemented.

Test 2: The evaluator shall repeat test one, but shall power off (by removing the battery, if possible) the

TOE between unsuccessful authentication attempts. The evaluator shall verify that the total number of

password entries corresponds to the configured maximum and that the wipe is implemented.

Alternatively, if the number of authentication failures is not maintained for the interface under test, the

evaluator shall verify that upon booting the TOE between unsuccessful authentication attempts another

authentication factor interface is presented before the interface under test.

FIA_AFL_EXT.1.3

The evaluator shall ensure that the TSS describes that a value corresponding to the number of

unsuccessful authentication attempts since the last successful authentication is kept for each user for

each Password Authentication Factor interface. The evaluator shall ensure that this description also

includes if and how this value is maintained when the TOE is powered off. The evaluator shall ensure

that if the value is not maintained, the interface is after another interface in the boot sequence for

which the value is maintained.

The evaluator shall verify that the AGD guidance describes how the administrator configures the

maximum number of unsuccessful authentication attempts.

The evaluator shall perform the following tests for each available authentication factor interface:

Test 1: The evaluator shall configure according to the AGD guidance the device with a maximum number

of unsuccessful authentication attempts. The evaluator shall enter the locked state and enter incorrect

passwords until the wipe occurs. The evaluator shall verify that the number of password entries

corresponds to the configured maximum and that the wipe is implemented.

Test 2: The evaluator shall repeat test one, but shall power off (by removing the battery, if possible) the

TOE between unsuccessful authentication attempts. The evaluator shall verify that the total number of

password entries corresponds to the configured maximum and that the wipe is implemented.

Alternatively, if the number of authentication failures is not maintained for the interface under test, the

evaluator shall verify that upon booting the TOE between unsuccessful authentication attempts another

authentication factor interface is presented before the interface under test.

5.2.2.4.2 Extended: Bluetooth User Authorization (FIA_BLT_EXT.1.)

FIA_BLT_EXT.1.1

The evaluator shall examine the TSS to ensure that it contains a description of when user permission is

required for Bluetooth pairing, and that this description mandates explicit user authorization via manual

input for all Bluetooth pairing, including application use of the Bluetooth trusted channel and situations

where temporary (non-bonded) connections are formed. The evaluator shall examine the API

Windows 10 Security Target

Microsoft © 2016 Page 85 of 166

documentation provided according to Section 6.2.1 and verify that this API documentation does not

include any API for programmatic entering of pairing information (e.g. PINs, numeric codes, or “yes/no”

responses) intended to bypass manual user input during pairing.

The evaluator shall examine the AGD guidance to verify that these user authorization screens are clearly

identified and instructions are given for authorizing Bluetooth pairings.

The evaluator shall perform the following test:

Test 1: The evaluator shall perform the following steps:

Step 1 - Initiate pairing with the TOE from a remote Bluetooth device that requests no manin-the-middle

protection, no bonding, and claims to have NoInputNoOutput input-output (IO) capability. (Such a

device will attempt to evoke behavior from the TOE that represents the minimal level of user interaction

that the TOE supports during pairing.) Step 2 - Verify that the TOE does not permit any Bluetooth pairing

without explicit authorization from the user (e.g. the user must have to minimally answer “yes” or

“allow” in a prompt).

FIA_BLT_EXT.1.2

The evaluator shall perform the following tests for each service protected according to this requirement:

Test 1: While the service is in active use by an application on the TOE, the evaluator shall attempt to

gain access to a “protected” Bluetooth service (from the second list in the requirement) from a remote

device that does not have the required level of trust to use the service. The evaluator shall verify that

the user is explicitly asked for authorization by the TOE to allow access to the service for the particular

remote device. The evaluator shall deny the authorization on the TOE and verify that the remote

attempt to access the service fails due to lack of authorization.

Test 2: The evaluator shall repeat Test 1, allow the authorization, and verify that the remote device

successfully accesses the service. (Note that this connection may involve pairing, if the untrusted

remote device has not yet paired with the TOE.)

Test 3: If the TSF implementation differentiates between trusted and untrusted devices when

determining if user authorization is required, repeat Test 1with a service that appears in the second list

in the requirement (but not in the first list) and a device that has the required level of trust to use the

service. The evaluator shall verify that the user is not prompted for explicit authorization and the

connection to the service succeeds.

Test 4: If the TSF implementation differentiates between trusted and untrusted devices when

determining if user authorization is required, repeat Test 1 with a service that appears in the first list in

the requirement and a device that has the required level of trust to use the service. The evaluator shall

verify that the user is explicitly asked for authorization by the TOE to allow access to the service for the

particular remote device. The evaluator shall deny the authorization on the TOE and verify that the

remote attempt to access the service fails due to lack of authorization.

Test 5: If the TSF implementation differentiates between trusted and untrusted devices when

determining if user authorization is required, repeat Test 2 with a service that appears in the first list in

the requirement and a device that has the required level of trust to use the service. The evaluator shall

Windows 10 Security Target

Microsoft © 2016 Page 86 of 166

verify that the remote device successfully accesses the service if the user explicitly provides

authorization.

5.2.2.4.3 Extended: Bluetooth Authentication (FIA_BLT_EXT.2)

FIA_BLT_EXT.2.1

The evaluator shall ensure that the TSS describes how data transfer of any type is prevented before the

Bluetooth pairing is completed. The TSS shall specifically call out any supported RFCOMM and L2CAP

data transfer mechanisms. The evaluator shall ensure that the data transfers are only completed after

the Bluetooth devices are paired and mutually authenticated

The evaluator shall perform the following test:

Test 1: The evaluator shall use a Bluetooth tool to attempt to access TOE files using the OBEX Object

Push service and verify that pairing and mutual authentication are required by the TOE before allowing

access. (If the OBEX Object Push service is unsupported on the TOE, a different service that transfers

data over Bluetooth L2CAP and/or RFCOMM may be used in this test.)

FIA_BLT_EXT.2.2

The evaluator shall ensure that the TSS describes how Bluetooth connections are maintained such that

two devices with the same Bluetooth device address are not simultaneously connected and such that

the initial connection is not superseded by any following connection attempts.

The evaluator shall perform the following test:

Test 1: The evaluator shall perform the following steps:

Step 1 - Make a Bluetooth connection between the TOE and a remote Bluetooth device with address a

known address (BD_ADDR1).

Step 2 - Attempt a connection to the same TOE from a second remote Bluetooth device claiming to have

a Bluetooth device address matching BD_ADDR1.

Step 3 - Using a Bluetooth protocol analyzer, verify that the second connection attempt is ignored by the

TOE and that the initial connection to the device with BR_ADDR1 is unaffected.

5.2.2.4.4 Extended: PAE Authentication (FIA_PAE_EXT.1)

The evaluator shall perform the following tests:

 Test 1: The evaluator shall demonstrate that the TOE has no access to the test network. After

successfully authenticating with an authentication server through a wireless access system, the

evaluator shall demonstrate that the TOE does have access to the test network.

 Test 2: The evaluator shall demonstrate that the TOE has no access to the test network. The

evaluator shall attempt to authenticate using an invalid client certificate, such that the EAP-TLS

negotiation fails. This should result in the TOE still being unable to access the test network.

 Test 3: The evaluator shall demonstrate that the TOE has no access to the test network. The

evaluator shall attempt to authenticate using an invalid authentication server certificate, such

that the EAP-TLS negotiation fails. This should result in the TOE still being unable to access the

test network.

Windows 10 Security Target

Microsoft © 2016 Page 87 of 166

5.2.2.4.5 Extended: Password Management (FIA_PMG_EXT.1)

The evaluator shall examine the operational guidance to determine that it provides guidance to security

administrators on the composition of strong passwords, and that it provides instructions on setting the

minimum password length. The evaluator shall also perform the following tests. Note that one or more

of these tests can be performed with a single test case.

Test 1: The evaluator shall compose passwords that either meet the requirements, or fail to meet the

requirements, in some way. For each password, the evaluator shall verify that the TOE supports the

password. While the evaluator is not required (nor is it feasible) to test all possible compositions of

passwords, the evaluator shall ensure that all characters, rule characteristics, and a minimum length

listed in the requirement are supported, and justify the subset of those characters chosen for testing.

5.2.2.4.6 Extended: Authentication Throttling (FIA_TRT_EXT.1)

The evaluator shall verify that the TSS describes the method by which authentication attempts are not

able to be automated. The evaluator shall ensure that the TSS describes either how the TSF disables

authentication via external interfaces (other than the ordinary user interface) or how authentication

attempts are delayed in order to slow automated entry and shall ensure that this delay totals at least

500 milliseconds over 10 attempts.

5.2.2.4.7 Protected Authentication Feedback (FIA_UAU.7)

The evaluator shall ensure that the TSS describes the means of obscuring the password entry. The

evaluator shall verify that any configuration of this requirement is addressed in the AGD guidance and

that the password is obscured by default.

Test: The evaluator shall enter passwords on the device, including at least the Password Authentication

Factor at lockscreen, and verify that the password is not displayed on the device.

5.2.2.4.8 Extended: Authentication for Cryptographic Operation (FIA_UAU_EXT.1)

The evaluator shall verify that the TSS section of the ST describes the process for decrypting protected

data and keys. The evaluator shall ensure that this process requires the user to enter a Password

Authentication Factor and, in accordance with FCS_CKM_EXT.3, derives a KEK which is used to protect

the software-based secure key storage and (optionally) DEK(s) for sensitive data, in accordance with

FCS_STG_EXT.2.

The following tests may be performed in conjunction with FDP_DAR_EXT.1 and FDP_DAR_EXT.2.

Assurance Activity Note: The following test require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device products.

Test 1: The evaluator shall enable encryption of protected data and require user authentication

according to the AGD guidance. The evaluator shall write, or the developer shall provide access to, an

application that includes a unique string treated as protected data.

The evaluator shall reboot the device, use a tool provided by developer to search for the unique string

amongst the application data, and verify that the unique string cannot be found. The evaluator shall

enter the Password Authentication Factor to access full device functionality, use a tool provided by the

developer to access the unique string amongst the application data, and verify that the unique string can

be found.

Windows 10 Security Target

Microsoft © 2016 Page 88 of 166

Test 2: [conditional] The evaluator shall require user authentication according to the AGD guidance. The

evaluator shall store a key in the software-based secure key storage.

The evaluator shall lock the device, use a tool provided by developer to access the key amongst the

stored data, and verify that the key cannot be retrieved or accessed. The evaluator shall enter the

Password Authentication Factor to access full device functionality, use a tool provided by developer to

access the key, and verify that the key can be retrieved or accessed.

Test 3: [conditional] The evaluator shall enable encryption of sensitive data and require user

authentication according to the AGD guidance. The evaluator shall write, or the developer shall provide

access to, an application that includes a unique string treated as sensitive data.

The evaluator shall lock the device, use a tool provided by developer to attempt to access the unique

string amongst the application data, and verify that the unique string cannot be found. The evaluator

shall enter the Password Authentication Factor to access full device functionality, use a tool provided by

developer to access the unique string amongst the application data, and verify that the unique string can

be retrieved.

5.2.2.4.9 Extended: Timing of Authentication (FIA_UAU_EXT.2)

The evaluator shall verify that the TSS describes the actions allowed by unauthorized users in the locked

state. The evaluator shall attempt to perform some actions not listed in the selection while the device is

in the locked state and verify that those actions do not succeed.

5.2.2.4.10 Extended: Re-Authentication (FIA_UAU_EXT.3)

Test 1: The evaluator shall configure the TSF to use the Password Authentication Factor according to the

AGD guidance. The evaluator shall change Password Authentication Factor according to the AGD

guidance and verify that the TSF requires the entry of the Password Authentication Factor before

allowing the factor to be changed.

Test 2: The evaluator shall configure the TSF to transition to the locked state after a time of inactivity

(FMT_SMF_EXT.1) according to the AGD guidance. The evaluator shall wait until the TSF locks and then

verify that the TSF requires the entry of the Password Authentication Factor before transitioning to the

unlocked state.

Test 3: The evaluator shall configure user-initiated locking according to the AGD guidance. The evaluator

shall lock the TSF and then verify that the TSF requires the entry of the Password Authentication Factor

before transitioning to the unlocked state.

5.2.2.4.11 Extended: Validation of Certificates (FIA_X509_EXT.1)

The evaluator shall ensure the TSS describes where the check of validity of the certificates takes place.

The evaluator ensures the TSS also provides a description of the certificate path validation algorithm.

The tests described must be performed in conjunction with the other Certificate Services assurance

activities, including the use cases in FIA_X509_EXT.2.1 and FIA_X509_EXT.3. The tests for the

extendedKeyUsage rules are performed in conjunction with the uses that require those rules. The

evaluator shall create a chain of at least four certificates: the node certificate to be tested, two

Intermediate CAs, and the self-signed Root CA.

Windows 10 Security Target

Microsoft © 2016 Page 89 of 166

Test 1: The evaluator shall then load a certificate or certificates to the Trust Anchor Database needed to

validate the certificate to be used in the function (e.g. application validation, trusted channel setup, or

trusted software update), and demonstrate that the function succeeds. The evaluator then shall delete

one of the certificates, and show that the function fails.

Test 2: The evaluator shall demonstrate that validating an expired certificate results in the function

failing.

Test 3: The evaluator shall test that the TOE can properly handle revoked certificates-– conditional on

whether CRL or OCSP is selected; if both are selected, then a test shall be performed for each method.

The evaluator shall test revocation of the node certificate and revocation of the intermediate CA

certificate (i.e. the intermediate CA certificate should be revoked by the root CA). For the test of the

WLAN use case, only pre-stored CRLs are used. The evaluator shall ensure that a valid certificate is used,

and that the validation function succeeds. The evaluator then attempts the test with a certificate that

has been revoked (for each method chosen in the selection) to ensure when the certificate is no longer

valid that the validation function fails.

Test 4: The evaluator shall construct a certificate path, such that the certificate of the CA issuing the

TOE’s certificate does not contain the basicConstraints extension. The validation of the certificate path

fails.

Test 5: The evaluator shall construct a certificate path, such that the certificate of the CA issuing the

TOE’s certificate has the cA flag in the basicConstraints extension not set. The validation of the

certificate path fails.

Test 6: The evaluator shall construct a certificate path, such that the certificate of the CA issuing the

TOE’s certificate has the cA flag in the basicConstraints extension set to TRUE. The validation of the

certificate path succeeds.

Test 7: The evaluator shall modify any byte in the first eight bytes of the certificate and demonstrate

that the certificate fails to validate. (The certificate will fail to parse correctly.)

Test 8: The evaluator shall modify any byte in the last byte of the certificate and demonstrate that the

certificate fails to validate. (The signature on the certificate will not validate.)

Test 9: The evaluator shall modify any byte in the public key of the certificate and demonstrate that the

certificate fails to validate. (The signature on the certificate will not validate.)

5.2.2.4.12 Extended: X509 Certificate Authentication (FIA_X509_EXT.2)

FIA_X509_EXT.2.1, FIA_X509_EXT.2.2

The evaluator shall check the TSS to ensure that it describes how the TOE chooses which certificates to

use, and any necessary instructions in the administrative guidance for configuring the operating

environment so that the TOE can use the certificates.

The evaluator shall examine the TSS to confirm that it describes the behavior of the TOE when a

connection cannot be established during the validity check of a certificate used in establishing a trusted

channel. The evaluator shall verify that any distinctions between trusted channels are described. If the

requirement that the administrator is able to specify the default action, then the evaluator shall ensure

that the operational guidance contains instructions on how this configuration action is performed.

Windows 10 Security Target

Microsoft © 2016 Page 90 of 166

The evaluator shall perform the following test for each trusted channel:

Test: The evaluator shall demonstrate that using a valid certificate that requires certificate validation

checking to be performed in at least some part by communicating with a non-TOE IT entity. The

evaluator shall then manipulate the environment so that the TOE is unable to verify the validity of the

certificate, and observe that the action selected in FIA_X509_EXT.2.2 is performed. If the selected action

is administrator-configurable, then the evaluator shall follow the operational guidance to determine

that all supported administrator-configurable options behave in their documented manner.

FIA_X509_EXT.2.3, FIA_X509_EXT.2.4

If the ST author selects "device-specific information", the evaluator shall verify that the TSS contains a

description of the device-specific fields used in certificate requests.

The evaluator shall check to ensure that the operational guidance contains instructions on generating a

Certificate Request Message. If the ST author selects "Common Name", "Organization", "Organizational

Unit", or "Country", the evaluator shall ensure that this guidance includes instructions for establishing

these fields before creating the certificate request message.

The evaluator shall also perform the following tests:

Test 1: The evaluator shall use the operational guidance to cause the TOE to generate a certificate

request message. The evaluator shall capture the generated message and ensure that it conforms with

the format specified. The evaluator shall confirm that the certificate request provides the public key and

other required information, including any necessary userinput information.

Test 2: The evaluator shall demonstrate that validating a certificate response message without a valid

certification path results in the function failing. The evaluator shall then load a certificate or certificates

as trusted CAs needed to validate the certificate response message, and demonstrate that the function

succeeds. The evaluator shall then delete one of the certificates, and show that the function fails.

5.2.2.4.13 Extended: Request Validation of Certificates (FIA_X509_EXT.3)

The evaluator shall verify that the API documentation provided according to Section 6.2.1 includes the

security function (certificate validation) described in this requirement. This documentation shall be clear

as to which results indicate success and failure.

The evaluator shall write, or the developer shall provide access to, an application that requests

certificate validation by the TSF. The evaluator shall verify that the results from the validation match the

expected results according to the API documentation. This application may be used to verify that import,

removal, modification, and validation are performed correctly according to the tests required by

FDP_STG_EXT.1, FDP_ITC_EXT.1, FMT_SMF_EXT.1.1, and FIA_X509_EXT.1.

5.2.2.5 Security Management (FMT)

5.2.2.5.1 Extended: Management of Security Functions Behavior (FMT_MOF_EXT.1)

FMT_MOF_EXT.1.1

The evaluator shall verify that the TSS describes those management functions which may only be

performed by the user and confirm that the TSS does not include an Administrator API for any of these

management functions. This activity will be performed in conjunction with FMT_SMF_EXT.1.

Windows 10 Security Target

Microsoft © 2016 Page 91 of 166

FMT_MOF_EXT.1.2

The evaluator shall verify that the TSS describes those management functions which may be performed

by the Administrator, to include how the user is prevented from accessing, performing, or relaxing the

function (if applicable), and how applications/APIs are prevented from modifying the Administrator

configuration. The TSS also describes any functionality that is affected by administrator-configured

policy and how. This activity will be performed in conjunction with FMT_SMF_EXT.1.

Test 1: The evaluator shall use the test environment to deploy policies to Mobile Devices.

Test 2: The evaluator shall create policies which collectively include all management functions which are

controlled by the (enterprise) administrator and cannot be overridden/relaxed by the user as defined in

FMT_MOF_EXT.1.1. The evaluator shall apply these policies to devices, attempt to override/relax each

setting both as the user (if a setting is available) and as an application (if an API is available), and ensure

that the TSF does not permit it. Note that the user may still apply a more restrictive policy than that of

the administrator.

Test 3: Additional testing of functions provided to the administrator are performed in conjunction with

the testing activities for FMT_SMF_EXT.1.1.

5.2.2.5.2 Extended: Specification of Management Functions (FMT_SMF_EXT.1)

The evaluator shall verify that the TSS describes all management functions, what role(s) can perform

each function, and how these functions are (or can be) restricted to the roles identified by

FMT_MOF_EXT.1.

The following activities are organized according to the function number in the table. These activities

include TSS assurance activities, AGD assurance activities, and test activities.

Test activities specified below shall take place in the test environment described in the Assurance

Activity for FPT_TUD_EXT.1.1, FPT_TUD_EXT.1.2, and FPT_TUD_EXT.1.3. The evaluator shall consult the

AGD guidance to perform each of the specified tests, iterating each test as necessary if both the user

and administrator may perform the function. The evaluator shall verify that the AGD guidance describes

how to perform each management function, including any configuration details. For each specified

management function tested, the evaluator shall confirm that the underlying mechanism exhibits the

configured setting.

Function 1

The evaluator shall verify the TSS defines the allowable policy options: the range of values for both

password length and lifetime, and a description of complexity to include character set and complexity

policies (e.g., configuration and enforcement of number of uppercase, lowercase, and special characters

per password).

Test 1: The evaluator shall exercise the TSF configuration as the administrator and perform positive and

negative tests, with at least two values set for each variable setting, for each of the following:

 minimum password length

 minimum password complexity

 maximum password lifetime

Windows 10 Security Target

Microsoft © 2016 Page 92 of 166

Function 2

The evaluator shall verify the TSS defines the range of values for both timeout period and number of

authentication failures.

Test 2: The evaluator shall exercise the TSF configuration as the user and the administrator. The

evaluator shall perform positive and negative tests, with at least two values set for each variable setting,

for each of the following.

 screen-lock enabled/disabled

 screen lock timeout

 number of authentication failures (may be combined with test for FIA_AFL.1)

Function 3

Test 3: The evaluator shall perform the following tests:

Test 3a: The evaluator shall exercise the TSF configuration to enable the VPN protection. These

configuration actions must be used for the testing of the FDP_IFC.1.1 requirement.

 Test 3b: [conditional] If “per-app basis” is selected, the evaluator shall create two applications and

enable one to use the VPN and the other to not use the VPN. The evaluator shall exercise each

application (attempting to access network resources; for example by browsing different websites)

individually while capturing packets from the TOE. The evaluator shall verify from the packet capture

that the traffic from the VPN-enabled application is encapsulated in IPsec and that the traffic from the

VPN-disabled application is not encapsulated in IPsec.

Function 4

The evaluator shall verify that the TSS includes a description of each radio and an indication of if the

radio can be enabled/disabled along with what role can do so. In addition the evaluator shall verify that

the frequency ranges at which each radio operates is included in the TSS. The evaluator shall confirm

that the AGD guidance describes how to perform the enable/disable function. The spectrum analyzer

and Ramsey box used in this test shall be NVLAP approved and calibrated.

Test 4:

 The evaluator shall exercise the TSF configuration as both the user and administrator to enable and

disable the state of each radio (e.g. Wi-Fi, GPS, cellular, NFC, Bluetooth) listed by the ST author.

Additionally, the evaluator shall repeat the steps below, booting into any auxiliary boot mode supported

by the device. For each radio, the evaluator shall:

Step 1 - Configure spectrum analyzer to sweep desired frequency range for the radio to be

tested (based on range provided in the TSS) and place the handset into a Ramsey Box (or other

RF-shielding environment) to isolate them from all other RF traffic.

Step 2 - The evaluator shall create a baseline of the expected behaviour of RF signals. If a spike

of RF activity for the uplink channel for the specific radio frequency band is observed it is

deemed that the radio are enabled. The evaluator shall power on the device, ensure the radio in

question is enabled, power off the device, enable “Max Hold” on the spectrum analyzer and

Windows 10 Security Target

Microsoft © 2016 Page 93 of 166

power on the device. The evaluator shall observe if any RF spikes are present. The evaluator

shall enter any necessary passwords to complete the boot process, waiting 2 minutes and

resetting the spectrum analyzer between each step.

Step 3 - The evaluator shall disable the radio in question and complete the above tests, five

times per radio. The evaluator shall verify the absence of RF activity for the uplink channel

during device reboot and casual usage.

Function 5

The evaluator shall verify that the TSS includes a description of each collection device and an indication

of if it can be enabled/disabled along with what role can do so. The evaluator shall confirm that the

AGD guidance describes how to perform the enable/disable function.

Test 5: The evaluator shall perform the following test(s):

Test 5a: The evaluator shall exercise the TSF configuration as both the user and administrator to enable

and disable the state of each audio or visual collection devices (e.g. camera, microphone) listed by the

ST author. For each collection device, the evaluator shall disable the device and then attempt to use its

functionality. The evaluator shall reboot the TOE and verify that disabled collection devices may not be

used during or early in the boot process. Additionally, the evaluator shall boot the device into each

available auxiliary boot mode and verify that the collection device cannot be used.

Test 5b: [conditional] If “per-app basis” is selected, the evaluator shall create two applications and

enable one to use access the A/V device and the other to not access the A/V device. The evaluator shall

exercise each application attempting to access the A/V device individually. The evaluator shall verify

that the enabled application is able to access the A/V device and the disabled application is not able to

access the A/V device.

Function 6

 The evaluator shall create a test environment consisting of a wireless access system and an

authentication server for the purpose of tests associated with functions 6 and 7.

Test 6: The evaluator shall specify the wireless network and wireless network settings according to the

AGD guidance both as an administrator and as a user. The evaluator shall specify a value for each

management function according to the configuration of the test network. Minimally, the evaluator shall

construct 2 SSIDs, one corresponding to a WPA2 Enterprise network using EAP-TLS and one

corresponding to a disallowed SSID. The evaluator shall verify that the TSF can establish a connection to

the allowed SSID, but not to the disallowed SSID.

Function 7

 The evaluator shall create a test environment consisting of a wireless access system and an

authentication server for the purpose of tests associated with functions 6 and 7. The evaluator shall

verify the TSS describes the configuration and enforcement of the various credential options used in

validation of the WLAN authentication server. The evaluator shall review the administrative guidance to

determine that it describes how to configure the security type, protocol, and client credentials for each

of the credential options described in the TSS.

Windows 10 Security Target

Microsoft © 2016 Page 94 of 166

Test 7: The evaluator shall specify a wireless network with an incorrect value for WLAN authentication

server and verify that the Mobile Device cannot connect to the WLAN. The evaluator shall repeat this

test, setting incorrect values for the security type and authentication protocol individually and verify

that the Mobile Device cannot connect to the WLAN. The evaluator shall then specify, for each

credential option claimed in the ST, correct options and demonstrate that the TOE can successfully

establish a connection to the WLAN.

Function 8

Test 8: The evaluator shall use the test environment to instruct the TSF, both as a user and as the

administrator, to command the device to transition to a locked state, and verify that the device

transitions to the locked state upon command.

Function 9

Test 9: The evaluator shall use the test environment to instruct the TSF, both as a user and as the

administrator, to command the device to perform a wipe of protected data. The evaluator must ensure

that this management setup is used when conducting the assurance activities in FCS_CKM_EXT.5.

Function 10

The evaluator shall verify the TSS describes the allowable application installation policy options based on

the selection included in the ST. If the application whitelist is selected, the evaluator shall verify that the

TSS includes a description of each application characteristic upon which the whitelist may be based.

Test 10: The evaluator shall exercise the TSF configuration as the administrator to restrict particular

applications, sources of applications, or application installation according to the AGD guidance. The

evaluator shall attempt to install unauthorized applications and ensure that this is not possible. The

evaluator shall, in conjunction, perform the following specific tests:

Test 10a: [conditional] The evaluator shall attempt to connect to an unauthorized repository in order to

install applications.

Test 10b: [conditional] The evaluator shall attempt to install two applications (one whitelisted, and one

not) from a known good repository and verify that the application not on the whitelist is rejected. The

evaluator shall also attempt to side-load executables or installation packages via USB connections to

determine that the white list is still adhered to

Function 11 & Function 12

 The evaluator shall verify that the TSS describes each category of keys/secrets that can be imported into

the TSF’s secure key storage.

Test 11 & Test 12: The test of these functions is performed in association with FCS_STG_EXT.1.

Function 13

The evaluator shall review the AGD guidance to determine that it describes the steps needed to import,

modify, or remove certificates in the Trust Anchor database, and that the users that have authority to

import those certificates (e.g., only administrator, or both administrators and users) are identified.

Windows 10 Security Target

Microsoft © 2016 Page 95 of 166

Test 13: The evaluator shall import certificates according to the AGD guidance as the user and/or as the

administrator, as determined by the administrative guidance. The evaluator shall verify that no errors

occur during import. The evaluator should perform an action requiring use of the X.509v3 certificate to

provide assurance that installation was completed properly.

Function 14

The evaluator shall verify that the TSS describes each additional category of X.509 certificates and their

use within the TSF.

Test 14: The evaluator shall remove an administrator-imported certificate and any other categories of

certificates included in the assignment of function 14 from the Trust Anchor Database according to the

AGD guidance as the user and as the administrator.

Function 15

The evaluator shall examine the TSS to ensure that it contains a description of each management

function that will be enforced by the enterprise once the device is enrolled. The evaluator shall examine

the AGD guidance to determine that this same information is present.

Test 15: The evaluator shall verify that user approval is required to enroll the device into management.

Function 16

The evaluator shall verify that the TSS includes an indication of what applications (e.g., userinstalled

applications, Administrator-installed applications, or Enterprise applications) can be removed along with

what role can do so. The evaluator shall examine the AGD guidance to determine that it details, for

each type of application that can be removed, the procedures necessary to remove those applications

and their associated data. For the purposes of this assurance activity, “associated data” refers to data

that are created by the app during its operation that do not exist independent of the app's existence, for

instance, configuration data, or e-mail information that’s part of an e-mail client. It does not, on the

other hand, refer to data such as word processing documents (for a word processing app) or photos (for

a photo or camera app).

Test 16: The evaluator shall attempt to remove applications according to the AGD guidance and verify

that the TOE no longer permits users to access those applications or their associated data.

Function 17

Test 17: The evaluator shall attempt to update the TSF system software following the procedures in the

AGD guidance and verify that updates correctly install and that the version numbers of the system

software increase.

Function 18

Test 18: The evaluator shall attempt to install a mobile application following the procedures in the AGD

guidance and verify that the mobile application is installed and available on the TOE.

Function 19

Windows 10 Security Target

Microsoft © 2016 Page 96 of 166

The evaluator shall verify that the TSS includes an indication of what Enterprise applications are

removable, what actions initiate this removal, and what role can do so. This activity can be performed

in conjunction with the TSS activity defined for Function 16. The evaluator shall review the AGD

guidance to determine that it describes the steps needed to remove Enterprise applications from the

device.

Test 19: The evaluator shall attempt to remove any Enterprise applications from the device by following

the administrator guidance. The evaluator shall verify that the TOE no longer permits users to access

those applications or their associated data.

Function 20

The evaluator shall ensure that the TSS includes a description of the Bluetooth profiles and services

supported and the Bluetooth security modes and levels supported by the TOE. If function c is selected,

the evaluator shall verify that the TSS describes any additional wireless technologies that may be used

with Bluetooth, including WiFi with Bluetooth High Speed and NFC as an Out of Band pairing

mechanism. If function f is selected, the evaluator shall verify that all supported Bluetooth services are

listed in the TSS as manageable and, if the TOE allows disabling by application rather than by service

name, that a list of services for each application is also listed. If function g is selected, the evaluator

shall verify that the TSS describes the method by which the level of security for pairings are managed,

including whether the setting is performed for each pairing or is a global setting. If function h is selected,

the evaluator shall verify that the TSS describes when Out of Band pairing methods are allowed and

which ones are configurable.

Test 20: The evaluator shall use a Bluetooth-specific protocol analyzer to perform the following tests of

each sub-function:

Test 20a: The evaluator shall disable the Discoverable mode and shall verify that other Bluetooth

BR/EDR devices cannot detect the TOE. The evaluator shall use the protocol analyzer to verify that the

TOE does not respond to inquiries from other devices searching for Bluetooth devices. The evaluator

shall enable Discoverable mode and verify that other devices can detect the TOE and that the TOE sends

response packets to inquiries from searching devices.

Test 20b: The evaluator shall examine Bluetooth traffic from the TOE to determine the current

Bluetooth device name, change the Bluetooth device name, and verify that the Bluetooth traffic from

the device lists the new name.

Test 20c: [conditional] The evaluator shall disable additional wireless technologies for the TOE and verify

that the Bluetooth traffic is not able to be sent over WiFi using Bluetooth High Speed, and that NFC

cannot be used for pairing. The evaluator shall enable additional wireless technologies and verify that

Bluetooth High Speed uses WiFi or that the device can pair using NFC.

Test 20d: [conditional] The evaluator shall enable Advertising for Bluetooth LE, verify that the

advertisements are captured by the protocol analyzer, disable Advertising, and verify that no

advertisements from the device are captured by the protocol analyzer.

Test 20e: [conditional] The evaluator shall enable Connectable mode and verify that other Bluetooth

devices may pair with the TOE and (if the devices were bonded) re-connect after pairing and

Windows 10 Security Target

Microsoft © 2016 Page 97 of 166

disconnection. For BR/EDR devices: The evaluator shall use the protocol analyzer to verify that the TOE

responds to pages from the other devices and permits pairing and re-connection. The evaluator shall

disable Connectable mode and verify that the TOE does not respond to pages from remote Bluetooth

devices, thereby not permitting pairing or re-connection. For LE: The evaluator shall use the protocol

analyzer to verify that the TOE sends connectable advertising events and responds to connection

requests. The evaluator shall disable Connectable mode and verify that the TOE stops sending

connectable advertising events and stops responding to connection requests from remote Bluetooth

devices.

Test 20f: [conditional] The evaluator shall allow low security modes/levels on the TOE and shall initiate

pairing with the TOE from a remote device that allows only something other than Security Mode 4/Level

3 or Security Mode 4/Level 4 (for BR/EDR), or Security Mode 1/Level 3 (for LE). (For example, a remote

BR/EDR device may claim Input/Output capability “NoInputNoOutput” and state that man-in-the-middle

(MiTM) protection is not required. A remote LE device may not support encryption.) The evaluator shall

verify that this pairing attempt succeeds due to the TOE falling back to the low security mode/level. The

evaluator shall then remove the pairing of the two devices, prohibit the use of low security modes/levels

on the TOE, then attempt the connection again. The evaluator shall verify that the pairing attempt fails.

With the low security modes/levels disabled, the evaluator shall initiate pairing from the TOE to a

remote device that supports Security Mode 4/Level 3 or Security Mode 4/Level 4 (for BR/EDR) or

Security Mode 1/Level 3 (for LE). The evaluator shall verify that this pairing is successful and uses the

high security mode/level.

Test 20g: [conditional] The evaluator shall attempt to pair using each of the Out of Band pairing

methods, verify that the pairing method works, iteratively disable each pairing method, and verify that

the pairing method fails.

Function 21

The evaluator shall examine the AGD Guidance to determine that it specifies, for at least each category

of information selected for Function 21, how to enable and disable display information for that type of

information in the locked state.

Test 21: For each category of information listed in the AGD guidance, the evaluator shall verify that

when that TSF is configured to limit the information according to the AGD, the information is no longer

displayed in the locked state.

It should be noted that the following functions are optional capabilities, if the function is implemented,

then the following assurance activities shall be performed. The notation of “[conditional] beside the

function number indicates that if the function is not included in the ST, then there is no expectation that

the assurance activity be performed.

Function 22 [conditional]

The evaluator shall verify that the TSS includes a list of each externally accessible hardware port and an

indication of if data transfer over that port can be enabled/disabled. AGD guidance will describe how to

perform the enable/disable function.

Windows 10 Security Target

Microsoft © 2016 Page 98 of 166

Test 22: The evaluator shall exercise the TSF configuration to enable and disable data transfer

capabilities over each externally accessible hardware ports (e.g. USB, SD card, HDMI) listed by the ST

author. The evaluator shall use test equipment for the particular interface to ensure that no low-level

signalling is occurring on all pins used for data transfer when they are disabled. For each disabled data

transfer capability, the evaluator shall repeat this test by rebooting the device into the normal

operational mode and verifying that the capability is disabled throughout the boot and early execution

stage of the device.

Function 23 [conditional]

The evaluator shall verify that the TSS describes how the TSF acts as a server in each of the protocols

listed in the ST, and the reason for acting as a server.

Test 23: The evaluator shall attempt to disable each listed protocol in the assignment, which should

include tethering uses. The evaluator shall verify that remote devices can no longer access the TOE or

TOE resources using any disabled protocols.

Function 24 [conditional]

Test 24: The evaluator shall exercise the TSF configuration as both the user and administrator to enable

and disable any developer mode. The evaluator shall test that developer mode access is not available

when its configuration is disabled. The evaluator shall verify the developer mode remains disabled

during device reboot.

Function 25 [conditional]

Test 25: The evaluator shall exercise the TSF configuration as both the user and administrator to enable

system-wide data-at-rest protection according to the AGD guidance. The evaluator shall ensure that all

assurance activities for DAR (see Section 0) are conducted with the device in this configuration.

Function 26 [conditional]

Test 26: The evaluator shall exercise the TSF configuration as both the user and administrator to enable

removable media’s data-at-rest protection according to the AGD guidance. The evaluator shall ensure

that all assurance activities for DAR (see Section 0) are conducted with the device in this configuration.

Function 27 [conditional]

The evaluator shall examine the AGD guidance to determine that it describes how to enable and disable

any “Forgot Password”, password hint, or remote authentication (to bypass local authentication

mechanisms) capability.

Test 27: For each mechanism listed in the AGD guidance that provides a “Forgot Password” feature or

other means where the local authentication process can be bypassed, the evaluator shall disable the

feature and ensure that they are not able to bypass the local authentication process.

Function 28 [conditional]

Test 28: The evaluator shall attempt to wipe Enterprise data resident on the device according to the

administrator guidance. The evaluator shall verify that the data is no longer accessible by the user.

Windows 10 Security Target

Microsoft © 2016 Page 99 of 166

Function 29 [conditional]

The evaluator shall verify that the TSS describes how approval for an application to perform the selected

action (import, removal) with respect to certificates in the Trust Anchor Database is accomplished (e.g.,

a pop-up, policy setting, etc.). The evaluator shall also verify that the API documentation provided

according to Section 6.2.1 includes any security functions (import, modification, or destruction of the

Trust Anchor Database) allowed by applications.

Test 29: The evaluator shall perform one of the following tests:

Test 29a: [Conditional] If applications may import certificates to the Trust Anchor Database, the

evaluator shall write, or the developer shall provide access to, an application that imports a certificate

into the Trust Anchor Database. The evaluator shall verify that the TOE requires approval before

allowing the application to import the certificate:

 The evaluator shall deny the approvals to verify that the application is not able to import the

certificate. Failure of import shall be tested by attempting to validate a certificate that chains to

the certificate whose import was attempted (as described in the Assurance Activity for

FIA_X509_EXT.1).

 The evaluator shall repeat the test, allowing the approval to verify that the application is able to

import the certificate and that validation occurs.

Test 29b: [Conditional] If applications may remove certificates in the Trust Anchor Database, the

evaluator shall write, or the developer shall provide access to, an application that removes certificates

from the Trust Anchor Database. The evaluator shall verify that the TOE requires approval before

allowing the application to remove the certificate:

 The evaluator shall deny the approvals to verify that the application is not able to remove the

certificate. Failure of removal shall be tested by attempting to validate a certificate that chains

to the certificate whose removal was attempted (as described in the Assurance Activity for

FIA_X509_EXT.1).

The evaluator shall repeat the test, allowing the approval to verify that the application is able to

remove/modify the certificate and that validation no longer occurs.

Function 30 [conditional]

Test 30: The test of this function is performed in conjunction with FIA_X509_EXT.2.2.

Function 31 [conditional]

The evaluator shall ensure that the TSS describes which cellular protocols can be disabled. The

evaluator shall confirm that the AGD guidance describes the procedure for disabling each cellular

protocol identified in the TSS.

Test 31: The evaluator shall attempt to disable each cellular protocol according to the administrator

guidance. The evaluator shall attempt to connect the device to a cellular network and, using network

analysis tools, verify that the device does not allow negotiation of the disabled protocols.

Windows 10 Security Target

Microsoft © 2016 Page 100 of 166

Function 32 [conditional]

Test 32: The evaluator shall attempt to read any device audit logs according to the administrator

guidance and verify that the logs may be read. This test may be performed in conjunction with the

assurance activity of FAU_GEN.1.

Function 33 [conditional]

Test 33: The test of this function is performed in conjunction with FPT_TUD_EXT.2.5.

Function 34 [conditional]

The evaluator shall verify that the TSS describes how the approval for exceptions for shared use of

keys/secrets by multiple applications is accomplished (e.g., a pop-up, policy setting, etc.).

Test 34: The test of this function is performed in conjunction with FCS_STG_EXT.1.

Function 35 [conditional]

The evaluator shall verify that the TSS describes how the approval for exceptions for destruction of

keys/secrets by applications that did not import the key/secret is accomplished (e.g., a pop-up, policy

setting, etc.).

Test 35: The test of this function is performed in conjunction with FCS_STG_EXT.1.

Function 36 [conditional]

The evaluator shall verify that the TSS describes any restrictions in banner settings (e.g., character

limitations).

Test 36: The test of this function is performed in conjunction with FTA_TAB.1.

Function 37 [conditional]

Test 37: The test of this function is performed in conjunction with FAU_SEL.1.

Function 38 [conditional]

Test 38: The test of this function is performed in conjunction with FPT_NOT_EXT.1.2.

Function 39 [conditional]

The evaluator shall verify that the TSS includes a description of how data transfers can be managed over

USB.

Test 39: The evaluator shall perform the following tests based on the selections in 0.

Test 39a: [conditional] The evaluator shall disable USB mass storage mode, attach the device to a

computer, and verify that the computer cannot mount the TOE as a drive. The evaluator shall reboot the

TOE and repeat this test with other supported auxiliary boot modes.

Test 39b: [conditional] The evaluator shall disable USB data transfer without user authentication, attach

the device to a computer, and verify that the TOE requires user authentication before the computer can

Windows 10 Security Target

Microsoft © 2016 Page 101 of 166

access TOE data. The evaluator shall reboot the TOE and repeat this test with other supported auxiliary

boot modes.

Test 39c: [conditional] The evaluator shall disable USB data transfer without connecting system

authentication, attach the device to a computer, and verify that the TOE requires connecting system

authentication before the computer can access TOE data. The evaluator shall then connect the TOE to

another computer and verify that the computer cannot access TOE data. The evaluator shall then

connect the TOE to the original computer and verify that the computer can access TOE data.

Function 40 [conditional]

The evaluator shall verify that the TSS includes a description of available backup methods that can be

enabled/disabled.

Test 40: The evaluator shall disable each supported backup location in turn and verify that the TOE

cannot complete a backup. The evaluator shall then enable each supported backup location in turn and

verify that the TOE can perform a backup.

Function 41 [conditional]

The evaluator shall verify that the TSS includes a description of Hotspot functionality and USB tethering

to include any authentication for these.

Test 41: The evaluator shall perform the following tests based on the selections in 0.

Test 41a: [conditional] The evaluator shall enable hotspot functionality with each of the of the support

authentication methods. The evaluator shall connect to the hotspot with another device and verify that

the hotspot functionality requires the configured authentication method.

Test 41b: [conditional] The evaluator shall enable USB tethering functionality with each of the of the

support authentication methods. The evaluator shall connect to the TOE over USB with another device

and verify that the tethering functionality requires the configured authentication method.

Function 42 [conditional]

Test 42: The test of this function is performed in conjunction with FDP_ACF_EXT.1.2.

Function 43 [conditional]

Test 43: The test of this function is performed in conjunction with FDP_ACF_EXT.1.2.

Function 44 [conditional]

Test 44: The evaluator shall perform the following tests.

Test 44a: The evaluator shall enable location services device-wide and shall verify that an application

(such as a mapping application) is unable to access the TOE’s location information.

Test 44b: [conditional] If “per-app basis” is selected, the evaluator shall create two applications and

enable one to use access the location services and the other to not access the location services. The

evaluator shall exercise each application attempting to access location services individually. The

Windows 10 Security Target

Microsoft © 2016 Page 102 of 166

evaluator shall verify that the enabled application is able to access the location services and the disabled

application is not able to access the location services.

Function 45 [conditional]

The evaluator shall verify that the TSS describes all assigned security management functions and their

intended behavior.

Test 45: The evaluator shall design and perform tests to demonstrate that the function may be

configured and that the intended behavior of the function is enacted by the TOE.

5.2.2.5.3 Extended: Specification of Remediation Actions (FMT_SMF_EXT.2)

The evaluator shall verify that the TSS describes all available remediation actions, when they are

available for use, and any other administrator-configured triggers.

The evaluator shall use the test environment to iteratively configure the device to perform each

remediation action in the selection upon unenrollment. The evaluator shall unenroll the device

according to AGD guidance and verify that the remediation action configured is performed.

5.2.2.6 Protection of the TSF (FPT)

5.2.2.6.1 Extended: Anti-Exploitation Services (ASLR) (FPT_AEX_EXT.1)

FPT_AEX_EXT.1.1, FPT_AEX_EXT.1.2

The evaluator shall ensure that the TSS section of the ST describes how the 8 bits are generated and

provides a justification as to why those bits are unpredictable.

Assurance Activity Note: The following test require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device products.

Test 1: The evaluator shall select 3 apps included with the TSF. These must include any web browser or

mail client included with the TSF. For each of these apps, the evaluator will launch the same app on two

separate Mobile Devices of the same type and compare all memory mapping locations. The evaluator

must ensure that no memory mappings are placed in the same location on both devices.

If the rare (at most 1/256) chance occurs that two mappings are the same for a single app and not the

same for the other two apps, the evaluator shall repeat the test with that app to verify that in the

second test the mappings are different.

FPT_AEX_EXT.1.3, FPT_AEX_EXT.1.4

The evaluator shall ensure that the TSS section of the ST describes how the 4 bits are generated and

provides a justification as to why those bits are unpredictable.

Assurance Activity Note: The following test require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device products.

Test 1: The evaluator shall reboot the TOE at least five times. For each of these reboots, the evaluator

shall examine memory mapping locations of the kernel. The evaluator must ensure that no memory

mappings are placed in the same location on both devices.

Windows 10 Security Target

Microsoft © 2016 Page 103 of 166

5.2.2.6.2 Extended: Anti-Exploitation Services (Memory Page Permissions) (FPT_AEX_EXT.2)

FPT_AEX_EXT.2.1
The evaluator shall ensure that the TSS describes of the memory management unit (MMU), and ensures

that this description documents the ability of the MMU to enforce read, write, and execute permissions

on all pages of virtual memory.

FPT_AEX_EXT.2.2

The evaluator shall ensure that the TSS describes how the operating system of the application processor

prevents all processes executing in a non-privileged execution domain from achieving write and execute

permissions on any page of memory (with only specified exceptions). The evaluator shall ensure that the

TSS describes how such processes are unable to request pages of memory with such permissions, and

how they are unable to change permissions to both write and execute on any pages already allocated to

them.

5.2.2.6.3 Extended: Anti-Exploitation Services (Overflow Protection) (FPT_AEX_EXT.3)

FPT_AEX_EXT.3.1

The evaluator shall determine that the TSS contains a description of stack-based buffer overflow

protections implemented in the TSF software which runs in the non-privileged execution mode of the

application processor. The exact implementation of stack-based buffer overflow protection will vary by

platform. Example implementations may be activated through compiler options such as "-fstack-

protector-all", “-fstack-protector”, and “/GS” flags.

The evaluator shall ensure that the TSS contains an inventory of TSF binaries and libraries, indicating

those that implement stack-based buffer overflow protections as well as those that do not. The TSS

must provide a rationale for those binaries and libraries that are not protected in this manner.

FPT_AEX_EXT.3.2

The evaluator shall verify that the TSS enumerates the heap implementations provided to userspace

processes. The evaluator shall ensure that the TSS lists all types of heap metadata and identifies how the

integrity of each type of metadata is ensured. The evaluator shall ensure that the TSS identifies all

memory address or offset fields within each type of metadata and identifies how the integrity of these

addresses or fields is ensured. The evaluator shall verify that the TSS identifies the manner in which an

error condition is entered when a heap overflow is detected and the resulting actions taken by the TSF.

For each heap implementation, the evaluator shall write, or the developer shall provide access to, an

application which allocates memory from the heap and then writes arbitrary data significantly beyond

the end of the allocated buffer. The evaluator shall attempt to execute this application and verify that

the write is not allowed.

5.2.2.6.4 Extended: Domain Isolation (FPT_AEX_EXT.4)

The evaluator shall ensure that the TSS describes the mechanisms that are in place that prevents non-

TSF software from modifying the TSF software or TSF data that governs the behavior of the TSF. These

mechanisms could range from hardware-based means (e.g. “execution rings” and memory management

functionality); to software-based means (e.g. boundary checking of inputs to APIs). The evaluator

determines that the described mechanisms appear reasonable to protect the TSF from modification.

Windows 10 Security Target

Microsoft © 2016 Page 104 of 166

The evaluator shall ensure the TSS describes how the TSF ensures that the address spaces of

applications are kept separate from one another.

The evaluator shall ensure the TSS details the USSD and MMI codes available from the dialer at the

locked state or during auxiliary boot modes that may alter the behavior of the TSF. The evaluator shall

ensure that this description includes the code, the action performed by the TSF, and a justification that

the actions performed do not modify user or TSF data. If no USSD or MMI codes are available, the

evaluator shall ensure that the TSS provides a description of the method by which actions prescribed by

these codes are prevented.

The evaluator shall ensure the TSS documents any TSF data (including software, execution context,

configuration information, and audit logs) which may be accessed and modified over a wired interface in

auxiliary boot modes. The evaluator shall ensure that the description includes data which is modified in

support of update or restore of the device. The evaluator shall ensure that this documentation includes

the auxiliary boot modes in which the data may be modified, the methods for entering the auxiliary boot

modes, the location of the data, the manner in which data may be modified, the data format and

packaging necessary to support modification, and software and/or hardware tools, if any, which are

necessary for modifying the data.

The evaluator shall ensure that the TSS provides a description of the means by which unauthorized and

undetected modification (that is, excluding cryptographically verified updates per FPT_TUD_EXT.2) of

the TSF data over the wired interface in auxiliary boots modes is prevented. (The lack of publically

available tools is not sufficient justification. Examples of sufficient justification include auditing of

changes, cryptographic verification in the form of a digital signature or hash, disabling the auxiliary boot

modes, and access control mechanisms that prevent writing to files or flashing partitions.)

Assurance Activity Note: The following tests require the vendor to provide access to a test platform that

provides the evaluator with tools that are typically not found on consumer Mobile Device products. In

addition, the vendor provides a list of files (e.g., system files, libraries, configuration files, audit logs) that

make up the TSF data. This list could be organized by folders/directories (e.g., /usr/sbin, /etc), as well as

individual files that may exist outside of the identified directories.

Test 1: The evaluator shall check the “permission settings” for each file in vendor provided list of files

that make up the TSF and ensure the settings are appropriate for preventing writing by untrusted

applications. The evaluator shall attempt to modify a file of their choosing to ensure the mechanism

enforces the permission settings and prevents modification.

Test 2: The evaluator shall create and load an app onto the Mobile Device. This app shall attempt to

traverse over all file systems and report any locations to which data can be written or overwritten. The

evaluator must ensure that none of these locations are part of the OS software, device drivers, system

and security configuration files, key material, or another application’s image/data.

Test 3: For each available auxiliary boot mode, the evaluator shall attempt to modify a TSF file of their

choosing using the software and/or hardware tools described in the TSS. The evaluator shall verify that

the modification fails or that the TSF audits the change as expected according to the description in the

TSS.

Windows 10 Security Target

Microsoft © 2016 Page 105 of 166

5.2.2.6.5 Extended: Application Processor Mediation (FPT_BBD_EXT.1)

The evaluator shall ensure that the TSS section of the ST describes at a high level how the processors on

the Mobile Device interact, including which bus protocols they use to communicate, any other devices

operating on that bus (peripherals and sensors), and identification of any shared resources. The

evaluator shall verify that the design described in the TSS does not permit any BPs from accessing any of

the peripherals and sensors or from accessing main memory (volatile and non-volatile) used by the AP.

In particular, the evaluator shall ensure that the design prevents modification of executable memory of

the AP by the BP.

5.2.2.6.6 Extended: Limitation of Bluetooth Profile Support (FPT_BLT_EXT.1)

The evaluator shall perform the following tests:

Test 1: While the service is not in active use by an application on the TOE, the evaluator shall attempt to

discover a service associated with a “protected” Bluetooth profile (as specified by the requirement) on

the TOE via a Service Discovery Protocol search. The evaluator shall verify that the service does not

appear in the Service Discovery Protocol search results. Next, the evaluator shall attempt to gain

remote access to the service from a device that does not currently have a trusted device relationship

with the TOE. The evaluator shall verify that this attempt fails due to the unavailability of the service

and profile.

Test 2: The evaluator shall repeat Test 1 with a device that currently has a trusted device relationship

with the TOE and verify that the same behavior is exhibited.

5.2.2.6.7 Extended: Key Storage (FPT_KST_EXT.1)

The evaluator shall consult the TSS section of the ST in performing the assurance activities for this

requirement.

In performing their review, the evaluator shall determine that the TSS contains a description of the

activities that happen on power-up and password authentication relating to the decryption of DEKs,

stored keys, and data.

The evaluator shall ensure that the description also covers how the cryptographic functions in the FCS

requirements are being used to perform the encryption functions, including how the KEKs, DEKs, and

stored keys are unwrapped, saved, and used by the TOE so as to prevent plaintext from being written to

non-volatile storage. The evaluator shall ensure that the TSS describes, for each power-down scenario

how the TOE ensures that all keys in non-volatile storage are wrapped with a KEK.

The evaluator shall ensure that the TSS describes how other functions available in the system (e.g.,

regeneration of the keys) ensure that no unencrypted key material is present in persistent storage.

The evaluator shall review the TSS to determine that it makes a case that key material is not written

unencrypted to the persistent storage.

5.2.2.6.8 Extended: No Key Transmission (FPT_KST_EXT.2)

The evaluator shall consult the TSS section of the ST in performing the assurance activities for this

requirement. The evaluator shall ensure that the TSS describes the TOE security boundary. The

cryptographic module may very well be a particular kernel module, the Operating System, the

Application Processor, or up to the entire Mobile Device.

Windows 10 Security Target

Microsoft © 2016 Page 106 of 166

In performing their review, the evaluator shall determine that the TSS contains a description of the

activities that happen on power-up and password authentication relating to the decryption of DEKs,

stored keys, and data.

The evaluator shall ensure that the TSS describes how other functions available in the system (e.g.,

regeneration of the keys) ensure that no unencrypted key material is transmitted outside the security

boundary of the TOE.

The evaluator shall review the TSS to determine that it makes a case that key material is not transmitted

outside the security boundary of the TOE.

5.2.2.6.9 Extended: No Plaintext Key Export (FPT_KST_EXT.3)

The ST author will provide a statement of their policy for handling and protecting keys. The evaluator

shall check to ensure the TSS describes a policy in line with not exporting either plaintext DEKs, KEKs, or

keys stored in the secure key storage.

5.2.2.6.10 Extended: Self-Test Notification (FPT_NOT_EXT.1)

FPT_NOT_EXT.1.1

The evaluator shall verify that the TSS describes critical failures that may occur and the actions to be

taken upon these critical failures.

Assurance Activity Note: The following test require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on consumer Mobile Device products.

Test 1: The evaluator shall use a tool provided by the developer to modify files and processes in the

system that correspond to critical failures specified in the second list. The evaluator shall verify that

creating these critical failures causes the device to take the remediation actions specified in the first list.

FPT_NOT_EXT.1.2

The evaluator shall verify that the TSS describes which critical memory is measured for these integrity

values and how the measurement is performed (including which TOE software performs these generates

these values, how that software accesses the critical memory, and which algorithms are used)

If the integrity values are provided to the administrator, the evaluator shall verify that the AGD guidance

contains instructions for retrieving these values and information for interpreting them. (For example, if

multiple measurements are taken, what those measurements are and how changes to those values

relate to changes in the device state.)

Assurance Activity Note: The following test may require the developer to provide access to a test

platform that provides the evaluator with tools that are typically not found on consumer Mobile Device

products.

The evaluator shall repeat the following test for each measurement:

Test: The evaluator shall boot the device in an approved state and record the measurement taken

(either from the log or by using the administrative guidance to retrieve the value via an MDM Agent).

The evaluator shall modify the critical memory or value that is measured. The evaluator shall boot the

device and verify that the measurement changed.

Windows 10 Security Target

Microsoft © 2016 Page 107 of 166

FPT_NOT_EXT.1.3

The evaluator shall verify that the TSS describes which key the TSF uses to sign the responses to queries

and the certificate used to prove ownership of the key. The evaluator shall perform the following test.

Test: The evaluator shall write, or the developer shall provide, a management application that queries

either the audit logs or the measurements. The evaluator shall verify that the responses to these queries

are signed and verify the signatures against the TOE’s certificate

5.2.2.6.11 Reliable Time Stamps (FPT_STM.1)

The evaluator shall examine the TSS to ensure that it lists each security function that makes use of time.

The TSS provides a description of how the time is maintained and considered reliable in the context of

each of the time related functions. This documentation must identify whether the TSF uses a NTP server

or the carrier’s network time as the primary time sources.

The evaluator examines the operational guidance to ensure it describes how to set the time.

Test 1: The evaluator uses the operational guide to set the time. The evaluator shall then use an

available interface to observe that the time was set correctly.

5.2.2.6.12 Extended: TSF Cryptographic Functionality Testing (FPT_TST_EXT.1)

The evaluator shall examine the TSS to ensure that it specifies the self-tests that are performed at start-

up. This description must include an outline of the test procedures conducted by the TSF (e.g., rather

than saying "memory is tested", a description similar to "memory is tested by writing a value to each

memory location and reading it back to ensure it is identical to what was written" shall be used). The TSS

must include any error states that they TSF may enter when self-tests fail, and the conditions and

actions necessary to exit the error states and resume normal operation. The evaluator shall verify that

the TSS indicates these self-tests are run at start-up automatically, and do not involve any inputs from or

actions by the user or operator.

The evaluator shall inspect the list of self-tests in the TSS and verify that it includes algorithm self-tests.

The algorithm self-tests will typically be conducted using known answer tests.

5.2.2.6.13 Extended: TSF Integrity Testing (FPT_TST_EXT.2)

The evaluator shall verify that the TSS section of the ST includes a description of the boot procedures,

including a description of the entire bootchain, of the software for the TSF’s Application Processor. The

evaluator shall ensure that before loading the bootloader(s) for the operating system and the kernel, all

bootloaders and the kernel software itself is cryptographically verified. For each additional category of

executable code verified before execution, the evaluator shall verify that the description in the TSS

describes how that software is cryptographically verified.

The evaluator shall verify that the TSS contains a justification for the protection of the cryptographic key

or hash, preventing it from being modified by unverified or unauthenticated software. The evaluator

shall verify that the TSS contains a description of the protection afforded to the mechanism performing

the cryptographic verification.

The evaluator shall verify that the TSS describes each auxiliary boot mode available on the TOE during

the boot procedures. The evaluator shall verify that, for each auxiliary boot mode, a description of the

cryptographic integrity of the executed code through the kernel is verified before each execution.

Windows 10 Security Target

Microsoft © 2016 Page 108 of 166

The evaluator shall perform the following tests:

Test 1: The evaluator shall perform actions to cause TSF software to load and observe that the integrity

mechanism does not flag any executables as containing integrity errors and that the TOE properly boots.

Assurance Activity Note: The following tests require the vendor to provide access to a test platform that

provides the evaluator with tools that are typically not found on consumer Mobile Device products.

Test 2: The evaluator shall modify a TSF executable that is integrity protected and cause that executable

to be successfully loaded by the TSF. The evaluator observes that an integrity violation is triggered and

the TOE does not boot. (Care must be taken so that the integrity violation is determined to be the cause

of the failure to load the module, and not the fact that the module was modified so that it was rendered

unable to run because its format was corrupt).

[conditional] Test 3: If the ST author indicates that the integrity verification is performed using a public

key, the evaluator shall verify that the update mechanism includes a certificate validation according to

FIA_X509_EXT.1. The evaluator shall digitally sign the TSF executable with a certificate that does not

have the Code Signing purpose in the extendedKeyUsage field and verify that an integrity violation is

triggered. The evaluator shall repeat the test using a certificate that contains the Code Signing purpose

and verify that the integrity verification succeeds. Ideally, the two certificates should be identical except

for the extendedKeyUsage field.

5.2.2.6.14 Extended: Trusted Update: TSF Version Query (FPT_TUD_EXT.1)

The evaluator shall establish a test environment consisting of the Mobile Device and any supporting

software that demonstrates usage of the management functions. This can be test software from the

developer, a reference implementation of management software from the developer, or other

commercially available software. The evaluator shall set up the Mobile Device and the other software to

exercise the management functions according to provided guidance documentation.

Test 1: Using the AGD guidance provided, the evaluator shall test that the administrator and user can

query:

 the current version of the TSF operating system and any firmware that can be updated

separately

 the hardware model of the TSF

 the current version of all installed mobile applications

The evaluator must review manufacturer documentation to ensure that the hardware model identifier is

sufficient to identify the hardware which comprises the device.

5.2.2.6.15 Extended: Trusted Update Verification (FPT_TUD_EXT.2)

FPT_TUD_EXT.2.1, FPT_TUD_EXT.2.2, FPT_TUD_EXT.2.3

The evaluator shall verify that the TSS section of the ST describes all TSF software update mechanisms

for updating the system software. The evaluator shall verify that the description includes a digital

signature verification of the software before installation and that installation fails if the verification fails.

The evaluator shall verify that all software and firmware involved in updating the TSF is described and, if

Windows 10 Security Target

Microsoft © 2016 Page 109 of 166

multiple stages and software are indicated, that the software/firmware responsible for each stage is

indicated and that the stage(s) which perform signature verification of the update are identified.

The evaluator shall verify that the TSS describes the method by which the digital signature is verified and

that the public key used to verify the signature is either hardware-protected or is validated to chain to a

public key in the Trust Anchor Database. If hardware-protection is selected, the evaluator shall verify

that the method of hardware-protection is described and that the ST author has justified why the public

key may not be modified by unauthorized parties.

[conditional] If the ST author indicates that software updates to system software running on other

processors is verified, the evaluator shall verify that these other processors are listed in the TSS and that

the description includes the software update mechanism for these processors, if different than the

update mechanism for the software executing on the Application Processor.

[conditional] If the ST author indicates that the public key is used for software update digital signature

verification, the evaluator shall verify that the update mechanism includes a certificate validation

according to FIA_X509_EXT.1 and a check for the Code Signing purpose in the extendedKeyUsage.

The evaluator shall verify that the developer has provided evidence that the following tests were

performed for each available update mechanism:

Test 1: The tester shall try to install an update without the digital signature and shall verify that

installation fails. The tester shall attempt to install an update with digital signature, and verify that

installation succeeds.

Test 2: The tester shall digitally sign the update with a key disallowed by the device and verify that

installation fails. The tester shall digitally sign the update with the allowed key and verify that

installation succeeds.

Test 3: [conditional] The tester shall digitally sign the update with an invalid certificate and verify that

update installation fails. The tester shall digitally sign the application with a certificate that does not

have the Code Signing purpose and verify that application installation fails. The tester shall repeat the

test using a valid certificate and a certificate that contains the Code Signing purpose and verify that the

application installation succeeds.

Test 4: [conditional] The tester shall repeat this test for the software executing on each processor listed

in the first selection. The tester shall attempt to install an update without the digital signature and shall

verify that installation fails. The tester shall attempt to install an update with digital signature, and verify

that installation succeeds.

FPT_TUD_EXT.2.4

The evaluator shall verify that the TSS describes how mobile application software is verified at

installation. The evaluator shall ensure that this method uses a digital signature.

Test 1: The evaluator shall write, or the developer shall provide access to, an application. The evaluator

shall try to install this application without a digitally signature and shall verify that installation fails. The

evaluator shall attempt to install a digitally signed application, and verify that installation succeeds.

Windows 10 Security Target

Microsoft © 2016 Page 110 of 166

FPT_TUD_EXT.2.5

The evaluator shall verify that the TSS describes how mobile application software is verified at

installation. The evaluator shall ensure that this method uses a digital signature by a code signing

certificate.

Test 1: The evaluator shall write, or the developer shall provide access to, an application. The evaluator

shall try to install this application without a digitally signature and shall verify that installation fails. The

evaluator shall attempt to install an application digitally signed with an appropriate certificate, and

verify that installation succeeds.

Test 2: The evaluator shall digitally sign the application with an invalid certificate and verify that

application installation fails. The evaluator shall digitally sign the application with a certificate that does

not have the Code Signing purpose and verify that application installation fails. This test may be

performed in conjunction with the assurance activities for FIA_X509_EXT.1.

Test 3: If necessary, the evaluator shall configure the device to limit the public keys that can sign

application software according to the AGD guidance. The evaluator shall digitally sign the application

with a certificate disallowed by the device or configuration and verify that application installation fails.

The evaluator shall attempt to install an application digitally signed with an authorized certificate and

verify that application installation succeeds.

FPT_TUD_EXT.2.6

Testing for this element are performed in conjunction with the assurance activities for FPT_TUD_EXT.2.3

and FPT_TUD_EXT.2.5.

FPT_TUD_EXT.2.7

The evaluator shall verify that the TSS describes the mechanism that prevents the TSF from installing

software updates that are an older version that the currently installed version.

The evaluator shall repeat the following tests to cover all allowed software update mechanisms as

described in the TSS. For example, if the update mechanism replaces an entire partition containing many

separate code files, the evaluator does not need to repeat the test for each individual file.

Test 1: The evaluator shall attempt to install an earlier version of software (as determined by the

manufacturer). The evaluator shall verify that this attempt fails by checking the version identifiers or

cryptographic hashes of the privileged software against those previously recorded and checking that the

values have not changed.

Test 2: The evaluator shall attempt to install a current or later version and shall verify that the update

succeeds.

5.2.2.7 TOE Access (FTA)

5.2.2.7.1 Extended: TSF- and User-initiated Locked State (FTA_SSL_EXT.1)

The evaluator shall verify the TSS describes the actions performed upon transitioning to the locked

state. The evaluation shall verify that the AGD guidance describes the method of setting the inactivity

interval and of commanding a lock. The evaluator shall verify that the TSS describes the information

allowed to be displayed to unauthorized users.

Windows 10 Security Target

Microsoft © 2016 Page 111 of 166

Test 1: The evaluator shall configure the TSF to transition to the locked state after a time of inactivity

(FMT_SMF_EXT.1) according to the AGD guidance. The evaluator shall wait until the TSF locks and verify

that the display is cleared or overwritten and that the only actions allowed in the locked state are

unlocking the session and those actions specified in FIA_UAU_EXT.2.

Test 2: The evaluator shall command the TSF to transition to the locked state according to the AGD

guidance as both the user and the administrator. The evaluator shall wait until the TSF locks and verify

that the display is cleared or overwritten and that the only actions allowed in the locked state are

unlocking the session and those actions specified in FIA_UAU_EXT.2.

5.2.2.7.2 Extended: Wireless Network Access (FTA_WSE_EXT.1)

The assurance activity for this requirement is performed in conjunction with the assurance activity for

FMT_SMF_EXT.1.

5.2.2.7.3 Default TOE Access Banners (FTA_TAB.1)

The TSS shall describe when the banner is displayed. The evaluator shall also perform the following test:

Test 1: The evaluator follows the operational guidance to configure a notice and consent warning

message. The evaluator shall then start up or unlock the TSF. The evaluator shall verify that the notice

and consent warning message is displayed in each instance described in the TSS.

5.2.2.8 Trusted Path / Channels (FTP)

5.2.2.8.1 Extended: Trusted Channel Communication (FTP_ITC_EXT.1)

The evaluator shall examine the TSS to determine that it describes the details of the TOE connecting to

access points, VPN Gateways, and other trusted IT products in terms of the cryptographic protocols

specified in the requirement, along with TOE-specific options or procedures that might not be reflected

in the specifications. The evaluator shall also confirm that all protocols listed in the TSS are specified and

included in the requirements in the ST. The evaluator shall confirm that the operational guidance

contains instructions for establishing the connection to access points, VPN Gateways, and other trusted

IT products.

If OTA updates are selected, the TSS shall describe which trusted channel protocol is initiated by the TOE

and is used for updates.

The evaluator shall also perform the following tests for each protocol listed:

Test 1: The evaluators shall ensure that the TOE is able to initiate communications with an access point

using 802.11-2012 and a pre-shared key, setting up the connections as described in the operational

guidance and ensuring that communication is successful.

Test 2: The evaluators shall ensure that the TOE is able to initiate communications with an access point

using 802.11-2012, 802.1x, and EAP-TLS, setting up the connections as described in the operational

guidance and ensuring that communication is successful.

Test 3: [conditional] If IPsec is selected (and the TSF includes a native VPN client), the evaluator shall

ensure that the TOE is able to initiate communications with a VPN Gateway, setting up the connections

as described in the operational guidance and ensuring that communication is successful.

Windows 10 Security Target

Microsoft © 2016 Page 112 of 166

Test 4: For any other selected protocol (not tested in Test 1, 2, or 3), the evaluator shall ensure that the

TOE is able to initiate communications with a trusted IT product using the protocol, setting up the

connection as described in the operational guidance and ensuring that the communication is successful.

Test 5: If OTA updates are selected, the evaluator shall trigger an update request according to the

operational guidance and shall ensure that the communication is successful.

Test 6: The evaluator shall ensure, for each communication channel with an authorized IT entity, the

channel data are not sent in plaintext and that a protocol analyzer identifies the traffic as the protocol

under testing.

6 TOE Summary Specification (TSS)
This chapter describes the Windows security functions which satisfy the security functional

requirements of the protection profile. The TOE also includes additional relevant security functions

which are also described in the following sections, as well as a mapping to the security functional

requirements satisfied by the TOE.

6.1 Product Architecture

6.2 TOE Security Functions
This section presents the TOE Security Functions (TSFs) and a mapping of security functions to Security

Functional Requirements (SFRs). The TOE performs the following security functions:

 Audit

 Cryptographic Support

 User Data Protection

 Identification and Authentication

 Security Management

 Protection of the TSF

 TOE Access

 Trusted Path / Channels

6.3 Audit
The TOE Audit security function performs:

 Audit Collection

 Selective Audit

 Audit Storage Protection

 Audit Log Overflow Protection

 Audit Log Restricted Access Protection

 Prevention of Audit Loss

Windows 10 Security Target

Microsoft © 2016 Page 113 of 166

6.3.1 Audit Collection

The Windows Event Log service creates the security event log, which contains security relevant audit

records collected on a system, along with other event logs which are also registered by other audit entry

providers. The Local Security Authority (LSA) server collects audit events from all other parts of the TSF

and forwards them to the Windows Event Log service which will place the event into the log for the

appropriate provider. While there is no size limit for a single audit record, the authorized administrator

can specify a limit for the size of each event log. For each audit event, the Windows Event Log service

stores the following data in each audit entry:

Field in Audit Entry Description

Date The date the event occurred.

Time The time the event occurred.

User The security identifier (SID) of that represents the user on whose
behalf the event occurred that represents the user.

Event ID A unique number within the audit category that identifies the
specific audit event.

Source The Windows component that generated the audit event.

Outcome Indicates whether the security audit event recorded is the result of a
successful or failed attempt to perform the action.

Category The type of the event defined by the event source.

Table 11 Standard Fields in a Windows Audit Entry

The LSA service defines the following categories for audit events in the security log:

 System,

 Logon / Logoff

 Object Access

 Directory Service Access

 Privilege Use

 Detailed Process Tracking

 Policy Change

 Account Management

 Account Logon

Each audit entry may also contain category-specific data that is contained in the body of the entry as

described below:

 For the System Category, the audit entry includes information relating to the system such as

the time the audit trail was cleared, start or shutdown of the audit function, and startup and

shutdown of Windows. Furthermore, the specific cryptographic operation is identified

when such operations are audited.

 For the Logon and Account Logon Category, the audit entry includes the reason the

attempted logon failed.

Windows 10 Security Target

Microsoft © 2016 Page 114 of 166

 For the Object Access and the Directory Service Access Category, the audit entry includes

the object name and the desired access requested.

 For the Privilege Use Category, the audit entry identifies the privilege.

 For the Detailed Process Tracking Category, the audit event includes the process identifier.

 For the Policy Change and Account Management Category, the audit event includes the new

values of the policy or account attributes.

 For the Account Logon Category, the audit event includes the logon type that indicates the

source of the logon attempt as one of the following types in the audit record:

o Interactive (local logon)

o Network (logon from the network)

o Service (logon as a service)

o Batch (logon as a batch job)

o Unlock (for Unlock screen saver)

o Network_ClearText (for anonymous authentication to IIS)

There are two places within the TSF where security audit events are collected. Inside the kernel, the

Security Reference Monitor (SRM), a part of the NT Executive, is responsible for generation of all audit

entries for the object access, privilege use, and detailed process tracking event categories. Windows

components can request the SRM to generate an audit record and supply all of the elements in the audit

record except for the system time, which the Executive provides. With one exception, audit events for

the other event categories are generated by various services that either co-exist in the LSA server or call,

with the SeAuditPrivilege privilege, the Authz Report Audit interfaces implemented in the LSA Policy

subcomponent. The exception is that the Event Log Service itself records an event record when the

security log is cleared and when the security log exceeds the warning level configured by the authorized

administrator.

The LSA server maintains an audit policy in its database that determines which categories of events are

actually collected. Defining and modifying the audit policy is restricted to the authorized administrator.

The authorized administrator can select events to be audited by selecting the category or categories to

be audited. An authorized administrator can individually select each category. Those services in the

security process determine the current audit policy via direct local function calls. The only other TSF

component that uses the audit policy is the SRM in order to record object access, privilege use, and

detailed tracking audit. LSA and the SRM share a private local connection port, which is used to pass the

audit policy to the SRM. When an authorized administrator changes the audit policy, the LSA updates its

database and notifies the SRM. The SRM receives a control flag indicating if auditing is enabled and a

data structure indicating that the events in particular categories to audit.

In addition to the system-wide audit policy configuration, it is possible to define a per-user audit policy

using auditpol.exe. This allows individual audit categories (of success or failure) to be enabled or

Windows 10 Security Target

Microsoft © 2016 Page 115 of 166

disabled on a per user basis.23 The per-user audit policy refines the system-wide audit policy with a

more precise definition of the audit policy for which events will be audited for a specific user.

Within each category, auditing can be performed based on success, failure, or both. For object access

events, auditing can be further controlled based on user/group identify and access rights using System

Access Control Lists (SACLs). SACLs are associated with objects and indicate whether or not auditing for

a specific object, or object attribute, is enabled.

The TSF is capable of generating the audit events associated with each audit category, as described in

the Description column of (). The auditable events associated with each category capture the events

listed in section 5.1.1.1. For each category, the associated audit events (listed in 5.1.1.1) for each of the

requirements in the FAU_GEN Required Events column of are captured.

Category Description FAU_GEN Required Events

System Audit attempts that affect security
of the entire system such as
clearing the audit trail.

FAU_STG.3, FCS_CKM.1*, FCS_CKM.4,
FCS_COP.1*, FCS_RBG_EXT.1, FPT_STM.1,
FPT_NOT_EXT.1,24 FPT_TST_EXT.1,
FPT_TST_EXT.2

Object Access Audit attempts to access user
objects, such as files.

None for the MDF PP.

Privilege Use Audits attempts to use security
relevant privileges. Security
relevant privileges are those
privileges that are related to the
TSFs and can be assigned in the
evaluated configuration.

None for the MDF PP.

Detailed Process
Tracking

Audit subject-tracking events,
including program activation,
handle duplication, indirect access
to an object, and process exit.

None for the MDF PP.

Policy Change Audit attempts to change security
policy settings such as the audit
policy and privilege assignment.

FAU_SEL.1

Account
Management

Audit attempts to create, delete, or
change user or group accounts and
changes to their attributes.

FIA_AFL_EXT.1

Directory Service
Access

Audit access to directory service
objects and associated properties.

None for the MDF PP.

Logon Audit attempts to logon or logoff
the system, attempts to make a

FIA_AFL_EXT.1, FIA_UAU_EXT.1, FIA_UID.1,
FTA_SSL_EXT.1

23

 Windows will prevent a local administrator from disabling auditing for local administrator accounts. If an
administrator can bypass auditing, they can avoid accountability for such actions as exfiltrating files without
authorization.
24

 For cryptographic self-test and code integrity failures, not MDM health attestation data.

Windows 10 Security Target

Microsoft © 2016 Page 116 of 166

network connection.

Account Logon Audit when a DC receives a logon
request.

FIA_UAU.1(Logon), FIA_UID.1

Table 12 Audit Event Categories

6.3.2 Selective Audit

The authorized administrator has the ability to select events to be audited based upon object identity,

user identity, computer (host identity), type (category), and outcome (success or failure) of the event.

Selecting the set of events that will be audited can be on a per-machine basis by using tools such as

auditpol.exe and wevtutil.exe, or using group policies to audit sets of machines (i.e. auditing based on

the host identity).

6.3.3 Audit Log Overflow Protection

The TSF protects against the loss of events through a combination of controls associated with audit

queuing and event logging. As configured in the TOE, audit data is appended to the audit log until it is

full. The TOE protects against lost audit data by allowing the authorized administrator to configure the

system to generate an audit event when the security audit log reaches a specified capacity percentage

(e.g., 90%). Additionally, the authorized administrator can configure the system not to overwrite events

– overwriting the oldest stored audit records if the audit trail is full – and instead will shut down when

the security audit log is full. When so configured, after the system shutdowns due to audit overflow,

only the authorized administrator can restart the system to log on and manage the security log. When

the security log is full, a message is written to the display indicating the audit log has overflowed.

As described above, the TSF collects security audit data in two ways, via the SRM and via the LSA server.

Both components maintain audit in-memory event queues. The SRM puts audit records on an internal

queue to be sent to the LSA server. The LSA maintains a second queue where it holds the audit data

from SRM and the other services in the security process. Both audit queues detect when an audit event

loss has occurred. The SRM service maintains a high water mark and a low water mark on its audit

queue to determine when full. The LSA also maintains marks in its queue to indicate when it is full.

Windows also provides an eventing infrastructure that other system components can use to log events

which are not managed by the SRM or the LSA. The maximum size for these administrative and

operational event logs can either be limited to the maximum size for the log file (and then prevent

generation of new audit events for that particular log) or overwrite the oldest audit event in the log file

when the log file reaches its maximum size. The Windows security target selects the second option.

The audit logs which contain events relevant to the Mobile Device evaluation are:

 Security

 System

 CAPI2

 CertificateServicesClient-Lifecycle-User

 CertificateServicesClient-Lifecycle-System

 Wcmsvc

 SystemSettings

 Device Configuration

Windows 10 Security Target

Microsoft © 2016 Page 117 of 166

 Microsoft-Windows-AppXDeployment-Server/Operational

6.3.4 Audit Log Restricted Access Protection

The Windows Event Log service controls and protects the security audit log. Note that the underlying

files are configured so that only the TSF can open the files and the Event Log service opens those files

exclusively when it starts and keeps them open while it is running. To view the contents of the security

audit log, the user must be an authorized administrator. The security audit log is a system resource,

created during system startup. No interfaces exist to create, destroy, or modify an event within the

event log. The LSA subsystem is the only service registered to enter events into the security log. The

TOE only offers user interfaces to read and clear the security event log. In order to read the event log,

the user must have a read ACE in the access control list for the Event Log service.

6.3.5 SFR Mapping

The Audit function satisfies the following SFRs:

 FAU_GEN.1: The TOE audit collection is capable of generating audit events for items identified in

section 5.1.1.1. For each audit event the TSF records the date, time, user Security Identifier

(SID) or name, logon type (for logon audit records), event ID, source, type, and category.

 FAU_SAR.1: The event viewer provides authorized administrators with the ability to review

audit data in a readable format.

 FAU_SEL.1: The TSF provides the ability for the authorized administrator to select the events to

be audited based upon object identity, user identity, workstation (host identity), event type, and

success or failure of the event.

 FAU_STG.1: The interface to the logs are restricted to authorized administrators, including

clearing the audit log, and does not allow for the modification of audit data within the audit log.

The TOE can be configured such that when any event logs are full the system will overwrite the

oldest events in each log type, based on a system-defined value which can be modified by the

administrator. The operational logs listed above also restrict authorized administrators to only

read-only access.

 FAU_STG.4: The TOE can be configured such that when any audit or administrative operational

logs are full the system will overwrite the oldest events in each log type.25

6.4 Cryptographic Support

6.4.1 Cryptographic Algorithms and Operations

Cryptography API: Next Generation (CNG) API is designed to be extensible at many levels and agnostic to

cryptographic algorithm suites. An important feature of CNG is its native implementation of the Suite B

algorithms, including algorithms for AES (128, 192, 256 key sizes)26, the SHA-1 and SHA-2 family (SHA-

25

 The TOE can be also configured such that when the security audit log is full the system shuts down so that only
the authorized administrator can log on to the system to clear the security log and return the system to an
operational state consistent with TOE guidance. Additionally, when the security log reaches a certain percentage,
an audit event (alarm) is generated.
26

 Note that the 192-bit key size is not used by Windows but is available to developers.

Windows 10 Security Target

Microsoft © 2016 Page 118 of 166

256, SHA-384 and SHA-512) of hashing algorithms, elliptic curve Diffie Hellman (ECDH), and elliptical

curve DSA (ECDSA) over the NIST-standard prime curves P-256, P-384, and P-521.

Protocols such as the Internet Key Exchange (IKE), and Transport Layer Security (TLS), make use of

elliptic curve Diffie-Hellman (ECDH) included in Suite B as well as hashing functions.

Deterministic random bit generation (DRBG) is implemented in accordance with NIST Special Publication

800-90. Windows generates random bits by taking the output of a cascade of two SP800-90 AES-256

counter mode based DRBGs in kernel-mode and four cascaded SP800-90 AES-256 DRBGs in user-mode;

programmatic callers can choose to obtain either 128 or 256 bits from the RBG which is seeded from the

Windows entropy pool. The entropy pool is populated using the following values:

 An initial entropy value from a seed file provided to the Windows OS Loader at boot time (512

bits of entropy). 27

 A calculated value based on the high-resolution CPU cycle counter which fires after every 1024

interrupts (a continuous source providing 16384 bits of entropy).

 Random values gathered periodically from the Trusted Platform Module (TPM), (320 bits of

entropy on boot, 384 bits thereafter).

 Random values gathered periodically by calling the RDRAND CPU instruction, (256 bits of

entropy).

The main source of entropy in the system is the CPU cycle counter which tracks hardware interrupts.

This is a sufficient health test; if the computer were not accumulating hardware and software interrupts

every processor clock cycle it would not be running and therefore there would be no need for random

bit generation. In the same manner, a failure of the TPM chip or processor would be a critical error that

halts the computer. In addition, when the user chooses to follow the CC administrative guidance, which

includes operating Windows in the FIPS validated mode, it will run FIPS 140 AES-256 Counter Mode

DBRG Known Answer Tests (instantiate, generate) on start-up. Windows always runs the SP 800-90-

mandated self-tests for AES-CTR-DRBG during a reseed and runs the Dual-EC reseed self-test when the

user chooses to operate Windows in the FIPS validated mode.28

Each entropy source is independent of the other sources and does not depend on time. The CPU cycle

counter inputs vary by environmental conditions such as data received on a network interface card, key

presses on a keyboard, mouse movement and clicks, and touch input.

The TSF defends against tampering of the random number generation (RNG) / pseudorandom number

generation (PRNG) sources by encapsulating its use in Kernel Security Device Driver. The interface for

the Windows random number generator is BCryptGenRandom.

The CNG provider for random number generation is the AES_CTR_DRBG, when Windows requires the

use of a salt it uses the Windows RBG.

27

 The Windows OS Loader implements a SP 800-90 AES-CTR-DRBG and passes along 384 bits of entropy to the
kernel for CNG to be use during initialization. This DBRG uses the same algorithms to obtain entropy from the CPU
cycle counter, TPM, and RDRAND as described above.
28

 Running Windows in FIPS validated mode is required according to the administrative guidance.

http://msdn.microsoft.com/en-us/library/aa375458(v=VS.85).aspx

Windows 10 Security Target

Microsoft © 2016 Page 119 of 166

The encryption and decryption operations are performed by independent modules, known as

Cryptographic Service Providers (CSPs). Windows generates symmetric keys (AES keys) using the FIPS

Approved random number generator.

In addition to encryption and decryption services, the TSF provides other cryptographic operations such

as hashing and digital signatures. Hashing is used by other FIPS Approved algorithms implemented in

Windows (the hashed message authentication code, RSA, DSA, and EC DSA signature services, Diffie-

Hellman and elliptic curve Diffie-Hellman key agreement, and random bit generation). When Windows

needs to establish an RSA-based shared secret key it can act both as a sender or recipient, any

decryption errors which occur during key establishment are presented to the user at a highly abstracted

level, such as a failure to connect.

The hash-based message authentication code functions (HMAC) are based on SHA-1, SHA-256, SHA-384,

and SHA-512, have the following characteristics:

HMAC
Algorithm

Hash function
Used

Block Size Output MAC
Length

Key Length / Key Size

HMAC-SHA-1 SHA-1 512 bits 20 bytes

The key size is 10-63 bytes when the
key size is less than the block size and
the key size is 65 to 1024 bytes when
the key size is greater than the block
size. The key size may also equal the
block size. The key size is variable.

HMAC-SHA-256 SHA-256 512 bits 32 bytes Same as HMAC-SHA-1

HMAC-SHA-384 SHA-384 1024 bits 48 bytes The key size is 24-127 bytes when the
key size is less than the block size and
the key size is 129-1024 bytes when
the key size is greater than the block
size. The key size may also equal the
block size. The key size is variable.

HMAC-SHA-512 SHA-512 1024 bits 64 bytes The key size is 32-127 bytes when the
key size is less than the block size and
the key size is 129-1024 bytes when
the key size is greater than the block
size. The key size may also equal the
block size. The key size is variable.

Table 13 HMAC Characteristics

The HMAC function forms the basis for a FIPS Approved implementation of a password based key

derivation function (PBKDF). Windows inputs the password as a text string without any optional padding

or blocking into a HMAC 512 function. The hash functions supported by the Windows implementation of

SP 800-132 are SHA-1, SHA-256, SHA-384 or SHA-512. The SHA-512 function is used by DPAPI (see

Protecting Data with DPAPI).

Cryptographic Operation Standard Evaluation Method

Encryption/Decryption FIPS 197 AES NIST CAVP #3497, #3498, #3507, #3476

Windows 10 Security Target

Microsoft © 2016 Page 120 of 166

For ECB, CBC, CFB8, CCM,
XTS, and GCM modes

Digital signature FIPS 186-4 RSA NIST CAVP #1802, #1783, #1784, #1798

Digital signature FIPS 186-4 DSA NIST CAVP #983

Digital signature FIPS 186-4 ECDSA NIST CAVP #706

Hashing FIPS 180-3 SHA-2 NIST CAVP #2886, #2871

Keyed-Hash Message
Authentication Code

FIPS 198-2 HMAC NIST CAVP #2233

Random number generation NIST SP 800-90 CTR_DRBG NIST CAVP #868

Key agreement NIST SP 800-56A ECDH NIST CAVP #64

Key establishment NIST SP 800-56B NIST CAVP #576

Key-based key derivation SP800-108 NIST CAVP #66

IKEv1 SP800-135 NIST CVL #575

IKEv2 SP800-135 NIST CVL #575

TLS SP800-135 NIST CVL #575

Table 14 Cryptographic Algorithm Standards and Evaluation Methods

The TSF includes a key isolation service designed specifically to host secret and private keys in a

protected process to mitigate tampering or access to sensitive key materials. The TSF performs a key

error detection check on each transfer of key (internal and intermediate transfers). The TSF prevents

archiving of expired (private) signature keys. The TSF destroys non-persistent cryptographic keys. The

TSF overwrites each intermediate storage area for plaintext key/critical cryptographic security

parameter (i.e., any storage, such as memory buffers, that is included in the path of such data). This

overwriting is performed as follows:

 For non-volatile memories other than EEPROM and Flash, the overwrite is executed three or

more times using a different alternating data pattern each time upon the transfer of the

key/critical cryptographic security parameter to another location.

 For flash memory there is a block erase with a read-verify (if the memory location is not wear-

leveled).

 For volatile memory, the overwrite is a single direct overwrite consisting of zeros.

Windows uses FIPS Approved algorithms to establish Wi-Fi sessions and can be configured to use

ciphersuites that solely use FIPS Approved algorithm primitives.29 The following table describes the keys

and secrets used for networking; when these ephemeral keys or secrets are no longer needed for a

network session, they are deleted as described above and in section 5.1.2.10.

Key Description

Symmetric

encryption/decryption keys

Keys used for AES (FIPS 197) encryption/decryption for IPsec ESP,

TLS, Wi-Fi.

29

 Windows implements IPsec however it was not included in the Mobile Device Fundamentals PP evaluation because there is a
separate protection profile for IPsec VPN clients.

Windows 10 Security Target

Microsoft © 2016 Page 121 of 166

HMAC keys Keys used for HMAC-SHA1, HMAC-SHA256, HMAC-SHA384, and

HMAC-SHA512 (FIPS 198-1) as part of IPsec

Asymmetric ECDSA Public Keys Keys used for the verification of ECDSA digital signatures (FIPS 186-4)

for IPsec traffic and peer authentication.

Asymmetric ECDSA Private Keys Keys used for the calculation of ECDSA digital signatures (FIPS 186-4)

for IPsec traffic and peer authentication.

Asymmetric RSA Public Keys Keys used for the verification of RSA digital signatures (FIPS 186-4)

for IPsec, TLS, Wi-Fi and signed product updates.

Asymmetric RSA Private Keys Keys used for the calculation of RSA digital signatures (FIPS 186-4)

for IPsec, TLS, and Wi-Fi as well as TPM-based health attestations.

The key size can be 2048 or 3072 bits.

Asymmetric DSA Private Keys Keys used for the calculation of DSA digital signatures (FIPS 186-4)

for IPsec and TLS. The key size can be 2048 or 3072 bits.

DH Private and Public values Private and public values used for Diffie-Hellman key establishment

for TLS.

ECDH Private and Public values Private and public values used for EC Diffie-Hellman key

establishment for TLS.

Table 15 Types of Keys Used by Windows

6.4.2 Programming Interfaces

Universal Windows Applications can use these interfaces to obtain random bits from the OS:

 CryptographicBuffer.GenerateRandom

 CryptographicBuffer.GenerateRandomNumber

And can use these interfaces to obtain other cryptographic services from the OS:

 CryptographicEngine.Encrypt

 CryptographicEngine.Decrypt

 HashAlgorithmProvider.CreateHash

 HashAlgorithmProvider.HashData

 CryptographicEngine.Sign

 CryptographicEngine.VerifySignature

 KeyDerivationParameters.BuildForPbkdf2

 AsymmetricKeyAlgorithmProvider.CreateKeyPair

 CryptographicEngine.Sign

 CryptographicEngine.SignAsync

 CryptographicEngine.SignHashedData

 CryptographicEngine.SignHashedDataAsync

 CryptographicEngine.VerifySignature

 CryptographicEngine.VerifySignatureWithHashInput

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandomnumber.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.encrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.decrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.createhash.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.hashdata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.sign.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignature.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.keyderivationparameters.buildforpbkdf2.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.asymmetrickeyalgorithmprovider.createkeypair.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.sign.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddataasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignature.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignaturewithhashinput.aspx

Windows 10 Security Target

Microsoft © 2016 Page 122 of 166

 CryptographicEngine.Encrypt

 CryptographicEngine.Decrypt

6.4.3 Trusted Platform Module

Computers that incorporate a TPM have the ability to both create cryptographic keys within the TPM

and protect data stored outside TPM so that the data can be decrypted only by the TPM internal keys.

This process, often called "sealing" or "binding", can help protect the data from disclosure, but more

importantly associates the key with the TPM. Each TPM contains a master "sealing" key, called the

Storage Root Key (SRK), which was generated by the Storage Primary Seed (SPS). Like other

cryptographic data within the TPM, the private portion of a key created in a TPM is never exposed to

any other component, software, process, or user.

A TPM 2.0 protection profile written by the Trusted Computing Group provides additional detail about

the SPS and the SRK: “The TPM holds the Storage Primary Seed (SPS) and generates Storage Root Keys

(SRK) from SPS. The SRK are roots of Protected Storage Hierarchies associated with a TPM.30 The storage

keys in these hierarchies are used for symmetric encryption and signing of other keys and data together

with their security attributes. The resulting encrypted file, which contains header information in addition

to the data or the key, is called a BLOB (Binary Large Object) and is output by the TPM and can be loaded

in the TPM when needed. The private keys generated on the TPM can be stored outside the TPM

(encrypted) in a way that allows the TPM to use them later without ever exposing such keys in the clear

outside the TPM. The TPM uses symmetric cryptographic algorithms to encrypt data and keys ….”31

The TPM also provides protections that prevent the export of TPM keys and cryptographic data, such as

the SPS and SRK, and anti-hammering mechanisms to prevent guessing of a TPM password.

6.4.4 Encrypting the Device with BitLocker

The BitLocker Data Encryption Key (DEK), also known as the Full Volume Encryption Key (FVEK), which

encrypts the device’s storage volume; the administrator can choose to use either a 128 bit or 256 FVEK,

however the instruction in the administrative guidance is use a 256 bit FVEK. The Windows RBG

generates the FVEK. The FVEK is ultimately protected by keys within the TPM, namely the Storage Root

Key (SRK) and the Storage Primary Seed, the latter is the Root Encryption Key (REK) and is generated by

the TPM RBG during initialization. During initialization, the TPM also generates the 2048-bit RSA key pair

that is used as the SRK; sealing operations by the SRK in turn protects the BitLocker intermediate keys

which are used by Windows when Windows boots (or resumes from hibernation) and so the REK is

isolated from operating system and applications, thus preventing reading and exporting the plaintext

representation of the REK.

The key hierarchy for BitLocker shows an AES 256 CCM is used to encrypt the Volume Master Key (VMK),

which is a KEK and the Full Volume Encryption Key (FVEK), which is a DEK. The FVEK encrypts disk blocks

using AES CBC.

The other KEKs are always 256 bits, and so their key size will always the same or larger than the FVEK.

30

 Windows creates only one protected storage hierarchy, and that is used by BitLocker.
31

 Draft Protection Profile PC Client Specific TPM, FCS_COP.1/AES, page 5.

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.encrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.decrypt.aspx
http://www.trustedcomputinggroup.org/files/static_page_files/0328C641-1A4B-B294-D0D3151FB2B30179/TCG_PP_PC_client_specific_TPM_SecV2_v10_PublicReview.pdf

Windows 10 Security Target

Microsoft © 2016 Page 123 of 166

When a user turns on the device, the primary (system) partition is the first data partition that will be

unlocked by BitLocker. The Windows OS Loader will prompt the user for the Enhanced PIN which is used

to generate a set of intermediate keys, one of which is sealed by the TPM; the ultimate result is a key

which decrypts the encrypted VMK, which in turn decrypts the encrypted FVEK, thus enabling the

Windows Loader to read the Windows kernel, ntoskrnl.exe, and then transfer execution to the kernel.

The FVEK, VMK, and intermediate keys are all generated by the Windows RBG, or by combining

intermediate keys as described in FCS_CKM_EXT.3.

The unencrypted VMKs are zeroized after they are (1) used to encrypt the FVEK and (2) encrypted by an

intermediate key. The other keys are also zeroized from volatile memory in the process of generating

the VMK. When Windows shuts down normally or goes into hibernation, Windows will zeroize the FVEK

as part of shutdown. In the event of a system crash, the BitLocker Crash Dump Filter will zeroize the

FVEK in order to prevent the FVEK from being included in the crash dump file.

6.4.5 Key Storage

The Key Isolation Service in Windows hosts secret and private keys within a protected process in order

to mitigate tampering or access to sensitive key materials, which can be private keys, secret keys, or

other secret material that need to be persisted . The NTFS files that the Key Isolation Service uses to

store keys are protected by the Discretionary Access Control security policy described in the Windows 8,

Server 2012 Security Target. In the NTFS file the key data is further is protected by the Data Protection

API (DPAPI), which is described further below. The NTFS files are stored in NTFS volumes which is

protected by BitLocker full disk encryption. Please see Data at Rest Protection for more information on

BitLocker full disk encryption.

The IT administrator can configure Certificate Profiles in a Mobile Device Management (MDM) server for

importing keys to the enrolled Windows devices. Applications import keys/secrets into the secure key

storage by using the CertificateEnrollmentManager.ImportPfxDataAsync API. In addition, on Windows

10 devices users and local administrators can use the Certificate MMC Snap-in to import keys from

Personal Information Exchange (.pfx) files into the secure key storage.

Private keys are protected on disk using DPAPI and BitLocker encryption and access is restricted using

the Windows Discretionary Access Control Policy. When a Windows Store Application is deleted the

local private keys imported by that app are deleted. All private keys are destroyed when a wipe

operation is performed on a device. Local administrators can also perform a wipe on their Windows

device to destroy all the keys or secrets. The IT administrator can perform a wipe operation of the

enrolled device to destroy the keys.

Windows can restrict access to the application imported key/secret in secure key storage to only the

application that imported the key or secret by using the subject identity for the Discretionary Access

Control security policy as described in the Windows 8 Server 2012 Security Target. Users and local

administrators authorize applications at installation to access shared keys or secrets when an application

declares the sharedUserCertificates capability to share the certificate with other Windows Store

Applications for the user. The sharedUserCertificates capability is described further in Restricting Access

to System Services.

https://www.niap-ccevs.org/st/st_vid10520-st.pdf
https://www.niap-ccevs.org/st/st_vid10520-st.pdf
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificateenrollmentmanager.importpfxdataasync.aspx
https://www.niap-ccevs.org/st/st_vid10520-st.pdf

Windows 10 Security Target

Microsoft © 2016 Page 124 of 166

Destruction of keys/secrets imported into the secure key storage by applications is conducted

automatically by the modern application environment after the keys/secrets are no longer in use.

For the purposes of this Mobile Device evaluation, the cryptographic module is the combination of the

operating system and the device running Windows. After the device is configured the only persisted

keys which protect user data via BitLocker are the Storage Root Key held by the TPM (the REK), the

encrypted VMK (a KEK), and the encrypted FVEK (the DEK). When the device is turned on, the TPM

checks the integrity of the SRK as described above, and then the Windows OS Loader unwraps the VMK

and FVEK after the user provides the correct authorization factors. When a user provides their password

during interactive logon, Windows will use the submask derived from the password to provide access to

private keys and secrets protected by DPAPI.

No unencrypted BitLocker key material is transmitted outside the cryptographic module. The encrypted

FVEK, VMK, and Intermediate Key are stored on disk as metadata on the storage volume, however the

metadata is stored outside of the mounted NTFS volume and so these are never transmitted outside the

device, which the boundary of the cryptographic module in this evaluation.

6.4.6 Protecting Data with DPAPI

The Windows RBG generates a DPAPI Master Secret which is used as input into an AES function along

with an initialization vector and encryption key, both of which are based on the user’s password, to

generate the encrypted DPAPI Master Secret. The DPAPI Master Secret is a kind of DEK and the

password-based encryption key, which protects the DPAPI Master Secret is a kind of KEK. Also note that

the DPAPI Master Secret is ultimately protected by the REK. The password encryption key is generated

from a PBKDF2 function takes a result of a one-way function computation of the user’s password.32

Online attacks of the password-based encryption key are prevented by the TOE's implementation of

minimum password length, password complexity and maximum incorrect login attempts. Assuming a

password of minimum length of eight characters and complexity enforcement turned on, there are at

least 1,000,000 possible passwords to guess. A maximum incorrect login attempts setting of three

prevents the online attack from succeeding. Offline attacks are prevented because the BitLocker 256-bit

FVEK encrypts the DPAPI keys.

Windows will also combine the DPAPI Master Secret along with a salt value which will be used as an

encryption key to protect user data, such as a private key. Each user will have a separate encryption key.

The integrity of both the encrypted DPAPI Master Secret and the encryption key is ensured by

calculating MAC values.

6.4.7 Networking

Windows has native implementations of IEEE 802.11-2012 and IEEE 802.11ac-2013 to provide secure

wireless local area networking (Wi-Fi). Windows can use PRF-384 in WPA2 Wi-Fi sessions and generate

AES 128-bit keys or use PRF-704 to generate AES 256-bit keys, both utilize the Windows RBG. Windows

complies with the IEEE 802.11-2012 and IEEE 802.11ac-2013 standards and interoperates with other

devices that implement the standard. TOE devices have received WPA2 certification, both Enterprise

and Personal, and Wi-Fi CERTIFIED Interoperability Certificates from the Wi-Fi Alliance:

32

 Note that data protected by DPAPI is also encrypted by BitLocker when the data is persisted to disk, and so the
AES256 encrypted data will be encrypted a second time using the BitLocker 128-bit or 256-bit FVEK.

Windows 10 Security Target

Microsoft © 2016 Page 125 of 166

 Surface Pro 3 (the Marvell 8897 adapter is also certified)

 Surface 3, Surface 3 with LTE (the Marvell 8897 adapter is also certified)

 Dell Venue 8 Pro Tablet (the Dell adapter is certified)

 HP Pro x2 612 Notebook PC (the Intel Dual Band Wireless 7260 adapter is certified)

 Lenovo X1 Carbon (the Intel Dual Band Wireless 7260 adapter is certified)

 Panasonic FZ-G1 Toughpad tablet (the Intel Dual Band Wireless-AC 7265 adapter is certified)

Windows implements key wrapping and unwrapping according to the NIST SP 800-38F specification (the

“KW” mode) and so unwraps the Wi-Fi Group Temporal Key (GTK) which was sent by the access point.

Because the GTK was protected by AES Key Wrap when it was delivered in an EAPOL-Key frame, the GTK

is not exposed to the network.

6.4.7.1 Network Protocols

6.4.7.1.1 TLS and EAP TLS

Windows 10 implements TLS to enable a trusted network path that is used for both EAP, for client and

server authentication, as well as HTTPS/ HTTP/TLS.

The following table summarizes the TLS RFCs implemented in Windows:

RFC # Name How Used

2246 The TLS Protocol Version 1.0 Specifies requirements for TLS 1.0.

3268 Advanced Encryption Standard (AES)
Ciphersuites for Transport Layer Security
(TLS)

Specifies additional ciphersuites
implemented by Windows.

3546 Transport Layer Security (TLS) Extensions Updates RFC 2246 with TLS 1.0 extensions
implemented by Windows.

4346 The Transport Layer Security (TLS)
Protocol Version 1.1

Specifies requirements for TLS 1.1.

4366 Transport Layer Security (TLS) Extensions Obsoletes RFC 3546 Requirements for TLS
1.1 extensions implemented by Windows.

4492 Elliptic Curve Cryptography (ECC) Cipher
Suites for Transport Layer Security (TLS)

Specifies additional ciphersuites
implemented by Windows.

4681 TLS User Mapping Extension Extends TLS to include a User Principal
Name during the TLS handshake.

5246 The Transport Layer Security (TLS)
Protocol Version 1.2

Oboletes RFCs 3268, 4346, and 4366.
Specifies requirements for TLS 1.2.

5289 TLS Elliptic Curve Cipher Suites with SHA-
256/384 and AES Galois Counter Mode
(GCM)

Specifies additional ciphersuites
implemented by Windows.

SSL3 The SSL Protocol Version 3 Specifies requirements for SSL3.

Table 16 TLS RFCs Implemented by Windows

 These protocols are described at:

 MS-TLSP Transport Layer Security (TLS) Profile

 RFC 2246 The TLS Protocol Version 1.0

http://www.wi-fi.org/content/search-page?keys=WFA59829
https://www.wi-fi.org/product-finder-results?keywords=19950
http://www.wi-fi.org/content/search-page?keys=WFA59150
https://www.wi-fi.org/product-finder-results?keywords=19950
https://www.wi-fi.org/content/search-page?keys=WFA50344
https://www.wi-fi.org/content/search-page?keys=WFA51001
http://www.wi-fi.org/content/search-page?keys=wfa51001
http://www.wi-fi.org/content/search-page?keys=wfa54105
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc3546.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4366.txt
http://www.ietf.org/rfc/rfc4492.txt
http://www.ietf.org/rfc/rfc4492.txt
http://www.ietf.org/rfc/rfc4681.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5289.txt
http://www.ietf.org/rfc/rfc5289.txt
http://www.ietf.org/rfc/rfc5289.txt
https://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00
https://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00
https://msdn.microsoft.com/en-us/library/dd207968.aspx
http://www.ietf.org/rfc/rfc2246.txt

Windows 10 Security Target

Microsoft © 2016 Page 126 of 166

 RFC 3268 -AES Ciphersuites for TLS

 RFC 3546 Transport Layer Security (TLS) Extensions

 RFC 4366 Transport Layer Security (TLS) Extensions

 RFC 4492 ECC Cipher Suites for TLS

 RFC 4681 TLS User Mapping Extension

 RFC 5246 - The Transport Layer Security (TLS) Protocol, Version 1.2

 RFC 5289 - TLS ECC Suites with SHA-256384 and AES GCM

The Cipher Suites in Schannel article describes the complete set of TLS cipher suites implemented in

Windows (reference: http://msdn.microsoft.com/en-

us/library/windows/desktop/aa374757(v=vs.85).aspx), of which the following are used in the evaluated

configuration:

 TLS_RSA_WITH_AES_128_CBC_SHA

 TLS_RSA_WITH_AES_256_CBC_SHA

 TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246

 TLS_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246

 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA as defined in RFC 4492

 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA as defined in RFC 4492

 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289

 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5289

 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC 5289.

When negotiating a TLS 1.2 elliptic curve cipher suite, Windows will include automatically as part of the

Client Hello message both its supported elliptic curves extension, i.e., secp256r1, secp384r1, and

secp521r1 as well as signature algorithm, i.e., SHA256, SHA384, and SHA512. Each Windows component

that uses TLS checks that the identifying information in the certificate matches what is expected, the

component should reject the connection, these checks include checking the expected Distinguished

Name (DN), Subject Name (SN), or Subject Alternative Name (SAN) attributes along with the applicable

extended key usages. The DN, and any Subject Alternative Name, in the certificate is checked against

the identity of the remote computer’s DNS entry or IP address to ensure that it matches as described at

http://technet.microsoft.com/en-us/library/cc783349(v=WS.10).aspx, and in particular the “Server

Certificate Message” section. A certificate the uses a wildcard in the leftmost portion of the resource

identifier (i.e., *.contoso.com) can be accepted for authentication, otherwise the certificate will be

deemed invalid. Windows does not provide a general-purpose capability to “pin” TLS certificates.

Windows implements HTTPS as described in RFC 2818 so that Windows Store and system applications

executing on the TOE can securely connect to external servers using HTTPS.

http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc3546.txt
http://www.ietf.org/rfc/rfc4366.txt
http://www.ietf.org/rfc/rfc4492.txt
http://www.ietf.org/rfc/rfc4681.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5289.txt
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374757(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374757(v=vs.85).aspx)
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374757(v=vs.85).aspx)
http://technet.microsoft.com/en-us/library/cc783349(v=WS.10).aspx

Windows 10 Security Target

Microsoft © 2016 Page 127 of 166

6.4.7.1.2 IPsec

The Windows IPsec implementation conforms to RFC 4301, Security Architecture for the Internet

Protocol.33 This is documented publicly in the Windows protocol documentation at section 7.5.1 IPsec

Overview.34 Windows implements both RFCS 2409, Internet Key Exchange (IKEv1), and RFC 4306,

Internet Key Exchange version 2, (IKEv2).35 User-mode applications, which include Windows Store

Applications, can transparently use IPsec networking services; networking traffic is isolated to the

Windows kernel and the IPsec, IPsec Policy Agent, and IKE and AuthIP Keying Module user-mode service

processes.

Section 6.5.4 describes which network traffic is not routed through the VPN.

6.4.8 SFR Mapping

The Cryptographic Support function satisfies the following SFRs:

 FCS_CKM.1(ASYM KA), FCS_CKM.2(ASYM AU): See Table 17 Cryptographic Algorithm

Standards and Evaluation Methods.

 FCS_CKM.1(384), FCS_CKM.1(704), FCS_CKM.2(GTK): Windows has a native implementation of

IEEE 802.11.

 FCS_CKM_EXT.1(TPM12), FCS_CKM_EXT.1(TPM20): The Windows devices in this evaluation use

a root key of trust which prevents exporting or tampering the REK. For TPM 1.2 systems, the

root encryption key is designated as the Storage Root Key in the TPM; for TPM 2.0 systems, the

root encryption key is designated as the Storage Primary Seed.

 FCS_CKM_EXT.2: All data encrypting keys are generated by the Windows RBG, which has an

input of at least 256 bits of entropy; the Windows 10 data encrypting key is 256 bits in the

evaluated configuration.

 FCS_CKM_EXT.3: Key encrypting keys have a security strength of 256 bits which is as strong as

the 256 bit disk encrypting key.

 FCS_CKM_EXT.4: Windows overwrites critical cryptographic parameters immediately after that

data is no longer needed.

 FCS_CKM_EXT.5: Windows will delete the authorization factor to prevent access to protected

data; after a wipe command Windows will format the user data partition to prevent access to

protected data.

 FCS_CKM_EXT.6: When Windows needs to generate a salt for any kind of signature generation

or key agreement, and to derive a key from a passphrase, it uses the Windows random bit

generator.

 FCS_COP.1(SYM): See Table 18 Cryptographic Algorithm Standards and Evaluation Methods.

 FCS_COP.1(HASH): See Table 19 Cryptographic Algorithm Standards and Evaluation Methods.

 FCS_COP.1(SIGN): See Table 20 Cryptographic Algorithm Standards and Evaluation Methods.

 FCS_COP.1(HMAC): See Table 21 Cryptographic Algorithm Standards and Evaluation Methods.

33

 Windows implements IPsec however it was not included in the Mobile Device Fundamentals PP evaluation because there is a
separate protection profile for IPsec VPN clients.
34

 Also available as [MS-WSO], Windows System Overview, page 43 for offline reading.
35

 [MS-IKEE], Internet Key Exchange Protocol Extensions, page 8.

http://www.ietf.org/rfc/rfc4301.txt
http://www.ietf.org/rfc/rfc4301.txt
http://msdn.microsoft.com/en-us/library/jj709814.aspx
http://msdn.microsoft.com/en-us/library/jj709814.aspx
http://www.ietf.org/rfc/rfc2409.txt
http://www.ietf.org/rfc/rfc4306.txt
http://msdn.microsoft.com/en-us/library/windows/hardware/ff556022(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff556022(v=vs.85).aspx
http://download.microsoft.com/download/5/0/1/501ED102-E53F-4CE0-AA6B-B0F93629DDC6/Windows/%5BMS-WSO%5D.pdf

Windows 10 Security Target

Microsoft © 2016 Page 128 of 166

 FCS_COP.1(PBKD32), FCS_COP.1(PBKD64): Windows implements a FIPS Approved

implementation of NIST SP 800-132.

 FCS_IV_EXT.1: When it is necessary to generate initialization vectors, Windows follows the

guidance in Table 14: References and IV Requirements for NIST-approved Cipher Modes.

 FCS_RBG_EXT.1: See Table 22 Cryptographic Algorithm Standards and Evaluation Methods.

 FCS_SRV_EXT.1: See section 6.4.2 Programming Interfaces.

 FCS_STG_EXT.1: Windows provides secure key storage for private (asymmetric) keys, secret

(symmetric) keys, and other data deemed by an authorized subject to require secure storage.

 FCS_STG_EXT.2: All keys in Windows are ultimately protected by the TPM-based root of trust for

the devices included in this evaluation.

 FCS_STG_EXT.3: Key encrypting keys are protected by AES- MAC (CCM) mode.

 FCS_TLS_EXT.1, FCS_TLS_EXT.2, FCS_HTTPS_EXT.1: Windows implements TLS 1.0, 1.1, and 1.2

to provide server and mutual authentication, confidentiality and integrity to upper-layer

protocols such as Extensible Authentication Protocol and HTTP.

6.5 User Data Protection

6.5.1 Restricting Access to System Services

Windows Store Apps that need programmatic access resources such as device peripherals must declare

the capabilities they require as part of the package manifest for the application. There are two types of

capabilities, the first is for developers who are registered as having individual accounts in the Windows

Store; the second kind is for developers who are registered as having company accounts in the Windows

Store. Applications from developers that are registered as companies can have additional capabilities.

The general-use capabilities that apply to most application scenarios are:

General-Use Capability Description

Music The musicLibrary capability provides programmatic access to the
user's Music, allowing the app to enumerate and access all files in the
library without user interaction. This capability is typically used in
jukebox apps that need to access the entire Music library.

Pictures The picturesLibrary capability provides programmatic access to the
user's Pictures, allowing the app to enumerate and access all files in
the library without user interaction. This capability is typically used in
photo playback apps that need to access the entire Pictures library.

Videos The videosLibrary capability provides programmatic access to the
user's Videos, allowing the app to enumerate and access all files in
the library without user interaction. This capability is typically used in
movie playback apps that need access to the entire Videos library.

Removable Storage The removableStorage capability provides programmatic access to
files on removable storage, such as USB keys and external hard drives,
filtered to the file type associations declared in the package manifest.
For example, if a DOC reader app declared a .doc file type association,
it can open .doc files on the removable storage device, but not other
types of files.

Windows 10 Security Target

Microsoft © 2016 Page 129 of 166

internetClient Can receive incoming data from the internet. Cannot act as a server.
No local network access.36

internetClientClientServer37 Can receive incoming data from the internet. Can act as a server. No
local network access.

Home and work networks The privateNetworkClientServer capability provides inbound and
outbound access to home and work networks through the firewall.
This capability is typically used for games that communicate across
the local area network (LAN), and for apps that share data across a
variety of local devices.
On Windows, this capability does not provide access to the internet.

Appointments The appointments capability provides access to the user’s
appointment store. This capability allows read access to
appointments obtained from the synced network accounts and to
other apps that write to the appointment store.

Contacts The contacts capability provides access to the aggregated view of the
contacts from various contacts stores. This capability gives the app
limited access (network permitting rules apply) to contacts that were
synced from various networks and the local contact store.

Code generation The codeGeneration capability allows apps to generate code
dynamically.

AllJoyn The allJoyn capability allows AllJoyn-enabled apps and devices on a
network to discover and interact with each other.
All apps that access APIs in the Windows.Devices.AllJoyn namespace
must use this capability.

Phone calls The phoneCall capability allows apps to access all of the phone lines
on the device and perform the following functions.

 Place a call on the phone line and show the system dialer
without prompting the user.

 Access line-related metadata.
 Access line-related triggers.

Allows the user-selected spam filter app to set and check block list
and call origin information.

Recorded Calls Folder The recordedCallsFolder device capability allows apps to access the
recorded calls folder.

User Account Information The userAccountInformation capability gives apps the ability to
access the user's name and picture.
This capability is required to access some APIs in the
Windows.System.User namespace.

VOIP calling The voipCall capability allows apps to access the VOIP calling APIs in
the Windows.ApplicationModel.Calls namespace.

3D Objects The objects3d capability allows apps to have programmatic access to

36

 This a “least privilege” security measure because many Windows Store Applications need only to receive or send
data to remote web services (e.g., social network sites or weather apps) and not communicate with other hosts on
the local network.
37

 Most Windows Store Apps that have a web service component will use internetClient. Apps that enable peer-to-
peer (P2P) scenarios where the app needs to listen for incoming network connections should use
internetClientServer.

https://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.alljoyn.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.calls.aspx

Windows 10 Security Target

Microsoft © 2016 Page 130 of 166

the 3D object files. This capability is typically used in 3D apps and
games that need access to the entire 3D objects library.

This capability is required to access the folder that contains the 3d
objects using APIs in the Windows.Storage namespace

Read Blocked Messages The blockedChatMessages capability allows apps to read SMS and
MMS messages that have been blocked by the Spam Filter app.

This capability is required to access the blocked messages using APIs
in the Windows.ApplicationModel.Chat namespace.

Chat Message Access The chat capability allows apps to read and delete Text Messages.
This capability also allows apps to store chat messages in the system
data store.
This capability is required to use some APIs in the
Windows.ApplicationModel.Chat namespace.

Table 23 General Use Capabilities

Device capabilities allow the Windows Store App to access peripheral and internal devices. Device

capabilities are specified with the DeviceCapability element in the app package manifest.

Device Capability Description

Location The location capability provides access to location functionality,
which you get from dedicated hardware like a GPS sensor in the PC or
is derived from available network info. Apps must handle the case
where the user has disabled location services from the Settings
charm.38

Microphone The microphone capability provides access to the microphone’s audio
feed, which allows the app to record audio from connected
microphones. Apps must handle the case where the user has disabled
the microphone from the Settings charm.

Proximity The proximity capability enables multiple devices in close proximity
to communicate with one another. This capability is typically used in
casual multi-player games and in apps that exchange information.
Devices attempt to use the communication technology that provides
the best possible connection, including Bluetooth, Wi-Fi, and the
internet. This capability is used only to initiate communication
between the devices.

Webcam The webcam capability provides access to the video feed of a built-in
camera or external webcam, which allows the app to capture photos
and videos. On Windows, apps must handle the case where the user
has disabled the camera from the Settings charm.

USB The usb device capability enables access to APIs in the
Windows.Devices.Usb namespace.

Human interface device
(HID)

The humaninterfacedevice device capability enables access to APIs in
the Windows.Devices.HumanInterfaceDevice namespace. This

38

 A charm is an admin tool available by opening the Windows Settings page by swiping from the left side of the
screen.

https://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.chat.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.usb.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.humaninterfacedevice.aspx

Windows 10 Security Target

Microsoft © 2016 Page 131 of 166

namespace enables the Windows Store App to access devices that
support the Human Interface Device (HID) protocol.

Bluetooth GATT The bluetooth.genericAttributeProfile device capability enables
access to APIs in the
Windows.Devices.Bluetooth.GenericAttributeProfile namespace.
This namespace enables the Windows Store App to access Bluetooth
LE devices through a collection of primary services, included services,
characteristics, and descriptors.

Bluetooth RFCOMM The bluetooth.rfcomm device capability enables access to APIs in the
Windows.Devices.Bluetooth.Rfcomm namespace. This namespace
supports the Basic Rate/Extended Data Rate (BR/EDR) transport and
also enables the Windows Store App to access a device that
implements Serial Port Profile (SPP).

Point of Service (POS) The pointOfService device capability enables access to APIs in the
Windows.Devices.PointOfService namespace. This namespace lets
the app access Point of Service (POS) barcode scanners and magnetic
stripe readers. The namespace provides a vendor-neutral interface
for accessing POS devices from various manufacturers from a
Windows Store app.

Bluetooth The bluetooth device capability allows apps to communicate with
already paired bluetooth devices.
This capability is required to use some APIs in
theWindows.Devices.Bluetooth namespace.

Wi-Fi Networking The wiFiControl device capability allows apps to scan and connect to
Wi-Fi networks.
This capability is required to use some APIs in
theWindows.Devices.WiFi namespace.

Radio state The radios device capability allows apps to toggle the Wi-Fi and
Bluetooth radios.
This capability is required to use the APIs in the
Windows.Devices.Radios namespace.

Optical disc The optical device capability allows apps to access functions on
optical disk drives such as CD, DVD, and Blu-ray.
This capability is required to use some APIs in the
Windows.Devices.Custom namespace.

Motion activity The activity device capability allows apps to detect the current
motion of the device.
This capability is required to use some APIs in the
Windows.Devices.Sensors namespace.

Table 24 Device Capabilities

There are additional special and restricted capabilities associated with Windows Store Applications

which are intended for very specific scenarios. Use of these capabilities are highly restricted and subject

to additional onboarding policy and review before the App is published to the Windows Store. Apps that

apply the special-use capabilities require a company account to submit them to the Store. In contrast,

restricted capabilities do not require a special company account for the Store, they are not available for

https://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.bluetooth.genericattributeprofile.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.bluetooth.rfcomm.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.pointofservice.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.bluetooth.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.wifi.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.radios.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.custom.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.devices.sensors.aspx

Windows 10 Security Target

Microsoft © 2016 Page 132 of 166

developers to use. Restricted capabilities are available only to apps that are developed by Microsoft and

its partners.

Special-Use Capability Description

Enterprise authentication Windows domain credentials, which are domain username and
password for a particular user, enable the user to log into remote
resources using their credentials, and act as if a user provided their
user name and password. The enterpriseAuthentication capability is
typically used in line-of-business apps that connect to servers within
an enterprise and is not needed for basic communications over the
Internet.
The Enterprise Authentication capability allows a Windows Store App
to use the Credential Manager when prompted for domain
credentials.

Shared User Certificates The sharedUserCertificates capability enables a Windows Store
Application to access software and hardware certificates, such as
certificates stored on a smart card, the certificate is stored in the
user’s DPAPI profile location instead of the DPAPI profile associated
with the Windows Store Application

Documents The documentsLibrary capability provides programmatic access to
the user's Documents, filtered to the file type associations declared in
the package manifest, to support offline access to OneDrive. For
example, if a DOC reader app declared a .doc file type association, it
can open .doc files in Documents, but not other types of files.

Table 25 Special Use Capabilities

As part of installing a Windows Store Application, the user is prompted to authorize the use of the

capability by the App, after the App has been installed is it allowed to access the capability when

running on behalf of the user. When an App requests to access a resource that is managed by a

capability, the Windows App Container, checks if the App has been authorized access, according to the

installed package manifest, and then provides mediated access to the resource. In addition to the

application-level isolation, Windows also restricts access to hardware resources through the

discretionary access control security policy and kernel-mode / user-mode architecture described in the

Windows 8 Server 2012 Security Target.

6.5.2 Data at Rest Protection

The entire storage volume is protected by BitLocker full disk encryption, this includes user data,

Windows configuration (TSF) data, and all programs other than the BitLocker programs needed to

unlock the drive. BitLocker uses AES CBC mode with an administrator-specified 128- or 256-bit blocks for

Windows 10. The administrative guidance recommends using AES 256.

When the local administrator decides to wipe the device, or the IT administrator decides to wipe the

device using a MDM, Windows will delete the BitLocker metadata, which includes the authorization

factors that unlock the device. Without the BitLocker metadata, the encrypted data on the storage

volume is effectively wiped. The wiping of the BitLocker metadata from flash memory on Windows 10 is

performed by first overwriting the metadata with zeros followed by a read-verify. After deleting the

https://www.niap-ccevs.org/st/st_vid10520-st.pdf
https://www.niap-ccevs.org/st/st_vid10540-st.pdf

Windows 10 Security Target

Microsoft © 2016 Page 133 of 166

metadata, Windows will reboot and install a fresh copy of the operating system from a recovery

partition.

6.5.3 Certificate Storage

The MDF PP defines the Trust Anchor Database as “[a] list of trusted root Certificate Authority

certificates”. In a Windows OS, these certificates are known as trusted root certificates, which are

contained in certificate stores. Each user has their own certificate store and there is a certificate store

for the computer account; access to a certificate store is managed by the discretionary access control

policy in Windows such that only the authorized administrator, i.e., the user or the local administrator,

can add or remove entries.39 Certificates which are used by applications, for example, TLS, are also

placed in certificate stores for the user.

In addition to the standard certificate revocation processes, application certificates can be loaded by

either using administrative tools such as certutil.exe, changes to the trusted root certificates can be

made using Certificate Trust Lists.

6.5.4 VPN Client

The Windows IPsec VPN client can be configured by the device local administrator or the MDM IT

administrator, when the device is enrolled.40 The administrator can also configure the IPsec VPN client

that all IP traffic is routed through the IPsec tunnel except for:

 IKE traffic used to establish the VPN tunnel

 IPv4 ARP traffic for resolution of local network layer addresses and to establish a local address

 IPv6 NDP traffic for resolution of local network layer addresses and to establish a local address

The IPsec VPN is an end-to-end internetworking technology and so VPN sessions can be established over

physical network protocols such as wireless LAN (Wi-Fi) or local area network.

The components responsible for routing IP traffic through the VPN client:

 The IPv4 / IPv6 network stack in the kernel processes ingoing and outgoing network traffic.

 The IPsec and IKE and AuthIP Keying Modules service which hosts the IKE and Authenticated

Internet Protocol (AuthIP) keying modules. These keying modules are used for authentication

and key exchange in Internet Protocol security (IPsec).

 The Remote Access Service device driver in the kernel, which is used primarily for VPN

connections; known as the “RAS IPsec VPN” or “RAS VPN”.

 The IPsec Policy Agent service which enforces IPsec policies.

In addition to the native IPsec VPN Client described above, developers can implement their own VPN

client if authorized by Microsoft to use the networkingVpnProvider capability.41

39

 Refer to the Windows 8 Operating System Protection Profile evaluation for more information about the
discretionary access control policy.
40

 Windows implements IPsec however it was not included in the Mobile Device Fundamentals PP evaluation because there is a
separate protection profile for IPsec VPN clients.
41

 See https://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.vpn.aspx.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa376545(v=vs.85).aspx

Windows 10 Security Target

Microsoft © 2016 Page 134 of 166

6.5.5 SFR Mapping

The User Data Protection function satisfies the following SFRs:

 FDP_ACF_EXT.1: Through the use of capabilities that Windows Store Applications request during

installation, Windows restricts system services to Apps.

 FDP_DAR_EXT.1: All user data and all Windows data is encrypted on the device.

 FDP_STG_EXT.1: Windows provides a trusted and secure store for certificates.

 FDP_IFC_EXT.1: Windows provides a VPN Client.

 FDP_UPC_EXT.1: Windows provides network transport for TLS, HTTPS, Bluetooth BR/EDR LE

that applications can use to ensure communications confidentiality and integrity.

 FDP_BLT_EXT.1: Windows uses the device capabilities described in section 6.5.1 to restrict

access to Bluetooth devices.

6.6 Identification and Authentication
All logons are treated essentially in the same manner regardless of their source (e.g., interactive logon,

network interface, internally initiated service logon) and start with an account name, domain name

(which may be NULL; indicating the local system), and credentials that must be provided to the TSF.

The Local Security Authority component within Windows maintains a count of the consecutive failed

logon attempts by security principals from their last successful authentication. When the number of

consecutive failed logon attempts is larger than the policy for failed logon attempts, which ranges from

0 (never lockout the account) to 999, Windows 10 will lockout the user account. Windows persists the

number of consecutive failed logons on for the user and so rebooting the computer does not reset the

failed logon counter. Interactive logons are done on the secure desktop, which does not allow other

programs to run, and therefore prevents automated password guessing. In addition, the Windows logon

component enforces a one second delay between every failed logon with an increased delay after

several consecutive logon failures.

The Windows implementation of Bluetooth follows the Bluetooth SIG Specification, including OBEX data

transfer, RFCOMM, L2CAP, and OPP (object push profile). The OBEX specification, which Windows

implements, prevents any transfer of user data until both Bluetooth devices have paired, which requires

authorization by the Windows user. When a Windows OS encounters an unpaired device, it does not

transfer any data to the unpaired device. When paired to a Bluetooth device will reject connection

attempts from other devices that purport to use the same Bluetooth address as the connected device.

6.6.1 Protecting User Data

Windows protects user data with BitLocker, which encrypts the entire device; the user’s persistent keys

and secrets additionally protected by DPAPI. At the most basic level, all data on stored on the device is

encrypted by BitLocker using FIPS Approved symmetric encryption algorithms. During boot, Windows

will derive disk encryption keys (DEK) and key encryption keys (KEK) based on the BitLocker

authorization factors that unlock the device; the administrative guidance for Windows 10 includes the

configuration for an additional BitLocker authorization factors which is a device password, technically

known as the “Enhanced PIN”, that includes uppercase and lowercase English letters, symbols on an EN-

US keyboard, numbers, special characters and spaces. The system and user (protected) data remains

encrypted in non-volatile storage, the file system device driver uses the BitLocker FVEK (a DEK) to

Windows 10 Security Target

Microsoft © 2016 Page 135 of 166

decrypt the data as it is loaded into volatile storage. The only time user (protected) data is decrypted is

after the user authenticates by providing their Enhanced PIN password. The logon password is used to

derive the DPAPI secret (a KEK) which provides an additional layer of protection for certain user data,

including keys.

6.6.2 X.509 Certificate Validation and Generation

Every Windows component that uses X.509 certificates is responsible for performing certificate

validation, however all components use a common subcomponent, which validates certificates as

described in RFC 5280 including all applicable usage constraints such as Server Authentication for

networking sessions and Code Signing when installing product updates. Every component that uses

X.509 certificates will have a repository for public certificates and will select a certificate based on

criteria such as entity name for the communication partner, any extended key usage constraints, and

cryptographic algorithms associated with the certificate.

If certificate validation fails, or if Windows is not able to check the validation status for a certificate,

Windows will not establish a trusted network channel, however it will inform the user and seek their

consent before establishing a HTTPS web browsing session. Certification validation for updates to

Windows, mobile applications, and integrity verification is mandatory, neither the administrator nor the

user have the option to bypass the results of a failed certificate validation; software installation and

updates is further described in Windows and Application Updates.

When Windows needs to generate a certificate enrollment request it will include a distinguished name,

information about the cryptographic algorithms used for the request, any certification extensions, and

information about the client requesting the certificate.

Universal Windows Applications can use these interfaces to check the validity of certificates:

 Certificate.BuildChainAsync

 CertificateChain. Validate

6.6.3 SFR Mapping

 FIA_AFL_EXT.1: After the number of consecutive failed authentication attempts for a user

account has been surpassed, Windows 10 can be configured to wipe the device.

 FIA_BLT_EXT.1, FPT_BLT_EXT.1: Windows requires Bluetooth mutual authentication between

the Windows device and the remote device prior to any data transfer over the Bluetooth

connection because all Bluetooth profiles are disabled without an explicit authorization by the

user. The collection of Windows 10 supported Bluetooth profiles is documented at

http://windows.microsoft.com/en-us/windows-10/supported-bluetooth-profiles. Windows 10

operates at security mode 2, service level enforced security, and Bluetooth services proffered by

Windows are at the “authorization and authentication” level.

 FIA_PAE_EXT.1: Windows conforms to IEEE 802.1X as a Port Access Entity acting in the

Supplicant role.

 FIA_PMG_EXT.1: Windows devices support logon passwords at least 14 characters in length to

as long as 127 characters. Windows 10 logon passwords can be composed from uppercase

characters, lowercase characters, digits, and special characters to be used in passwords.

http://tools.ietf.org/html/rfc5280
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificate.buildchainasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn279161.aspx
http://windows.microsoft.com/en-us/windows-10/supported-bluetooth-profiles

Windows 10 Security Target

Microsoft © 2016 Page 136 of 166

 FIA_TRT_EXT.1: Windows logon component enforces a one second delay between every failed

logon.

 FIA_UAU.7: During an interactive logon, Windows echoes the users password with “*”

characters to prevent disclosure of the user’s password.

 FIA_UAU_EXT.1: The user must authenticate successfully during interactive logon and prior to

decryption of any user data stored on the device.

 FIA_UAU_EXT.2: The only actions that an unauthorized user can take when a Windows device is

locked is to bring up the authentication dialog or turn the device off.

 FIA_UAU_EXT.3: Windows requires that a user provide the correct password prior to changing

their password and when unlocking their device.

 FIA_X509_EXT.1, FIA_X509_EXT.3: Windows validates X.509 certificates according to RFC 5280

and provides OCSP and CRL services for applications to check certificate revocation status.

 FIA_X509_EXT.2: Windows uses X.509 certificates for EAP-TLS exchanges, TLS, HTTPS, code

signing for system software updates, code signing for mobile applications, and code signing for

integrity verification.

6.7 Security Management
The complete set of management functions are described in , the following table maps which activities

can be done by the device user (who is considered to be a standard user in a Windows client OS), the

device administrator (who is considered to be a local administrator), and invoked by a mobile device

manager. A checkmark indicates which entity can invoke the management function. A person who uses

a Windows 10 device may either be a standard user or a local administrator depending on the kind of

user account created for the person. In the terminology of the MDF PP, the device user corresponds to

the FMT_MOF_EXT.1.1 requirement and the (device) local administrator or the MDM Agent corresponds

to the FMT_MOF_EXT.1.2 requirement because the latter refers to management capabilities after a

device has been enrolled into a MDM.

Standard users, or programs running on their behalf, are not able to modify policy or configuration that

is set by the administrator, the result is that the user cannot override the configuration specified by the

administrator.

Management Function FMT_SMF
EXT.1

FMT_MOF
EXT.1.1

Admin FMT_MOF
EXT.1.2

1. configure password policy:
a. minimum password length42
b. minimum password complexity43
c. maximum password lifetime44

M √ √

2. configure session locking policy:
a. screen-lock enabled/disabled
b. screen lock timeout45

M √ √

42

 The minimum password length can range from 1 to 14 characters.
43

 The complexity requirements include English upper and lowercase characters from A- Z, base 10 digits, non-
alphabetic characters, from three of these four categories.
44

 The password lifetime can range from 1 to 999 days.

Windows 10 Security Target

Microsoft © 2016 Page 137 of 166

Management Function FMT_SMF
EXT.1

FMT_MOF
EXT.1.1

Admin FMT_MOF
EXT.1.2

c. number of authentication failures

3. enable/disable the VPN protection:
a. across device
[
b. on a per-app basis
c. no other method]

M √ √

4. enable/disable [GPS,46 Wi-Fi, Bluetooth,
mobile broadband]47

M √ √

5. enable/disable [camera, microphone]:
a. across device
[
b. on a per-app basis
c. no other method]

M √ √

6. specify wireless networks (SSIDs) to
which the TSF may connect

M √ √

7. configure security policy for each wireless
network: 48
a. [specify the CA(s) from which the TSF

will accept WLAN authentication
server certificate(s), specify the
FQDN(s) of acceptable WLAN
authentication server certificate(s)]

b. security type
c. authentication protocol
d. client credentials to be used for

authentication

M √ √

8. transition to the locked state M √ √

9. TSF wipe of protected data M √

10. configure application installation policy
by [
a. restricting the sources of

applications,
b. specifying a set of allowed

applications based on [assignment:
application characteristics] (an
application whitelist),

c. denying installation of applications]

M √ √

45

 The timeout can range from 1 minute to 9999 minutes with a default value of 15 minutes.
46

 Every device used in this evaluation has a GPS radio which provides location services.
47

 By design enabling/disabling the broadband connection can only be done by the local user and not the mobile
device manager.
48

 The configuration data for the Wi-Fi settings can be set by the MDM, the policy is enforced when the computer
connects to the Wi-Fi network.

Windows 10 Security Target

Microsoft © 2016 Page 138 of 166

Management Function FMT_SMF
EXT.1

FMT_MOF
EXT.1.1

Admin FMT_MOF
EXT.1.2

11. import keys/secrets into the secure key
storage

M √ √
-

12. destroy imported keys/secrets and [[any
other keys/secrets]] in the secure key
storage

M √ √
-

13. import X.509v3 certificates into the Trust
Anchor Database

M √ √

14. remove imported X.509v3 certificates
and [[all X.509v3 certificates]] in the
Trust Anchor Database

M √

15. enroll the TOE in management M √ -
-

16. remove applications M √ √

17. update system software M √ √

18. install applications M √ √

19. remove Enterprise applications M √ √

20. configure the Bluetooth trusted
channel:49
a. disable/enable the Discoverable

mode (for BR/EDR)
b. change the Bluetooth device name

M √ √

[
c. allow/disallow additional wireless
technologies to be used with Bluetooth,
d. disable/enable Advertising (for LE),
e. disable/enable the Connectable mode
f. disable/enable the Bluetooth services
and/or profiles available on the device,
g. specify minimum level of security for
each pairing ,
h. configure allowable methods of Out of
Band pairing
i. no other Bluetooth configuration]

 √

21. enable/disable display notification in the
locked state of: [
a. email notifications,
b. calendar appointments,
c. contact associated with phone call

notification,
d. text message notification,

M √

49

 Windows does not place any restrictions for the kinds of supported Bluetooth profiles and provides an
implementation of Bluetooth Discoverable mode and Low Energy (LE) mode.

Windows 10 Security Target

Microsoft © 2016 Page 139 of 166

Management Function FMT_SMF
EXT.1

FMT_MOF
EXT.1.1

Admin FMT_MOF
EXT.1.2

e. other application-based
notifications,

f. all notifications]

22. enable/disable all data signaling over
[USB hardware ports]50

O √ √

23. enable/disable [none] O

24. enable/disable developer modes O √ √

25. enable data-at rest protection O √ √

26. enable removable media’s data-at-rest
protection

O √ √

27. enable/disable bypass of local user
authentication

O O O O

28. wipe Enterprise data O √ √

29. approve [import, removal] by
applications of X.509v3 certificates in the
Trust Anchor Database

O O O O

30. configure whether to establish a trusted
channel or disallow establishment if the
TSF cannot establish a connection to
determine the validity of a certificate

M √ √

31. enable/disable the cellular protocols
used to connect to cellular network base
stations51

O √

32. read audit logs kept by the TSF O √ √

33. configure [certificate] used to validate
digital signature on applications

O √ √

34. approve exceptions for shared use of
keys/secrets by multiple applications

O O √ √

35. approve exceptions for destruction of
keys/secrets by applications that did not
import the key/secret

M √ √

36. configure the unlock banner52 O √ √

37. configure the auditable items O - √

38. retrieve TSF-software integrity
verification values53

O √

50

 All of the devices in this evaluation have an external USB interface which can be used for data transfer.
51

 The LTE broadband protocol in the Surface 3 LTE device can be disabled, the other devices in this evaluation do
not include a broadband modem.
52

 The banner can use any text string.
53

 For TPM 2.0 devices only.

Windows 10 Security Target

Microsoft © 2016 Page 140 of 166

Management Function FMT_SMF
EXT.1

FMT_MOF
EXT.1.1

Admin FMT_MOF
EXT.1.2

39. enable/disable [selection:
a. USB mass storage mode,
b. USB data transfer without user

authentication,
c. USB data transfer without

authentication of the connecting
system]

O O O O

40. enable/disable backup to [remote
system]54

O √ √

41. enable/disable [selection:
a. Hotspot functionality

authenticated by [pre-shared
key, passcode, no
authentication],

b. USB tethering authenticated by
[pre-shared key, passcode, no
authentication]]

O O O O

42. approve exceptions for sharing data
between [selection: application
processes, groups of application
processes]

O O O O

43. place applications into application
process groups based on [assignment:
application characteristics]

O O O O

44. enable/disable location services:
a. across device

[
b. on a per-app basis
c. no other method]

M √ √

45. [none] O O O O

Table 26 Mobile Device Management Capabilities

The system administrator, through local or group policy or through a MDM, can restrict which

applications are installed on the computer by limiting the sources the user is allowed to install

applications from and preventing specific applications from being installed. A user is able to uninstall any

applications they installed themselves, applications which were installed by the administrator (locally or

initiated by a MDM) cannot be removed by the user.55

6.7.1 SFR Mapping

The Security Management function satisfies the following SFRs:

54

 The user can enable/disable backup to a remote system using the “Sync My Settings” settings page. .
55

 The MDF PP designates Enterprise Applications as “Applications that are provided and managed by the
enterprise”, which correspond to applications which are installed by an administrator of the Windows computer.

Windows 10 Security Target

Microsoft © 2016 Page 141 of 166

 FMT_MOF_EXT.1: Windows provides the user with the capability to administer the security

functions described in the security target. The mappings to specific functions are described in

each applicable section of the TOE Summary Specification.

 FMT_SMF_EXT.1: Windows provides the management functions that are described by

FMT_SMF_EXT.1.1.

 FMT_SMF_EXT.2: After unenrollment, Windows will remove enterprise applications and inform

the administrator that the device is no longer enrolled.

6.8 Protection of the TSF

6.8.1 Separation and Domain Isolation

The TSF provides a security domain for its own protection and provides process isolation. The security

domains used within and by the TSF consists of the following:

 Hardware

 Virtualization Partitions

 Kernel-mode software

 Trusted user-mode processes

 User-mode Administrative tools process

 Application Containers

The TSF hardware is managed by the TSF kernel-mode software and is not modifiable by untrusted

subjects. The TSF kernel-mode software is protected from modification by hardware execution state

and protection for both physical memory and memory allocated to a partition; an operating system

image runs within a partition. The TSF hardware provides a software interrupt instruction that causes a

state change from user mode to kernel mode within a partition. The TSF kernel-mode software is

responsible for processing all interrupts, and determines whether or not a valid kernel-mode call is

being made. In addition, the TSF memory protection features ensure that attempts to access kernel-

mode memory from user mode results in a hardware exception, ensuring that kernel-mode memory

cannot be directly accessed by software not executing in the kernel mode.

The TSF provides process isolation for all user-mode processes through private virtual address spaces

(private per process page tables), execution context (registers, program counters), and security context

(handle table and token). The data structures defining process address space, execution context and

security context are all stored in protected kernel-mode memory. All security relevant privileges are

considered to enforce TSF Protection.

User-mode administrator tools execute with the security context of the process running on behalf of the

authorized administrator. Administrator processes are protected like other user-mode processes, by

process isolation.

Application Containers (“App Containers”) provide an execution environment for Universal Windows

Applications which prevents Universal Windows Applications from accessing data created by other

Windows 10 Security Target

Microsoft © 2016 Page 142 of 166

Universal Windows Applications except through brokered operating system services such as the File

Picker dialog.56

By definition, Universal Windows Applications do not have the capability to launch (“execute” in the

language of the MDF PP) other programs, the application can read or write to a file.

Like TSF processes, user processes also are provided a private address space and process context, and

therefore are protected from each other. Additionally, the TSF has the added ability to protect memory

pages using Data Execution Prevention (DEP) which marks memory pages in a process as non-executable

unless the location explicitly contains executable code. When the processor is asked to execute

instructions from a page marked as data, the processor will raise an exception for the OS to handle.

The TSF implements cryptographic mechanisms within a distinct user-mode process, where its services

can be accessed by both kernel- and user-mode components, in order to isolate those functions from

the rest of the TSF to limit exposure to possible errors while protecting those functions from potential

tampering attempts.

Furthermore, the TSF includes a Code Integrity Verification feature, also known as Kernel-mode code

signing (KMCS), whereby device drivers will be loaded only if they are digitally signed by either Microsoft

or from a trusted root certificate authority recognized by Microsoft. KMCS uses public-key cryptography

technology to verify the digital signature of each driver as it is loaded. When a driver tries to load, the

TSF decrypts the hash included with the driver using the public key stored in the certificate. It then

verifies that the hash matches the one that it computes based on the driver code using the FIPS -

certified cryptographic libraries in the TSF. The authenticity of the certificate is also checked in the same

way, but using the certificate authority's public key, which must be configured in and trusted by the

TOE.

6.8.1.1 Supporting Hardware

The devices used in the evaluation have the following characteristics:

6.8.1.1.1 Processor and Memory

Device Processor Hardware Specifications

Microsoft Surface Pro 3 Intel Core i7-4650U http://www.intel.com/content/www/us/en/pro
cessors/core/4th-gen-core-family-mobile-u-y-
processor-lines-vol-1-datasheet.html
 (See section 2.1 System Memory Interface for
MMU description and section 3.9 for description
of enforcement of read, write and execute
permissions with support from Execute Disable
Bit technology. The Execute Disable Bit is used
to segregate areas of memory for use by either
storage of processor instructions for execution
of code or by storage of data for read/write
access)

Surface 3 and Surface 3 Intel Atom Z8700 http://www.intel.com/content/www/us/en/pro

56

 This would be considered “private data” in the terminology of the MDF PP.

http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-family-mobile-u-y-processor-lines-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-family-mobile-u-y-processor-lines-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-family-mobile-u-y-processor-lines-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/atom/atom-z8000-datasheet-vol-1.html

Windows 10 Security Target

Microsoft © 2016 Page 143 of 166

LTE cessors/atom/atom-z8000-datasheet-vol-1.html
See section 8 System Memory Controller for
MMU description.

http://www.intel.com/support/processors/sb/C

S-031505.htm

(See “Execute Disable Bit” section description

and “This applies to” reference that includes the

“Intel® Atom™ Processor” family. The Execute

Disable Bit is used to segregate areas of memory

for use by either storage of processor

instructions for execution of code or by storage

of data for read/write access.)

SoC

 Max freq.: 1.6GHz base, 2.4GHz Burst mode

 L3 Cache: 2MB

 Cores: Quad core (no Hyperthreading)

 Gfx execution units / freq.: 16 / 600
(400MHz nominal)

Memory

 Memory support: 2 and 4 GB SKUs available
using LPDDR3 1600 memory

Storage

 Storage: 64GB and 128GB SKUs available
using eMMC storage

GPU

 Gen8 PL Arch. DX11
Wireless

 Marvell 88W8897: 802.11a/b/g/n/ac 2x2
MIMO, Bluetooth 4.0

Lenovo X1 Carbon Intel Core i7-3667U http://www.intel.com/content/www/us/en/pro
cessors/core/3rd-gen-core-desktop-vol-1-
datasheet.html
(See section 2.1 System Memory Interface for
MMU description and the “Execute Disable Bit”
term in Table 1-2 Terminology for description of
enforcement of read, write and execute
permissions with support from Execute Disable
Bit technology. The Execute Disable Bit is used
to segregate areas of memory for use by either
storage of processor instructions for execution
of code or by storage of data for read/write
access)

Dell Venue 8 Pro Tablet Intel Atom Z3740D https://www-
ssl.intel.com/content/www/us/en/processors/at

http://www.intel.com/content/www/us/en/processors/atom/atom-z8000-datasheet-vol-1.html
http://www.intel.com/support/processors/sb/CS-031505.htm
http://www.intel.com/support/processors/sb/CS-031505.htm
http://www.intel.com/content/www/us/en/processors/core/3rd-gen-core-desktop-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/core/3rd-gen-core-desktop-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/core/3rd-gen-core-desktop-vol-1-datasheet.html
https://www-ssl.intel.com/content/www/us/en/processors/atom/atom-z36xxx-z37xxx-datasheet-vol-1.html
https://www-ssl.intel.com/content/www/us/en/processors/atom/atom-z36xxx-z37xxx-datasheet-vol-1.html

Windows 10 Security Target

Microsoft © 2016 Page 144 of 166

om/atom-z36xxx-z37xxx-datasheet-vol-1.html
(See section 4 System Memory Controller for
MMU description)

http://www.intel.com/support/processors/sb/C

S-031505.htm

(See “Execute Disable Bit” section description

and “This applies to” reference that includes the

“Intel® Atom™ Processor” family. The Execute

Disable Bit is used to segregate areas of memory

for use by either storage of processor

instructions for execution of code or by storage

of data for read/write access.)

HP Pro x2 612
Notebook PC

Intel Core i5-4302Y http://www.intel.com/content/www/us/en/pro
cessors/core/4th-gen-core-family-desktop-vol-1-
datasheet.html
(See System Memory Interface)

Panasonic FZ-G1
Toughpad

Intel Core i5-5300U http://www.intel.com/content/www/us/en/pro
cessors/core/4th-gen-core-family-desktop-vol-1-
datasheet.html
(See System Memory Interface)

Table 27 Supporting Hardware Specifications

6.8.1.1.2 Frequency Ranges

Device Wi-Fi Bluetooth Broadband

Microsoft Surface Pro
3, Surface 3 and
Surface 3 LTE

2412 MHz – 2462 MHz
5180 – 5320 MHz
5500 MHz – 5700 MHz
5745 MHz – 5855 MHz

2402 MHz – 2480 MHz Band 1: 1920-1980MHz
Band 2: 1850-1910MHz
Band 3: 1710-1785MHz
Band 4: 1710-1755MHz
Band 5: 824-849MHz
Band 7: 2500-2570MHz
Band 8: 880-915MHz
Band 13: 777-787MHz
Band 17: 704-716MHz
Band 20: 832-860MHz

Lenovo X1 Carbon 2402 – 2480 MHz
5180 – 5320 MHz
5500 – 5720 MHz
5745 – 5825 MHz

2400 – 2485 MHz N.A.

Dell Venue 8 Pro Tablet 2412 – 2484 MHz
5180 – 5925 MHz

2400 – 2480 MHz N.A.

HP Pro x2 612
Notebook PC

2402 – 2482 MHz
4900 – 4950 MHz
5150 – 5250 MHz
5250 – 5350 MHz
5470 – 5725 MHz
5825 – 5850 MHz

2402 – 2480 MHz N.A.

https://www-ssl.intel.com/content/www/us/en/processors/atom/atom-z36xxx-z37xxx-datasheet-vol-1.html
http://www.intel.com/support/processors/sb/CS-031505.htm
http://www.intel.com/support/processors/sb/CS-031505.htm
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-family-desktop-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-family-desktop-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-family-desktop-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-family-desktop-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-family-desktop-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-family-desktop-vol-1-datasheet.html

Windows 10 Security Target

Microsoft © 2016 Page 145 of 166

Panasonic FZ-G1
Toughpad

2410 –2450 MHz
5150 – 5250 MHz
5250 – 5350 MHz
5500 – 5600 MHz
5745 – 5800 MHz

2402 – 2480 MHz N.A.

6.8.1.1.3 Mobile Broadband Isolation

On Windows devices that have a cellular modem57, the device cellular modem and the processor58 are

separated..

None of the devices used in this evaluation include the ability to initiate or receive telephony calls and

so the devices do not contain a dialer or any USSD or MMI codes.

Windows does not have an “auxiliary boot mode” that is distinctly used by a wired interface.59

6.8.2 Protection from Implementation Weaknesses

Windows runs on processors that provide support for virtual memory and enforce restrictions to read,

write, and execute pages of virtual and physical memory. Collectively, this is known as Data Execution

Prevention (DEP). On Intel platforms, DEP is called NX (no execute).

Windows provides a default heap allocator for use by user-mode processes; Windows applications can

use the default heap or implement their own allocator. The heap is managed with a collection of

metadata (which isn’t pre-allocated to a specific address), with integrity protection provided by internal

checksums and encoding the metadata. If the heap detects corruption due to a heap overrun (e.g.

integrity checks fail), and heap termination on corruption is enabled for the process, then the process is

immediately terminated.

The Windows kernel, user-mode applications, and all Windows Store Applications implement Address

Space Layout Randomization (ASLR) in order to load executable code at unpredictable base addresses.

The base address is generated using a pseudo-random number generator that is seeded by high quality

entropy sources when available which provides at least 8 random bits for memory mapping. 60

The Windows runtime also provides stack buffer overrun protection capability that will terminate a

process after Windows detects a potential buffer overrun on the thread’s stack by checking canary

values in the function prolog and epilog as well as reordering the stack. All Windows binaries and

Windows Store Applications implement stack buffer overrun protection by being complied with the /GS

option, which is used for all Windows binaries; and checking that all Windows Store Applications are

compiled with buffer overrun protection before ingesting the Windows Store Application into the

Windows Store.

To enable these protections using the Microsoft Visual Studio development environment, programs are

complied with /DYNAMICBASE option for ASLR, and optionally with /HIGHENTROPYVA for 64-bit ASLR,

57

 A “baseband processor” in MDF PP terminology.
58

 An “application processor” in MDF PP terminology.
59

 See page 106 of the MDF PP for details about “auxiliary boot mode”.
60

 The PRNG is seeded by the TPM RBG, the RDRAND instruction and other sources.

Windows 10 Security Target

Microsoft © 2016 Page 146 of 166

or /NXCOMPAT:NO to opt out of software-based DEP, and /GS (switched on by default) for stack buffer

overrun protection.

Windows Store Applications are compiled with the /APPCONTAINER option which builds the executable

to run in a Windows appcontainer, to run with the user-mode protections described in this section.

6.8.3 Time Service

Each hardware platform supported by the TOE includes a real-time clock as the primary time source.

The real-time clock is a device that can only be accessed using functions provided by the TSF and serves

as the reference clock that maintains the system time. Specifically, the TSF provides functions that allow

users, including the TSF itself, to query and set the clock, as well as functions to synchronize clocks

within a domain. The ability to query the clock is unrestricted, while the ability to set the clock requires

the SeSystemtimePrivilege. This privilege is only granted to authorized administrators to protect the

integrity of the time service.

Synchronizing the clocks within a managed Windows deployment is critical for cross-machine

communications and correlating activities which occur on multiple computers. Accuracy (which the NIAP

OS PP describes as “reliable and monotonically increasing” is described in How the Windows Time

Service Works. In addition this communications path can be protected using IPsec between the

computers in the Active Directory domain.

How To Configure an Authoritative Time Server in Windows Server describes additional steps a domain

administrator can take to explicitly specify the reference clock for the domain or an arbitrary NTP server.

If Windows connects to a broadband network, it will use the network’s time server as a secondary time

server in the same manner as a domain or a NTP time source.

Windows capabilities that are included in the OS protection profile evaluation which use the centralized

(i.e., reliable) time service are:

 Audit record generation

 Network expirations for authentication and data access

 Session timeout and screen locking

 X.509 certificate generation, revocation, and expiration

These capabilities use the interfaces described at http://msdn.microsoft.com/en-

us/library/ms725473(v=vs.85).aspx. Public documentation about time functions in Windows is located at

http://msdn.microsoft.com/en-us/library/ms724962(v=vs.85).aspx. This describes the different types of

time services offered to developers.

6.8.4 Self-Tests

The Windows self-tests are a collection of tests which verify that the Windows is operating correctly.

The self-tests are enabled when the administrator sets the “System Cryptography: Use FIPS compliant

algorithms for encryption, hashing, and signing” policy; Windows will always run the self-tests described

in this section.

http://technet.microsoft.com/en-us/library/cc773013(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc773013(v=WS.10).aspx
http://support.microsoft.com/kb/816042#method2
http://msdn.microsoft.com/en-us/library/ms725473(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms725473(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724962(v=vs.85).aspx

Windows 10 Security Target

Microsoft © 2016 Page 147 of 166

The kernel-mode startup self-tests are:61

 AES-128 encrypt/decrypt EBC Known Answer Test

 AES-128 encrypt/decrypt CBC Known Answer Test

 AES-128 CMAC Known Answer Test

 AES-128 encrypt/decrypt CCM Known Answer Test

 AES-128 encrypt/decrypt GCM Known Answer Test

 RSA Known Answer Test

 ECDSA sign/verify test on P256 curve

 ECDH secret agreement Known Answer Test on P256 curve

 HMAC-SHA-1 Known Answer Test

 HMAC-SHA-256 and HMAC-SHA-512 Known Answer Tests

 SP800-56A concatenation KDF Known Answer Tests (same as Diffie-Hellman KAT)

 SP800-90 AES-256 counter mode DRBG Known Answer Tests (instantiate, generate and reseed)

 SP800-90 Dual-EC DRBG Known Answer Tests (instantiate, generate and reseed)

The Windows kernel-mode cryptographic module, the Kernel Mode Cryptographic Primitives Library,

also performs pair-wise consistency checks upon each invocation of RSA, ECDH, and ECDSA key-pair

generation and import as defined in FIPS 140-2. SP 800-56A conditional self-tests are also performed. A

continuous RNG test (CRNGT) is used for the random number generators of this cryptographic module.

All approved and non-approved RNGs have a CRNGT. The SP 800-90 DRBGs have health tests. A pair-

wise consistency test is done for Diffie-Hellman.

The Kernel Mode Cryptographic Primitives Library is loaded into the kernel’s memory early during the

boot process. If there is a failure in any startup self-test, the Kernel Mode Cryptographic Primitives

Library DriverEntry function will fail to return the STATUS_SUCCESS status to its caller. The only way to

recover from the failure of a startup self-test is to attempt to invoke DriverEntry again, which will rerun

the self-tests, and will only succeed if the self-tests passes.

By thoroughly exercising the cryptographic functions, Windows will prevent situations where user data

is not stored in an encrypted state.

All operations on the TSF ultimately involve the use of cryptography, and so these tests are sufficient to

determine that Windows is operating correctly.

6.8.5 Windows Code Integrity

A Windows operating system verifies the integrity of Windows program code using the Secure Boot and

Code Integrity capability in Windows.62 On computers with a TPM, such as those used in the Mobile

Device evaluation, before Windows will unlock the operating system drive, it will verify the integrity of

the early boot components, which include the Boot Loader, OS Loader, and OS Resume binaries, in order

to prevent tampering and to ensure that the drive is in the same computer as when the OS was

initialized.

61

 When the System Cryptography policy is set, Windows will always perform these self-tests however the
evaluated configuration does not use the ECDH, HMAC, and SP800-56A algorithms.
62

 In MDF PP terminology, Windows runs on the application processor.

http://technet.microsoft.com/en-us/library/cc733982(v=WS.10).aspx

Windows 10 Security Target

Microsoft © 2016 Page 148 of 166

The Secure Boot capability Windows checks that the file integrity of early boot components has not

been compromised and ensures that the files have not been modified, which mitigates the risk of

rootkits and viruses, and that the data elements that contribute to creating the composite keys, which

will ultimately unlock the operating system drive, have not been compromised. Secure Boot collects

these file measurements and seals them to the TPM. When Secure Boot starts in the preboot

environment, it will compare the sealed values from the TPM and if those values do not match the

calculated values, Secure Boot will lock the system (which prevents booting) and display a warning on

the computer display.

After Secure Boot verifies the integrity of early-running kernel components, including Code Integrity, the

Code Integrity capability provides measures code integrity for kernel-mode and user-mode programs.

Kernel-mode code signing (KMCS) prevents kernel-mode device drivers, such as the BitLocker Drive

Encryption Drivers (fvevol.sys), from loading unless they are published and digitally signed by developers

who have been vetted by one of a handful of trusted certificate authorities (CAs). KMCS, using public-

key cryptography technologies, requires that kernel-mode code include a digital signature generated by

one of the trusted certificate authorities. When a kernel device driver tries to load, Windows decrypts

the hash included with the driver using the public key stored in the certificate, then verifies that the

hash matches the one computed with the code. The authenticity of the certificate is checked in the

same way, but using the certificate authority's public key, which is trusted by Windows. The root public

key of the certificate chain that verifies the signature must match one of the Microsoft’s root public keys

indicating that Microsoft is the publisher of the Windows image files. These Microsoft’s root public keys

are hardcoded in the Windows boot loader.

6.8.6 Windows and Application Updates

Updates to Windows are delivered as Microsoft Update Standalone Package files (.msu files) and are

signed by Microsoft with two digital signatures, a SHA1 signature for legacy applications and a SHA256

signature for modern applications. The RSA SHA256 digital signature is signed by Microsoft Corporation,

with a certification path through a Microsoft Code Signing certificate and ultimately the Microsoft Root

Certification Authority. These certificates are checked by the Windows Trusted Installer prior to

installing the update.

The Windows operating system will check that the certificate is valid and has not been revoked using a

standard PKI CRL. Once the Trusted Installer determines that the package is valid, it will update

Windows; otherwise the installation will abort and there will be an error message in the event log.. Note

that the Windows installer will not install an update if the files in the package have lower version

numbers than the installed files.

The integrity of the Microsoft Code Signing certificate on the computer is protected by the storage root

key within the TPM, and the validated integrity of the Windows binaries as a result of Secure Boot and

Code Integrity.

Updates to Windows are delivered through the Windows Update capability, which is enabled by default,

or the user can go to http://www.microsoft.com/security/default.aspx to search and obtain security

updates on their own volition.

http://www.microsoft.com/security/default.aspx

Windows 10 Security Target

Microsoft © 2016 Page 149 of 166

A user can then check that the signature is valid either by viewing the digital signature details of the file

from Windows Explorer or by using the Get-AuthenticodeSignature PowerShell Cmdlet. The

following is an example of using PowerShell:

If the Get-AuthenticodeSignature PowerShell Cmdlet or Windows Explorer could not verify the

signature, the status will be marked as invalid. This verification check uses the same functionality

described above.

6.8.6.1.1 Windows Store Applications

In the same manner as checking the integrity of the Microsoft Update Packages and Windows

executable code, Windows Store Applications and their installation packages are verified using a digital

signature from Microsoft Corporation with the Code Signing usage.

6.8.7 SFR Mapping

The TSF Protection function satisfies the following SFRs:

 FPT_AEX_EXT.1: All Windows Store applications use address space layout randomization.

 FPT_AEX_EXT.2: The Intel processors included in this evaluation enforce read, write, and

execute permissions for physical memory.

 FPT_AEX_EXT.3: Windows binaries are compiled with stack overflow protection (compiled using

the /Gs option for native applications). Appendix B: Interfaces and Binaries contains a list of

Windows binaries along with any exceptions which do not use stack overflow protection.

 FPT_AEX_EXT.4: The Windows kernel and user-mode system services protect themselves from

modification by untrusted subject programs; moreover user-mode programs execute in

separate virtual address spaces.

 FPT_BBD_EXT.1: On Windows devices that have a cellular modem (a baseband processor), the

device cellular modem and the application processor are separated. The cellular modem runs on

its own processor with its own memory area which is separate from the memory (cache and

onboard memory) used by the processor. The cellular modem cannot access the application

processor memory area or any other peripherals or sensors.

 FPT_KST_EXT.1: During normal operation, Windows does not store plaintext key material in

non-volatile storage.

 FPT_KST_EXT.2: Plaintext keys are not exported from the FIPS-validated cryptographic modules.

Windows 10 Security Target

Microsoft © 2016 Page 150 of 166

 FPT_KST_EXT.3: Users cannot export plain text keys from Windows Store applications.

 FPT_NOT_EXT.1(AUDIT): Windows will fall into a non-operational state after a failure of the

Windows cryptographic self-tests and integrity failure for Windows system binaries.

 FPT_NOT_EXT.1(ATTEST): When configured to generate health attestations, Windows will use

the Attestation Key (AK) in the TPM along with the associated certificate issued by Microsoft to

notify the remote administrator via a MDM.

 FPT_STM.1: The real-time clock in each Windows platform, in conjunction with periodic domain

synchronization, for domain-joined devices, and time signals from the LTE network, provide a

reliable source of time stamps for the TSF; changing the clock can be restricted to authorized

administrators.

 FPT_TST_EXT.1: Windows runs a series of self-tests that confirm that essential cryptographic

operations are performed correctly and halts if the self-tests fail. Those cryptographic functions

are then used to check integrity of TOE executables.

 FPT_TST_EXT.2: Windows checks the integrity of the Windows boot loader, OS loader, kernel,

and system binaries and all application executable code, i.e., Windows Store Applications and

updates to Windows and Windows Store Applications.

 FPT_TUD_EXT.1: Windows provides a means to identify the current version of the Windows

software, the hardware model, and installed applications.

 FPT_TUD_EXT.2: Windows has an update mechanism to deliver updated binaries and a means

for a user to confirm that the digital signatures, which ensure the integrity of the update, are

valid for both the operating system and Windows Store Applications.

6.9 TOE Access
Windows provides the ability for a user to lock their interactive logon session at their own volition or

after a user-defined inactivity timeout. Windows also provides the ability for the administrator to

specify the interval of inactivity after which the session will be locked. This policy will be applied to

either the local machine or the computers within a domain using either local policy or group policy

respectively. If both the administrator and a standard user specify an inactivity timeout period, Windows

will lock the session when the shortest time period expires.

Once a user has a desktop session, they can invoke the session locking function by using the same key

sequence used to invoke the trusted path (Ctrl+Alt+Del). This key sequence is captured by the TSF and

cannot be intercepted or altered by any user process. The result of that key sequence is a menu of

functions, one of which is to lock the workstation. The user can also lock their desktop session by going

to the Start screen, selecting their logon name, and then choosing the “Lock” option.

Windows constantly monitors the mouse, keyboard, touch display, and the orientation sensor for

inactivity in order to determine if they are inactive for the specified time period. After which, Windows

will lock the workstation and execute the screen saver unless the user is streaming video such as a

movie. Note that if the workstation was not locked manually, the TSF will lock the display and start the

screen saver program if and when the inactivity period is exceeded, as well any notifications from

applications which have registered to publish the application’s badge or the badge with associated

Windows 10 Security Target

Microsoft © 2016 Page 151 of 166

notification text to the locked screen.63 The user has the option to not display any notifications, or

choose one Windows Store Application to display notification text, and select other applications display

their badge.

For Windows 10 the inbox Calendar, Weather, and Alarm applications can generate notifications, and

when selected to display notification text they will show the location and time of the upcoming and in-

progress meeting, the current weather conditions, and an expired alarm times. In addition, Mail

application can be configured to display a badge but not notification text.

After the computer was locked, in order to unlock their session, the user either presses a key or swipes

the display. The user must provide the Ctrl+Alt+Del key combination if the Interactive Logon: Do not

required CTRL+ALT+DEL policy is set to disabled.64 Either action will result in an authentication dialog.

The user must then re-enter their authentication data, which has been cached by the local system from

the initial logon, after which the user’s display will be restored and the session will resume. Alternately,

an authorized administrator can enter their administrator identity and password in the authentication

dialog. If the TSF can successfully authenticate the administrator, the user will be logged off, rather than

returning to the user’s session, leaving the workstation ready to authenticate a new user.

As part of establishing the interactive logon session, Windows can be configured to display a logon

banner, which is specified by the administrator, that the user must accept prior to establishing the

session.

6.9.1 SFR Mapping

The TOE Access function satisfies the following SFRs:

 FTA_SSL_EXT.1: Windows 10 will transition to a locked state when there is an administrator-

specified period of inactivity or when the user explicitly locks the device.

 FTA_WSE_EXT.1: An authorized administrator can specify which Wi-Fi networks to connect to,

as specified in FMT_SMF.1.

 FTA_TAB.1: An authorized administrator can define and modify a banner that will be displayed

prior to allowing a user to logon.

6.10 Trusted Path / Channels
Windows Store applications used the HttpClient interface to establish a secure HTTPS/TLS channel.

Windows Store applications do not have access to low level interfaces to perform TLS, the HttpClient

interface supports performing TLS in the context of an HTTPS connection by passing a HTTPS Uniform

Resource Identifier (URI) to the HttpClient constructor. When a HTTPS URI is used then TLS will be used

when establishing the HTTP connection. Mobile Device Managers use HTTPS/TLS: the mobile device

authenticates against the MDM to check the identity of the MDM service, and the MDM authenticates

the client to ensure the identity of the client device.

Third party VPN Windows Store applications use the Windows.Networking.Vpn interface to establish an

IPsec VPN channel.

63

 The badge is a logo which represents the Windows Store Application and the notification text can be items such
as a count of unread messages or an appointment.
64

 This policy is defined under Local Policies / Security Options.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.vpn.aspx

Windows 10 Security Target

Microsoft © 2016 Page 152 of 166

Windows implements IEEE 802.11-2012, IEEE 802.1X and EAP-TLS to provide authenticated wireless

networking sessions when requested by the user.

The specific details for each protocol are described in section Windows has native implementations of

IEEE 802.11-2012 and IEEE 802.11ac-2013 to provide secure wireless local area networking (Wi-Fi).

Windows can use PRF-384 in WPA2 Wi-Fi sessions and generate AES 128-bit keys or use PRF-704 to

generate AES 256-bit keys, both utilize the Windows RBG. Windows complies with the IEEE 802.11-2012

and IEEE 802.11ac-2013 standards and interoperates with other devices that implement the standard.

TOE devices have received WPA2 certification, both Enterprise and Personal, and Wi-Fi CERTIFIED

Interoperability Certificates from the Wi-Fi Alliance:

 Surface Pro 3 (the Marvell 8897 adapter is also certified)

 Surface 3, Surface 3 with LTE (the Marvell 8897 adapter is also certified)

 Dell Venue 8 Pro Tablet (the Dell adapter is certified)

 HP Pro x2 612 Notebook PC (the Intel Dual Band Wireless 7260 adapter is certified)

 Lenovo X1 Carbon (the Intel Dual Band Wireless 7260 adapter is certified)

 Panasonic FZ-G1 Toughpad tablet (the Intel Dual Band Wireless-AC 7265 adapter is certified)

Windows implements key wrapping and unwrapping according to the NIST SP 800-38F specification (the

“KW” mode) and so unwraps the Wi-Fi Group Temporal Key (GTK) which was sent by the access point.

Because the GTK was protected by AES Key Wrap when it was delivered in an EAPOL-Key frame, the GTK

is not exposed to the network.

Network Protocols.

To summarize the Trusted Path / Channel function satisfies this SFR:

 FPT_ITC_EXT.1: Windows provides several trusted network channels that protect data in transit

from disclosure, provide data integrity, and endpoint identification that is used by 802.11-2012,

802.1X, EAP-TLS, TLS, and HTTPS.

6.11 Security Response Process
Microsoft utilizes industry standard practices to address reported product vulnerabilities. This includes

a central email address (secure@microsoft.com) to report issues (as described at

https://technet.microsoft.com/en-us/security/ff852094), timely triage and root cause analysis, and

responsible resolution of the report which may result in the release of a binary update. If a binary

update is required, it is made available through automated channels to all customers following the

process described at https://technet.microsoft.com/en-us/security/dn436305. If the sender wishes to

send secure email, there is a public PGP key for S/MIME at https://technet.microsoft.com/en-

us/security/dn606155.aspx. Security updates for Microsoft products – operating system, firmware, and

applications – are delivered as described in section 6.8.6.

https://technet.microsoft.com/en-us/security/ff852094
https://technet.microsoft.com/en-us/security/dn606155.aspx
https://technet.microsoft.com/en-us/security/dn606155.aspx

Windows 10 Security Target

Microsoft © 2016 Page 153 of 166

7 Protection Profile Conformance Claim
This section provides the protection profile conformance claim and supporting justifications and

rationale.

7.1 Rationale for Conformance to Protection Profile
This Security Target is in strict compliance with the Mobile Device Fundamentals Protection Profile,

version 2.0, September 17, 2014.

For all of the content incorporated from the protection profile, the corresponding rationale in that

protection profile remains applicable to demonstrate the correspondence between the TOE security

functional requirements and TOE security objectives.

The requirements in the protection profile are assumed to represent a complete set of requirements

that serve to address any interdependencies. Given that all of the functional requirements in the

protection profile have been copied into this security target, the dependency analysis for those

requirements is not reproduced here.

Windows 10 Security Target

Microsoft © 2016 Page 154 of 166

8 Rationale for Modifications to the Security Requirements
This section provides a rationale that describes how the Security Target reproduced the security

functional requirements and security assurance requirements from the protection profile.

8.1 Functional Requirements
This Security Target includes security functional requirements (SFRs) that can be mapped to SFRs found

in the protection profile along with SFRs that describe additional features and capabilities. The mapping

from protection profile SFRs to security target SFRs along with rationale for operations is presented in

Table 28. SFR operations left incomplete in the protection profile have been completed in this security

and are identified within each SFR in section 5.1 TOE Security Functional Requirements.

Table 28 Rationale for Operations

MDF PP Requirement ST Requirement Operation & Rationale

FAU_GEN.1 FAU_GEN.1 Multiple selections which are allowed
by the PP.

FAU_SAR.1 FAU_SAR.1 Copied from the PP without changes.

FAU_SEL.1 FAU_SEL.1 An assignment which is allowed by
the PP.

FAU_STG.1 FAU_STG.1 Copied from the PP without changes.

FAU_STG.4 FAU_STG.4 Copied from the PP without changes.

FCS_CKM.1(1) FCS_CKM.1(ASYM KA) A selection which is allowed by the
PP.

FCS_CKM.1(2) FCS_CKM.1(WLAN384) Copied from the PP without changes.

FCS_CKM.1(3) FCS_CKM.1(WLAN704) Copied from the PP without changes.

FCS_CKM.1(2) FCS_CKM.1(ASYM AU) A selection which is allowed by the
PP.

FCS_CKM.2(2) FCS_CKM.2(GTK) Copied from the PP without changes.

FCS_CKM_EXT.1 FCS_CKM_EXT.1(TPM12) Multiple selections which are allowed
by the PP.

FCS_CKM_EXT.1 FCS_CKM_EXT.1(TPM20) Multiple selections which are allowed
by the PP.

FCS_CKM_EXT.2 FCS_CKM_EXT.2 Copied from the PP without changes.

FCS_CKM_EXT.3 FCS_CKM_EXT.3 Two selections which are allowed by
the PP.

FCS_CKM_EXT.4 FCS_CKM_EXT.4 Copied from the PP without changes.

FCS_CKM_EXT.5 FCS_CKM_EXT.5 A selection which is allowed by the
PP.

FCS_CKM_EXT.6 FCS_CKM_EXT.6 Copied from the PP without changes.

FCS_COP.1(1) FCS_COP.1(SYM) A selection which is allowed by the
PP.

FCS_COP.1(2) FCS_COP.1(HASH) Two selections which are allowed by
the PP.

FCS_COP.1(3) FCS_COP.1(SIGN) A selection which is allowed by the
PP.

FCS_COP.1(4) FCS_COP.1(HMAC) Two selections which are allowed by

Windows 10 Security Target

Microsoft © 2016 Page 155 of 166

MDF PP Requirement ST Requirement Operation & Rationale

the PP.

FCS_COP.1(5) FCS_COP.1(PBKD32) Two selections which are allowed by
the PP.

FCS_COP.1(5) FCS_COP.1(PBKD64) Two selections which are allowed by
the PP.

FCS_IV_EXT.1 FCS_IV_EXT.1 Copied from the PP without changes.

FCS_RBG_EXT.1 FCS_RBG_EXT.1 Multiple selections which are allowed
by the PP.

FCS_SRV_EXT.1 FCS_SRV_EXT.1 A selection which is allowed by the
PP and refinements to switch to the
SFR labels used in the security target.

FCS_STG_EXT.1 FCS_STG_EXT.1 Multiple selections which are allowed
by the PP.

FCS_STG_EXT.2 FCS_STG_EXT.2 Multiple selections which are allowed
by the PP.

FCS_STG_EXT.3 FCS_STG_EXT.3 Multiple selections which are allowed
by the PP.

FCS_TLSC_EXT.1 FCS_TLSC_EXT.1 Three selections which are allowed
by the PP.

FCS_TLSC_EXT.2 FCS_TLSC_EXT.2 Two selections which are allowed by
the PP.

FCS_HTTPS_EXT.1 FCS_HTTPS_EXT.1 A selection which is allowed by the
PP.

FDP_ACF_EXT.1 FDP_ACF_EXT.1 Multiple selections which are allowed
by the PP.

FDP_DAR_EXT.1 FDP_DAR_EXT.1 Two selections which are allowed by
the PP.

FDP_IFC_EXT.1 FDP_IFC_EXT.1 A selection which is allowed by the
PP.

FDP_STG_EXT.1 FDP_STG_EXT.1 Copied from the PP without changes.

FDP_UPC_EXT.1 FDP_UPC_EXT.1 A selection which is allowed by the
PP.

FDP_BLT_EXT.1 FDP_BLT_EXT.1 Copied from the PP without changes.

FIA_AFL_EXT.1 FIA_AFL_EXT.1 One assignment which is allowed by
the PP.

FIA_BLT_EXT.1 FIA_BLT_EXT.1 Multiple assignment which are
allowed by the PP.

FIA_BLT_EXT.2 FIA_BLT_EXT.2 Copied from the PP without changes.

FIA_BLT_EXT.3 FIA_BLT_EXT.3 Copied from the PP without changes.

FIA_PAE_EXT.1 FIA_PAE_EXT.1 Copied from the PP without changes.

FIA_PMG_EXT.1 FIA_PMG_EXT.1 An assignment and a selection which
is allowed by the PP.

FIA_TRT_EXT.1 FIA_TRT_EXT.1 A selection which is allowed by the
PP.

FIA_UAU.7 FIA_UAU.7 Copied from the PP without changes.

FIA_UAU_EXT.1 FIA_UAU_EXT.1 A selection which is allowed by the

Windows 10 Security Target

Microsoft © 2016 Page 156 of 166

MDF PP Requirement ST Requirement Operation & Rationale

PP.

FIA_UAU_EXT.2 FIA_UAU_EXT.2 A selection which is allowed by the
PP.

FIA_UAU_EXT.3 FIA_UAU_EXT.3 A selection which is allowed by the
PP.

FIA_X509_EXT.1 FIA_X509_EXT.1 A selection which is allowed by the
PP.

FIA_X509_EXT.2 FIA_X509_EXT.2 Four selections which are allowed by
the PP.

FIA_X509_EXT.3 FIA_X509_EXT.3 Copied from the PP without changes.

FMT_MOF_EXT.1 FMT_MOF_EXT.1 Copied from the PP without changes.

FMT_SMF_EXT.1 FMT_SMF_EXT.1 Multiple selections, assignments, and
refinements which are allowed by the
PP.

FMT_SMF_EXT.2 FMT_SMF_EXT.2 A selection which is allowed by the
PP.

FPT_AEX_EXT.1 FPT_AEX_EXT.1 Copied from the PP without changes.

FPT_AEX_EXT.2 FPT_AEX_EXT.2 A selection which is allowed by the
PP.

FPT_AEX_EXT.3 FPT_AEX_EXT.3 Copied from the PP without changes.

FPT_AEX_EXT.4 FPT_AEX_EXT.4 Copied from the PP without changes.

FPT_BBD_EXT.1 FPT_BBD_EXT.1 Copied from the PP without changes.

FPT_BLT_EXT.1 FPT_BLT_EXT.1 Assignment allowed by the PP.

FPT_KST_EXT.1 FPT_KST_EXT.1 Copied from the PP without changes.

FPT_KST_EXT.2 FPT_KST_EXT.2 Copied from the PP without changes.

FPT_KST_EXT.3 FPT_KST_EXT.3 Copied from the PP without changes.

FPT_NOT_EXT.1(AUDIT) FPT_NOT_EXT.1 Two selections which are allowed by
the PP.

FPT_NOT_EXT.1(ATTEST) FPT_NOT_EXT.1 Three selections which are allowed
by the PP.

FPT_STM.1 FPT_STM.1 Copied from the PP without changes.

FPT_TST_EXT.1 FPT_TST_EXT.1 Copied from the PP without changes.

FPT_TST_EXT.2 FPT_TST_EXT.2 Two selections which are allowed by
the PP.

FPT_TUD_EXT.1 FPT_TUD_EXT.1 Copied from the PP without changes.

FPT_TUD_EXT.2 FPT_TUD_EXT.2 Five selections which are allowed by
the PP.

FTA_SSL_EXT.1 FTA_SSL_EXT.1 Assignment allowed by the PP.

FTA_WSE_EXT.1 FTA_WSE_EXT.1 Copied from the PP without changes.

FTA_TAB.1 FTA_TAB.1 Copied from the PP without changes.

FTP_ITC_EXT.1 FTP_ITC_EXT.1 Two selections which are allowed by
the PP.

Windows 10 Security Target

Microsoft © 2016 Page 157 of 166

8.2 Security Assurance Requirements
The statement of security assurance requirements (SARs) found in section , is in strict conformance with

the Mobile Device Fundamentals Protection Profile.

8.3 Rationale for the TOE Summary Specification
This section, in conjunction with section 6, the TOE Summary Specification (TSS), provides evidence that

the security functions are suitable to meet the TOE security requirements.

Each subsection in section 6, TOE Security Functions (TSFs), describes a Security Function (SF) of the

TOE. Each description is followed with rationale that indicates which requirements are satisfied by

aspects of the corresponding SF. The set of security functions work together to satisfy all of the

functional requirements. Furthermore, all the security functions are necessary in order for the TSF to

provide the required security functionality.

The set of security functions work together to provide all of the security requirements as indicated in

Table 29. The security functions described in the TOE Summary Specification and listed in the tables

below are all necessary for the required security functionality in the TSF.

Table 29 Requirement to Security Function Correspondence

Requirement A

u
d

it

C
ry

p
to

gr
ap

h
ic

 P
ro

te
ct

io
n

U
se

r
D

at
a

P
ro

te
ct

io
n

I &
 A

Se
cu

ri
ty

 M
an

ag
e

m
e

n
t

TS
F

P
ro

te
ct

io
n

R
e

so
u

rc
e

 U
ti

liz
at

io
n

TO
E

A
cc

e
ss

Tr
u

st
e

d
 P

at
h

 /
 C

h
an

n
e

l

FAU_GEN.1 X

FAU_SAR.1 X

FAU_SEL.1 X

FAU_STG.1 X

FAU_STG.4 X

FCS_CKM.1(ASYM KA) X

FCS_CKM.1(WLAN384) X

FCS_CKM.1(WLAN704) X

FCS_CKM.1(ASYM AU) X

FCS_CKM.2(GTK) X

FCS_CKM_EXT.1(TPM12) X

FCS_CKM_EXT.1(TPM20) X

FCS_CKM_EXT.2 X

FCS_CKM_EXT.3 X

FCS_CKM_EXT.4 X

FCS_CKM_EXT.5 X

Windows 10 Security Target

Microsoft © 2016 Page 158 of 166

Requirement A

u
d

it

C
ry

p
to

gr
ap

h
ic

 P
ro

te
ct

io
n

U
se

r
D

at
a

P
ro

te
ct

io
n

I &
 A

Se
cu

ri
ty

 M
an

ag
em

e
n

t

TS
F

P
ro

te
ct

io
n

R
e

so
u

rc
e

U
ti

liz
at

io
n

TO
E

A
cc

es
s

Tr
u

st
e

d
 P

at
h

 /
 C

h
an

n
el

FCS_CKM_EXT.6 X

FCS_COP.1(SYM) X

FCS_COP.1(HASH) X

FCS_COP.1(SIGN) X

FCS_COP.1(HMAC) X

FCS_COP.1(PBKD32) X

FCS_COP.1(PBKD64) X

FCS_IV_EXT.1 X

FCS_RBG_EXT.1 X

FCS_SRV_EXT.1 X

FCS_STG_EXT.1 X

FCS_STG_EXT.2 X

FCS_STG_EXT.3 X

FCS_TLSC_EXT.1 X

FCS_TLSC_EXT.2 X

FCS_HTTPS_EXT.1 X

FDP_ACF_EXT.1 X

FDP_DAR_EXT.1 X

FDP_IFC_EXT.1 X

FDP_STG_EXT.1 X

FDP_UPC_EXT.1 X

FDP_BLT_EXT.1 X

FIA_AFL_EXT.1 X

FIA_BLT_EXT.1 X

FIA_BLT_EXT.2 X

FIA_PAE_EXT.1 X

FIA_PMG_EXT.1 X

FIA_TRT_EXT.1 X

FIA_UAU.7 X

FIA_UAU_EXT.1 X

FIA_UAU_EXT.2 X

FIA_UAU_EXT.3 X

FIA_X509_EXT.1 X

FIA_X509_EXT.2 X

FIA_X509_EXT.3 X

FMT_MOF_EXT.1 X

Windows 10 Security Target

Microsoft © 2016 Page 159 of 166

Requirement A

u
d

it

C
ry

p
to

gr
ap

h
ic

 P
ro

te
ct

io
n

U
se

r
D

at
a

P
ro

te
ct

io
n

I &
 A

Se
cu

ri
ty

 M
an

ag
em

e
n

t

TS
F

P
ro

te
ct

io
n

R
e

so
u

rc
e

U
ti

liz
at

io
n

TO
E

A
cc

es
s

Tr
u

st
e

d
 P

at
h

 /
 C

h
an

n
el

FMT_SMF_EXT.1 X

FMT_SMF_EXT.2 X

FPT_AEX_EXT.1 X

FPT_AEX_EXT.2 X

FPT_AEX_EXT.3 X

FPT_AEX_EXT.4 X

FPT_BBD_EXT.1 X

FPT_BLT_EXT.1 X

FPT_KST_EXT.1 X

FPT_KST_EXT.2 X

FPT_KST_EXT.3 X

FPT_NOT_EXT.1(AUDIT) X

FPT_NOT_EXT.1(ATTEST) X

FPT_STM.1 X

FPT_TST_EXT.1 X

FPT_TST_EXT.2 X

FPT_TUD_EXT.1 X

FPT_TUD_EXT.2 X

FTA_SSL_EXT.1 X

FTA_WSE_EXT.1 X

FTA_TAB.1 X

FTP_ITC_EXT.1 X

Windows 10 Security Target

Microsoft © 2016 Page 160 of 166

9 Appendix A: List of Abbreviations

Abbreviation Meaning

3DES Triple DES

ACE Access Control Entry

ACL Access Control List

ACP Access Control Policy

AD Active Directory

ADAM Active Directory Application Mode

AES Advanced Encryption Standard

AGD Administrator Guidance Document

AH Authentication Header

ALPC Advanced Local Process Communication

ANSI American National Standards Institute

API Application Programming Interface

APIC Advanced Programmable Interrupt Controller

BTG BitLocker To Go

CA Certificate Authority

CBAC Claims Basic Access Control, see DYN

CBC Cipher Block Chaining

CC Common Criteria

CD-ROM Compact Disk Read Only Memory

CIFS Common Internet File System

CIMCPP Certificate Issuing and Management Components For Basic
Robustness Environments Protection Profile, Version 1.0, April 27,
2009

CM Configuration Management; Control Management

COM Component Object Model

CP Content Provider

CPU Central Processing Unit

CRL Certificate Revocation List

CryptoAPI Cryptographic API

CSP Cryptographic Service Provider

DAC Discretionary Access Control

DACL Discretionary Access Control List

DC Domain Controller

DEP Data Execution Prevention

DES Data Encryption Standard

DH Diffie-Hellman

DHCP Dynamic Host Configuration Protocol

DFS Distributed File System

DMA Direct Memory Access

DNS Domain Name System

DS Directory Service

DSA Digital Signature Algorithm

Windows 10 Security Target

Microsoft © 2016 Page 161 of 166

DYN Dynamic Access Control

EAL Evaluation Assurance Level

ECB Electronic Code Book

EFS Encrypting File System

ESP Encapsulating Security Protocol

FEK File Encryption Key

FIPS Federal Information Processing Standard

FRS File Replication Service

FSMO Flexible Single Master Operation

FTP File Transfer Protocol

FVE Full Volume Encryption

GB Gigabyte

GC Global Catalog

GHz Gigahertz

GPC Group Policy Container

GPO Group Policy Object

GPOSPP US Government Protection Profile for General-Purpose Operating
System in a Networked Environment

GPT Group Policy Template

GPT GUID Partition Table

GUI Graphical User Interface

GUID Globally Unique Identifiers

HTTP Hypertext Transfer Protocol

HTTPS Secure HTTP

I/O Input / Output

I&A Identification and Authentication

IA Information Assurance

ICF Internet Connection Firewall

ICMP Internet Control Message Protocol

ICS Internet Connection Sharing

ID Identification

IDE Integrated Drive Electronics

IETF Internet Engineering Task Force

IFS Installable File System

IIS Internet Information Services

IKE Internet Key Exchange

IP Internet Protocol

IPv4 IP Version 4

IPv6 IP Version 6

IPC Inter-process Communication

IPI Inter-process Interrupt

IPsec IP Security

ISAPI Internet Server API

IT Information Technology

KDC Key Distribution Center

LAN Local Area Network

Windows 10 Security Target

Microsoft © 2016 Page 162 of 166

LDAP Lightweight Directory Access Protocol

LPC Local Procedure Call

LSA Local Security Authority

LSASS LSA Subsystem Service

LUA Least-privilege User Account

MAC Message Authentication Code

MB Megabyte

MMC Microsoft Management Console

MSR Model Specific Register

NAC (Cisco) Network Admission Control

NAP Network Access Protection

NAT Network Address Translation

NIC Network Interface Card

NIST National Institute of Standards and Technology

NLB Network Load Balancing

NMI Non-maskable Interrupt

NTFS New Technology File System

NTLM New Technology LAN Manager

OS Operating System

PAE Physical Address Extension

PC/SC Personal Computer/Smart Card

PIN Personal Identification Number

PKCS Public Key Certificate Standard

PKI Public Key Infrastructure

PP Protection Profile

RADIUS Remote Authentication Dial In Service

RAID Redundant Array of Independent Disks

RAM Random Access Memory

RAS Remote Access Service

RC4 Rivest’s Cipher 4

RID Relative Identifier

RNG Random Number Generator

RPC Remote Procedure Call

RSA Rivest, Shamir and Adleman

RSASSA RSA Signature Scheme with Appendix

SA Security Association

SACL System Access Control List

SAM Security Assurance Measure

SAML Security Assertion Markup Language

SAR Security Assurance Requirement

SAS Secure Attention Sequence

SD Security Descriptor

SHA Secure Hash Algorithm

SID Security Identifier

SIP Session Initiation Protocol

SIPI Startup IPI

Windows 10 Security Target

Microsoft © 2016 Page 163 of 166

SF Security Functions

SFP Security Functional Policy

SFR Security Functional Requirement

SMB Server Message Block

SMI System Management Interrupt

SMTP Simple Mail Transport Protocol

SP Service Pack

SPI Security Parameters Index

SPI Stateful Packet Inspection

SRM Security Reference Monitor

SSL Secure Sockets Layer

SSP Security Support Providers

SSPI Security Support Provider Interface

ST Security Target

SYSVOL System Volume

TCP Transmission Control Protocol

TDI Transport Driver Interface

TLS Transport Layer Security

TOE Target of Evaluation

TPM Trusted Platform Module

TSC TOE Scope of Control

TSF TOE Security Functions

TSS TOE Summary Specification

UART Universal Asynchronous Receiver / Transmitter

UI User Interface

UID User Identifier

UNC Universal Naming Convention

US United States

UPN User Principal Name

URL Uniform Resource Locator

USB Universal Serial Bus

USN Update Sequence Number

v5 Version 5

VDS Virtual Disk Service

VPN Virtual Private Network

VSS Volume Shadow Copy Service

WAN Wide Area Network

WCF Windows Communications Framework

WebDAV Web Document Authoring and Versioning

WebSSO Web Single Sign On

WDM Windows Driver Model

WIF Windows Identity Framework

WMI Windows Management Instrumentation

WSC Windows Security Center

WU Windows Update

WSDL Web Service Description Language

Windows 10 Security Target

Microsoft © 2016 Page 164 of 166

WWW World-Wide Web

X64 A 64-bit instruction set architecture

X86 A 32-bit instruction set architecture

Windows 10 Security Target

Microsoft © 2016 Page 165 of 166

10 Appendix B: Interfaces and Binaries
This section is a list of Universal Windows Platform (UWP) APIs used during testing of Windows 10.

API Description

CryptographicBuffer.Generat
eRandom

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.cryptogr
aphicbuffer.generaterandom.aspx

CryptographicBuffer.Generat
eRandomNumber

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.cryptogr
aphicbuffer.generaterandomnumber.aspx

CryptographicEngine.Encrypt http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.encrypt.aspx

CryptographicEngine.Decrypt http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.decrypt.aspx

HashAlgorithmProvider.Creat
eHash

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.ha
shalgorithmprovider.createhash.aspx

HashAlgorithmProvider.Hash
Data

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.ha
shalgorithmprovider.hashdata.aspx

CryptographicEngine.Sign http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.sign.aspx

CryptographicEngine.VerifySi
gnature

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.verifysignature.aspx

KeyDerivationParameters.Bui
ldForPbkdf2

http://msdn.microsoft.com/en-
us/library/windows/apps/windows.security.cryptography.core.keyderiv
ationparameters.buildforpbkdf2.aspx

AsymmetricKeyAlgorithmPro
vider.CreateKeyPair

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.asy
mmetrickeyalgorithmprovider.createkeypair.aspx

CryptographicEngine.SignAsy
nc

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.signasync.aspx

CryptographicEngine.SignHas
hedData

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.signhasheddata.aspx

CryptographicEngine.SignHas
hedDataAsync

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.signhasheddataasync.aspx

CryptographicEngine.VerifySi
gnatureWithHashInput

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.core.cry
ptographicengine.verifysignaturewithhashinput.aspx

AsymmetricKeyAlgorithmPro http://msdn.microsoft.com/en-

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandomnumber.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandomnumber.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.cryptographicbuffer.generaterandomnumber.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.encrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.encrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.encrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.decrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.decrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.decrypt.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.createhash.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.createhash.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.createhash.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.hashdata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.hashdata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.hashalgorithmprovider.hashdata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.sign.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.sign.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.sign.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignature.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignature.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignature.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.keyderivationparameters.buildforpbkdf2.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.keyderivationparameters.buildforpbkdf2.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.keyderivationparameters.buildforpbkdf2.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.asymmetrickeyalgorithmprovider.createkeypair.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.asymmetrickeyalgorithmprovider.createkeypair.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.asymmetrickeyalgorithmprovider.createkeypair.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddata.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddataasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddataasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.signhasheddataasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignaturewithhashinput.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignaturewithhashinput.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.core.cryptographicengine.verifysignaturewithhashinput.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.asymmetrickeyalgorithmprovider.importkeypair.aspx

Windows 10 Security Target

Microsoft © 2016 Page 166 of 166

vider.ImportKeyPair us/library/windows/apps/windows.security.cryptography.core.asymme
trickeyalgorithmprovider.importkeypair.aspx

CertificateEnrollmentManage
r.ImportPfxDataAsync

http://msdn.microsoft.com/en-
us/library/windows/apps/windows.security.cryptography.certificates.ce
rtificateenrollmentmanager.importpfxdataasync.aspx

CmsDetachedSignature.Gene
rateSignatureAsync

http://msdn.microsoft.com/en-
us/library/windows/apps/dn298272.aspx

CmsAttachedSignature.Gener
ateSignatureAsync

http://msdn.microsoft.com/en-
us/library/windows/apps/dn298266.aspx

HttpClient http://msdn.microsoft.com/en-
us/library/windows/apps/windows.web.http.httpclient.aspx

Windows.Networking.Vpn https://msdn.microsoft.com/en-
us/library/windows/apps/windows.networking.vpn.aspx

Certificate.BuildChainAsync http://msdn.microsoft.com/en-
us/library/windows/apps/windows.security.cryptography.certificates.ce
rtificate.buildchainasync.aspx

CertificateChain.Validate http://msdn.microsoft.com/en-
us/library/windows/apps/dn279161.aspx

Windows.Security.Cryptograp
hy.DataProtection

http://msdn.microsoft.com/en-
us/library/windows/apps/xaml/windows.security.cryptography.datapro
tection.aspx

Please send mail to wincc@microsoft.com if you would like a list of the Windows binaries included in

this evaluation.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.asymmetrickeyalgorithmprovider.importkeypair.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.asymmetrickeyalgorithmprovider.importkeypair.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificateenrollmentmanager.importpfxdataasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificateenrollmentmanager.importpfxdataasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificateenrollmentmanager.importpfxdataasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn298272.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn298272.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn298266.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn298266.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificate.buildchainasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificate.buildchainasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.certificates.certificate.buildchainasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn279161.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn279161.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.dataprotection.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.dataprotection.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.security.cryptography.dataprotection.aspx
mailto:wincc@microsoft.com

