

Zebra Devices on Android 14 Security

Target

Version 0.5

10/07/2025

Prepared for:

Zebra Technologies Corporation

3 Overlook Point
Lincolnshire, IL 60069-4302
USA

Prepared By:

www.gossamersec.com

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 2 of 74

1. SECURITY TARGET INTRODUCTION .. 4

1.1 SECURITY TARGET REFERENCE .. 4
1.2 TOE REFERENCE .. 4
1.3 TOE OVERVIEW ... 4
1.4 TOE DESCRIPTION ... 5

1.4.1 TOE Architecture ... 8
1.4.2 TOE Documentation .. 10

2. CONFORMANCE CLAIMS .. 11

2.1 CONFORMANCE RATIONALE ... 12

3. SECURITY OBJECTIVES .. 13

3.1 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT ... 13

4. EXTENDED COMPONENTS DEFINITION .. 14

5. SECURITY REQUIREMENTS ... 17

5.1 TOE SECURITY FUNCTIONAL REQUIREMENTS ... 17
5.1.1 Security audit (FAU) .. 19
5.1.2 Cryptographic support (FCS) .. 23
5.1.3 User data protection (FDP) ... 30
5.1.4 Identification and authentication (FIA) ... 32
5.1.5 Security management (FMT) ... 36
5.1.6 Protection of the TSF (FPT) .. 42
5.1.7 TOE access (FTA) .. 45
5.1.8 Trusted path/channels (FTP) ... 45

5.2 TOE SECURITY ASSURANCE REQUIREMENTS ... 46
5.2.1 Development (ADV) ... 46
5.2.2 Guidance documents (AGD) .. 47
5.2.3 Life-cycle support (ALC) ... 48
5.2.4 Tests (ATE) .. 49
5.2.5 Vulnerability assessment (AVA) ... 49

6. TOE SUMMARY SPECIFICATION .. 50

6.1 SECURITY AUDIT .. 50
6.2 CRYPTOGRAPHIC SUPPORT ... 51
6.3 USER DATA PROTECTION .. 60
6.4 IDENTIFICATION AND AUTHENTICATION ... 64
6.5 SECURITY MANAGEMENT ... 67
6.6 PROTECTION OF THE TSF ... 68
6.7 TOE ACCESS ... 73
6.8 TRUSTED PATH/CHANNELS ... 73

LIST OF TABLES

Table 1 TOE Security Functional Components .. 19
Table 2 MDFPP33 Audit Events .. 21
Table 3 Bluetooth Audit Events .. 22
Table 4 WLAN Audit Events .. 22
Table 5 MDFPP Management Functions .. 41
Table 6 Assurance Components ... 46
Table 7 Asymmetric Key Generation ... 51
Table 8 Device WFA Certificates ... 52
Table 9 - BoringSSL Cryptographic Algorithms .. 53

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 3 of 74

Table 10 – LockSettings Service Cryptographic Algorithms ... 54
Table 11 - Wi-Fi Hardware Components .. 56
Table 12 - Wi-Fi Chip Algorithms.. 56
Table 13 - SoC Cryptographic Algorithms .. 57
Table 14 Functional Categories .. 62
Table 15 Power-up Cryptographic Algorithm Known Answer Tests ... 71

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 4 of 74

1. Security Target Introduction

This section identifies the Security Target (ST) and Target of Evaluation (TOE) identification, ST conventions, ST

conformance claims, and the ST organization. The TOE is the Zebra Devices on Android 14 provided by Zebra

Technologies Corporation. The TOE is being evaluated as a mobile device

The Security Target contains the following additional sections:

• Conformance Claims (Section 2)

• Security Objectives (Section 3)

• Extended Components Definition (Section 4)

• Security Requirements (Section 5)

• TOE Summary Specification (Section 6)

Conventions

The following conventions have been applied in this document:

• Security Functional Requirements – Part 2 of the CC defines the approved set of operations that may be

applied to functional requirements: iteration, assignment, selection, and refinement.

o Iteration: allows a component to be used more than once with varying operations. In the ST,

iteration is indicated by a parenthetical number placed at the end of the component. For example

FDP_ACC.1(1) and FDP_ACC.1(2) indicate that the ST includes two iterations of the FDP_ACC.1

requirement.

o Assignment: allows the specification of an identified parameter. Assignments are indicated using

bold and are surrounded by brackets (e.g., [assignment]). Note that an assignment within a selection

would be identified in italics and with embedded bold brackets (e.g., [[selected-assignment]]).

o Selection: allows the specification of one or more elements from a list. Selections are indicated

using bold italics and are surrounded by brackets (e.g., [selection]).

o Refinement: allows the addition of details. Refinements are indicated using bold, for additions, and

strike-through, for deletions (e.g., “… all objects …” or “… some big things …”).

• Other sections of the ST – Other sections of the ST use bolding to highlight text of special interest, such as

captions.

1.1 Security Target Reference

ST Title – Zebra Devices on Android 14 Security Target

ST Version – Version 0.5

ST Date – 10/07/2025

1.2 TOE Reference

TOE Identification –Zebra Devices on Android 14

TOE Developer – Zebra Technologies Corporation

Evaluation Sponsor – Zebra Technologies Corporation

1.3 TOE Overview

The Target of Evaluation (TOE) is Zebra Devices on Android 14.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 5 of 74

The Zebra Devices are handheld computing devices utilizing the Qualcomm-based chipsets, angled rear-facing

barcode reader, optional stylus pen, and battery that is warm-swappable. The Devices use the Android operating

system, providing access to applications from the Google Play store or Zebra's partners. The Devices feature built-in

multi-carrier 4G LTE and FirstNet Ready with Band 14, voice capabilities, and dual SIM cards. The TOE supports

using client certificates to connect to access points offering WPA2/WPA3 networks with 802.1x/EAP-TLS, or

alternatively connecting to cellular base stations when utilizing mobile data.

The TOE offers mobile applications an Application Programming Interface (API) including that provided by the

Android framework and supports API calls to the Android Management APIs.

1.4 TOE Description

The TOE encompasses mobile devices that support enterprises and individual users alike and this evaluation tested

the following Mobile Handhelds models and versions.

Product Model # CPU Arch Kernel Android OS
version

Security Patch
Level

660 Mobile Handhelds TC52ax,

TC57,

TC26,

MC9300

Qualcomm SDM660 ARMv8 4.19 Android 14.0 September 2025

6490 Mobile Handhelds TC58 Qualcomm QCM6490 ARMv8 5.4 Android 14.0 September 2025

6375 Mobile Handhelds ET40,

ET45,

TC15

Qualcomm SM6375 ARMv8 5.4 Android 14.0 September 2025

4490 Mobile Handheld TC53e,

TC58e,

MC9400

Qualcomm QCM4490 ARMv8 5.10 Android 14.0 September 2025

The following other, equivalent models are included in the evaluation as they utilize the same hardware components

and same image, CPU, architecture, kernel version, Android version, and patch version as the above devices (i.e.,

each CPU model has one image). The QCS4490 CPU is equivalent to the QCM4490 CPU and the QCM5430 CPU

is equivalent to the QCM6490. In both cases, the CPUs have the same instruction set.

Model # CPU Wireless

Chipset

Cellular WiFi 6

support

Description

SDM660 Devices with WCN3990

CC600 SDM660 WCN3990 WLAN No 5” Customer concierge interactive tablet-style kiosk device

CC6000 SDM660 WCN3990 WLAN No 10” Customer concierge interactive tablet-style kiosk device

ET51 SDM660 WCN3990 WLAN No 8”/10” tablet

ET56 SDM660 WCN3990 WWAN

Data Only

No 8”/10” tablet

L10A SDM660 WCN3990 WWAN

Data Only

No 10” Ultra Rugged WWAN tablet

MC20 SDM660 WCN3990 WLAN No 4” Keypad WLAN device for Japanese Market

MC9300 SDM660 WCN3990 WLAN No 4.3” Ultra-rugged keypad WLAN device

PS20 SDM660 WCN3990 WLAN No 4” Personal Shopper assistant

TC52 SDM660 WCN3990 WLAN No 5” Phone

TC52-HC SDM660 WCN3990 WLAN No 5” Phone made form healthcare grade plastics

TC52x SDM660 WCN3990 WLAN No 5” Phone

TC52x-HC SDM660 WCN3990 WLAN No 5” Phone made form healthcare grade plastics

TC57 SDM660 WCN3990 WWAN/

Cellular

No 5” Phone

TC57x SDM660 WCN3990 WWAN/

Cellular

No 5” Phone

TC72 SDM660 WCN3990 WLAN No 4.7” Ultra rugged Phone

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 6 of 74

Model # CPU Wireless

Chipset

Cellular WiFi 6

support

Description

TC77 SDM660 WCN3990 WWAN/

Cellular

No 4.7” Ultra rugged Phone

TC83 SDM660 WCN3990 WLAN No 4” Ultra rugged Touch Computer / Gun Handler phone

VC83 SDM660 WCN3990 WLAN No 8” / 10” Vehicle Mounted Computer

WT6300 SDM660 WCN3990 WLAN No 3.2” Advanced glove-optimized rugged wearable device

EC30 SDM660 WCN3990 WLAN No 3” Portable, lightweight phone

EC50 SDM660 WCN3990 WLAN No 5” Enterprise Mobile computer with optional integrated scanner

EC55 SDM660 WCN3990 WWAN/

Cellular

No 5” Enterprise Mobile computer with optional integrated scanner

MC2200 SDM660 WCN3990 WLAN No 4” Touch computer / gun handler

MC2700 SDM660 WCN3990 WWAN/

Cellular

No 4” Touch computer / gun handler

MC3300x SDM660 WCN3990 WLAN No 4” Touch computer / gun handler

MC33xR SDM660 WCN3990 WLAN No 4” Touch computer / gun handler with RFID

SDM660 Devices with WCN3980

TC21 SDM660 WCN3980 WLAN No 5” Phone

TC21-HC SDM660 WCN3980 WLAN No 5” Phone made from healthcare grade plastics

TC26 SDM660 WCN3980 WWAN/

Cellular

No 5” Phone

TC26-HC SDM660 WCN3980 WWAN/

Cellular

No 5” Phone made form healthcare grade plastics

SDM660 Devices with BCM43752

TC52ax SDM660 BCM43752 WLAN Yes 5” Phone

MC33ax SDM660 BCM43752 WLAN Yes 4” Touch computer / gun handler

QCM4490/QCS4490 Devices with WCN6856

MC3400 QCM4490 WCN6856 WLAN Yes 4.0” Gun, straight shooter scanning device

MC3450 QCM4490 WCN6856 WWAN Yes 4.0” Gun, straight shooter scanning device

MC9400 QCM4490 WCN6856 WLAN Yes 4.3” Ultra Rugged Pistol Grip device

MC9450 QCM4490 WCN6856 WWAN Yes 4.3” Ultra Rugged Pistol Grip device

PS30 QCM4490 WCN6856 WLAN Yes 4.7” Shopping device,

TC53e QCM4490 WCN6856 WLAN Yes 6” Phone

TC58e QCM4490 WCN6856 WWAN Yes 6” Phone

FR55 /

FR55S

QCS4490 WCN6856 /

SDR435

(WWAN)

WWAN Yes True Hot swap, NFC, Secure Element, SAM phone

WT5400 QCS4490 WCN6856 WLAN Yes 4.7” Wearable

WT6400 QCS4490 WCN6856 WLAN Yes 4.7” Wearable

QCM5430 Devices with WCN6856

HC20 QCM5430 WCN6856 WLAN Yes 6” Phone made from healthcare plastics

HC50 QCM5430 WCN6856 WLAN Yes 6” Phone made from healthcare plastics

TC22 QCM5430 WCN6856 WLAN Yes 6” Phone

TC27 QCM5430 WCN6856 WWAN/

Cellular

Yes 6” Phone

TC22R QCM5430 WCN6856

(WIFI)

WLAN only Yes 6” Gun style phone with NFC

TC27R QCM5430 WCN6856

(WIFI)

SDR735

(WWAN, GPS)

WWAN Yes 6” Gun style phone with NFC

EM45 QCM5430 WCN6856

(WIFI)

SDR735

(WWAN, GPS)

WWAN Yes 6.7” Phone with 5G Sub6, NFC, BLE 5.3

TC73-5430 QCM5430 WCN6856 WLAN Yes Phone (Nazare)

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 7 of 74

Model # CPU Wireless

Chipset

Cellular WiFi 6

support

Description

TC78-5430 QCM5430 WCN6856

(WIFI)

SDR735

(WWAN, GPS)

WWAN Yes Phone (Nazare)

KC50S QCM5430 WCN6856 WLAN Yes 22” & 15” Tablet with NFC

KC50L QCM5430 WCN6856 WLAN Yes 22” & 15” Tablet with NFC

HC25 QCM5430 WCN6856

(WIFI)

SDR735

(WWAN, GPS)

WWAN Yes 22” & 15” Tablet with NFC

HC55 QCM5430 WCN6856

(WIFI)

SDR735

(WWAN, GPS)

WWAN Yes 22” & 15” Tablet with NFC

ZEC500 QCM5430 WCN6856 WLAN Yes Wireless WSC, Kisok box - Android device without an embedded

display or battery

SM6375 Devices with BCM43752

ET40 SM6375 BCM43752 WLAN Yes 8"/ 10" Tablet with NFC PN7160

ET40HC SM6375 BCM43752 WLAN Yes 8"/ 10" Tablet made from Healthcare grade plastics, NFC PN7160

ET45 SM6375 BCM43752 WWAN

Data Only

Yes 8"/ 10" Tablet with NFC PN7160

ET45HC SM6375 BCM43752 WWAN

Data Only

Yes 8"/ 10" Tablet made from Healthcare grade plastics, NFC PN7160

SM6375 with WCN3988

TC15 SM6375 WCN3988 WWAN/

Cellular

No 6.5" Phone with NFC PN557

TN28 SM6375 WCN3988 WWAN/

Cellular

No 6.5" Phone with NFC PN557

QCM6490 Devices with WCN6856

ET60 QCM6490 WCN6856 WLAN Yes 10” Tablet

ET65 QCM6490 WCN6856 WWAN

Data Only

Yes 10” Tablet

TC53 QCM6490 WCN6856 WLAN Yes 6” Phone

TC58 QCM6490 WCN6856 WWAN/

Cellular

Yes 6” Phone

TC73 QCM6490 WCN6856 WLAN Yes 6” Phone

TC78 QCM6490 WCN6856 WWAN/

Cellular

Yes 6” Phone

The above models may represent additional model-specific SKUs which vary by screen-size, RAM / Storage Capacity,

battery capacity, base vs premium materials. The Bluetooth MAP profile is not supported on devices without Cellular

capabilities.

Some of the claimed SKUs [e.g., TC58e, TC53e] are equipped with Strongbox capabilities; however, the scope of the

evaluation does not encompass the validation of this functionality and its use is not supported within the evaluated

configuration.

Some features and settings must be enabled for the TOE to operate in its evaluated configuration. The following

features and settings must be enabled:

1. Require a lockscreen password

2. Disable Smart Lock

3. Enable Encryption of Wi-Fi and Bluetooth secrets by enabling ‘niap_mode’

4. Disable Debugging Features (Developer options)

5. Disable installation of applications from unknown sources

6. Enable Audit Logging

Doing this ensures that the device complies with the MDFPP requirements. Please refer to the Admin Guide on how

to configure these settings and features.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 8 of 74

1.4.1 TOE Architecture

The TOE provides a rich API to mobile applications and provides users installing an application the option to either

approve or reject an application based upon the API access that the application requires (or to grant applications access

at runtime).

The TOE also provides users with the ability to protect Data-At-Rest with AES encryption, including all user and

mobile application data stored in the user’s data partition. The TOE uses a key hierarchy that combines a REK with

the user’s password to provide protection to all user and application cryptographic keys stored in the TOE.

Finally, the TOE can interact with a Mobile Device Management (MDM) system (not part of this evaluation) to allow

enterprise control of the configuration and operation of the device so as to ensure adherence to enterprise-wide policies

(for example, restricting use of a corporate provided device’s camera, forced configuration of maximum login

attempts, pulling of audit logs off the TOE, etc.) as well as policies governing enterprise applications and data. An

MDM is made up of two parts: the MDM agent and MDM server. The MDM Agent is installed on the phone/mobile

computer as an administrator with elevated permissions (allowing it to change the relevant settings on the

phone/device) while the MDM Server is used to issue the commands to the MDM Agent. Neither portion of the MDM

process is considered part of the TOE, and therefore not being directly evaluated.

The TOE includes several different levels of execution including (from lowest to highest): hardware, a Trusted

Execution Environment (TEE) which is used to store cryptographic keys, Android’s Linux kernel which perform low-

lev android OS functions, and Android’s user space, which provides APIs allowing applications to leverage the

cryptographic functionality of the device. Section 6 contains more detailed information.

1.4.1.1 Physical Boundaries

The TOE’s physical boundary is the physical perimeter of its enclosure. The TOE runs Android as its software/OS,

executing on a Qualcomm Snapdragon processor. The TOE does not include the user applications that run on top of

the operating system but does include controls that limit application behavior. Further, the device provides support for

downloadable MDM agents to be installed to limit or permit different functionality of the device. There is no built-in

MDM agent pre-installed on the device.

The TOE communicates and interacts with 802.11-2012 Access Points and mobile data networks to establish network

connectivity, and through that connectivity interacts with MDM servers that allow administrative control of the TOE.

1.4.1.2 Logical Boundaries

This section summarizes the security functions provided by the TOE:

 - Security audit

 - Cryptographic support

 - User data protection

 - Identification and authentication

 - Security management

 - Protection of the TSF

 - TOE access

 - Trusted path/channels

1.4.1.2.1 Security audit

The TOE implements a security log and logcat that are each stored in a circular memory buffer. An MDM agent can

read/fetch the security logs, can retrieve logcat logs, and then handle appropriately (potentially storing the log to Flash

or transmitting its contents to the MDM server). These log methods meet the logging requirements outlined by

FAU_GEN.1 in MDFPPv3.3. Please see the Security audit section 6.1 for further information and specifics.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 9 of 74

1.4.1.2.2 Cryptographic support

The TOE includes multiple cryptographic libraries with CAVP certified algorithms for a wide range of cryptographic

functions including the following: asymmetric key generation and establishment, symmetric key generation,

encryption/decryption, cryptographic hashing and keyed-hash message authentication. These functions are supported

with suitable random bit generation, key derivation, salt generation, initialization vector generation, secure key

storage, and key and protected data destruction. These primitive cryptographic functions may be used to implement

security protocols such as TLS, EAP-TLS, IPsec, and HTTPS and to encrypt the media (including the generation and

protection of data and key encryption keys) used by the TOE. Many of these cryptographic functions are also

accessible as services to applications running on the TOE allowing application developers to ensure their application

meets the required criteria to remain compliant to MDFPP standards.

1.4.1.2.3 User data protection

The TOE controls access to system services by hosted applications, including protection of the Trust Anchor Database.

Additionally, the TOE protects user and other sensitive data using File-Based Encryption (FBE) so that even if a

device is physically lost, the data remains protected. The TOE’s evaluated configuration supports Android Enterprise

profiles to provide additional separation between application and application data belonging to the Enterprise profile.

Please see the Admin Guide for additional details regarding how to set up and use Enterprise profiles.

1.4.1.2.4 Identification and authentication

The TOE supports a number of features related to identification and authentication. From a user perspective, except

for FCC mandated (making phone calls to an emergency number) or non-sensitive functions (e.g., choosing the

keyboard input method or taking screen shots), a password (i.e., Password Authentication Factor) must be correctly

entered to unlock the TOE. Also, even when unlocked, the TOE requires the user re-enter the password to change the

password. Passwords are obscured when entered so they cannot be read from the TOE's display and the frequency of

entering passwords is limited and when a configured number of failures occurs, the TOE will be wiped to protect its

contents. Passwords can be constructed using upper and lower cases characters, numbers, and special characters and

passwords up to 16 characters are supported.

The TOE can also serve as an 802.1X supplicant and can both use and validate X.509v3 certificates for EAP-TLS,

TLS, and HTTPS exchanges.

1.4.1.2.5 Security management

The TOE provides all the interfaces necessary to manage the security functions identified throughout this Security

Target as well as other functions commonly found in mobile devices. Many of the available functions are available to

users of the TOE while many are restricted to administrators operating through a Mobile Device Management solution

once the TOE has been enrolled.

1.4.1.2.6 Protection of the TSF

The TOE implements a number of features to protect itself to ensure the reliability and integrity of its security features.

It protects particularly sensitive data such as cryptographic keys so that they are not accessible or exportable through

the use of the application processor’s hardware. The TOE disallows all read access to the Root Encryption Key (REK)

and retains all keys derived from the REK within its Trusted Execution Environment (TEE). Application software

can only use keys derived from the REK by reference and receive the result.

The TOE also provides its own timing mechanism to ensure that reliable time information is available (e.g., for log

accountability). It enforces read, write, and execute memory page protections, uses address space layout

randomization, and stack-based buffer overflow protections to minimize the potential to exploit application flaws. It

also protects itself from modification by applications as well as isolates the address spaces of applications from one

another to protect those applications.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 10 of 74

The TOE includes functions to perform self-tests and software/firmware integrity checking so that it might detect

when it is failing or may be corrupt. If any self-tests fail, the TOE will not go into an operational mode. It also includes

mechanisms (i.e., verification of the digital signature of each new image) so that the TOE itself can be updated while

ensuring that the updates will not introduce malicious or other unexpected changes in the TOE. Digital signature

checking also extends to verifying applications prior to their installation as all applications must have signatures (even

if self-signed).

1.4.1.2.7 TOE access

The TOE can be locked, obscuring its display, by the user or after a configured interval of inactivity. The TOE also

has the capability to display an administrator specified (using the TOE’s MDM API) advisory message (banner) when

the user unlocks the TOE for the first use after reboot.

The TOE is also able to attempt to connect to wireless networks as configured.

1.4.1.2.8 Trusted path/channels

The TOE supports the use of IEEE 802.11-2012, 802.1X, and EAP-TLS and TLS, HTTPS to secure communications

channels between itself and other trusted network devices.

1.4.2 TOE Documentation

The Administrator Guidance is composed of the following documents, collectively referred to as the Admin Guide.

• Android 14 Common Criteria Administrator Guidance for Zebra Devices (SD660/SM6375/ QCM6490/

QCM5430/ QCM4490/), Version 0.3, 10/07/2025

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 11 of 74

2. Conformance Claims

This TOE is conformant to the following CC specifications:

• Common Criteria for Information Technology Security Evaluation Part 2: Security functional components,

Version 3.1, Revision 5, April 2017.

• Part 2 Extended

• Common Criteria for Information Technology Security Evaluation Part 3: Security assurance components,

Version 3.1, Revision 5, April 2017.

• Part 3 Extended

• PP-Configuration for Mobile Device Fundamentals, Bluetooth, and WLAN Clients, Version 1.0, 11

October 2022 (CFG_MDF-BT-WLANC_V1.0)

• The PP-Configuration includes the following components:

▪ Base-PP: Protection Profile for Mobile Device Fundamentals, Version 3.3, 12 September

2022 (PP_MDF_V3.3)

▪ PP-Module: PP-Module for Bluetooth, Version 1.0, 15 April 2021 (MOD_BT_V1.0)

▪ PP-Module: PP-Module for WLAN Clients, Version 1.0, 31 March 2022

(MOD_WLANC_V1.0)

• Package Claims:

• Functional Package for Transport Layer Security (TLS), Version 1.1, 12 February 2019

(PKG_TLS_V1.1)

Package Technical Decision Applied Notes

MOD_BT_V1.0 TD0707 - Formatting corrections for MOD_BT_V1.0 Yes

MOD_BT_V1.0 TD0685 - BT missing multiple SFR-to-Obj mappings Yes

MOD_BT_V1.0 TD0671 - Bluetooth PP-Module updated to allow for

new PP and PP-Module Versions

Yes

MOD_BT_V1.0 TD0650 - Conformance claim sections updated to

allow for MOD_VPNC_V2.3 and 2.4

No VPNC not claimed

MOD_BT_V1.0 TD0640 - Handling BT devices that do not support

encryption

Yes

MOD_BT_V1.0 TD0600 - Conformance claim sections updated to

allow for MOD_VPNC_V2.3

No VPNC not claimed

MOD_BT_V1.0 TD0645 - Bluetooth audit details Yes

MOD_WLANC_V1.0 TD0920 - Clarification for FMT_SMF.1/WLAN Table

3

 Yes

MOD_WLANC_V1.0 TD0837: Updates to WLAN Client PP-Module allow-

lists

Yes

MOD_WLANC_V1.0 TD0797: Addition of FCS_WPA_EXT to ECD Yes

MOD_WLANC_V1.0 TD0710 - WPA version restrictions Yes

MOD_WLANC_V1.0 TD0703 - Removal of FIA_X509_EXT.2/WLAN

evaluation activities for revocation checking

Yes

MOD_WLANC_V1.0 TD0667 - Move Set Wireless Freq Band to

Optional/Objective

Yes

PKG_TLS_V1.1 TD0914 - Addition of PKG_TLS_V2.0 to

Conformance Claims

No TD does not go into effect

until Oct 1 2025

PKG_TLS_V1.1 TD0770 - TLSS.2 connection with no client cert No TLSS not claimed

PKG_TLS_V1.1 TD0779: Updated Session Resumption Support in TLS

package V1.1

No TLSS not claimed

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 12 of 74

Package Technical Decision Applied Notes

PKG_TLS_V1.1 TD0739 - PKG_TLS_V1.1 has 2 different publication

dates

Yes

PKG_TLS_V1.1 TD0726 - Corrections to (D)TLSS SFRs in TLS 1.1 FP No (D)TLSS not claimed

PKG_TLS_V1.1 TD0513 - CA Certificate loading Yes Manageable Trust store

PKG_TLS_V1.1 TD0499 - Testing with pinned certificates Yes Pinned certs not supported

PKG_TLS_V1.1 TD0469 - Modification of test activity for

FCS_TLSS_EXT.1.1 test 4.1

No TLSS not claimed

PKG_TLS_V1.1 TD0442 - Updated TLS Ciphersuites for TLS Package Yes

PP_MDF_V3.3 TD0950 - Adding FIPS 186-5 in PP_MDF_V3.3 Yes

PP_MDF_V3.3 TD0934 - Clarification when CTR_DRBG is Selected

for FCS_RBG_EXT.1.2 in PP_MDF_V3.3

Yes

PP_MDF_V3.3 TD0844 - Addition of Assurance Package for Flaw

Remediation V1.0 Conformance Claim

No Flaw Remediation not

claimed

PP_MDF_V3.3 TD0724 - Format corrections for FAU_GEN.1.1 in

MDF 3.3

Yes

PP_MDF_V3.3 TD0704 - Part 3 (Extended) in CC Conformance

Claims for MDF 3.3

Yes

PP_MDF_V3.3 TD0689 - RFC Update in FIA_X509_EXT.1 for MDF

PP v3.3

Yes

PP_MDF_V3.3 TD0677 - Correction to Symbol in FCS_RBG_EXT.1

Test EA for MDF 3.3

Yes

Acronyms and Terminology

MDFPP33 PP_MDF_V3.3

PKGTLS11 PKG_TLS_V1.1

WLANC10 MOD_WLANC_V1.0

BT10 MOD_BT_V1.0

2.1 Conformance Rationale

The ST conforms to the MDFPP33/WLANC10/PKGTLS11/BT10. As explained previously, the security problem

definition, security objectives, and security requirements have been drawn from the PP.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 13 of 74

3. Security Objectives

The Security Problem Definition may be found in the MDFPP33/WLANC10/PKGTLS11/BT10 and this section

reproduces only the corresponding Security Objectives for operational environment for reader convenience. The

MDFPP33/WLANC10/PKGTLS11/BT10 offers additional information about the identified security objectives, but

that has not been reproduced here and the MDFPP33/WLANC10/PKGTLS11/BT10 should be consulted if there is

interest in that material.

In general, the MDFPP33/WLANC10/PKGTLS11/BT10 has defined Security Objectives appropriate for mobile

device and as such are applicable to the Zebra Devices on Android 14 TOE.

3.1 Security Objectives for the Operational Environment

OE.CONFIG TOE administrators will configure the Mobile Device security functions correctly to create the intended

security policy.

OE.DATA_PROPER_USER Administrators take measures to ensure that mobile device users are adequately vetted

against malicious intent and are made aware of the expectations for appropriate use of the device.

OE.NO_TOE_BYPASS Information cannot flow between external and internal networks located in different

enclaves without passing through the TOE.

OE.NOTIFY The Mobile User will immediately notify the administrator if the Mobile Device is lost or stolen.

OE.PRECAUTION The mobile device user exercises precautions to reduce the risk of loss or theft of the Mobile

Device.

OE.Protection The TOE environment shall provide the SEE to protect the TOE, the TOE configuration and biometric

data during runtime and storage.

Application Note 4

The TOE and TOE environment (i.e. the computer) satisfy relevant requirements defined in this PP-Module and Base-

PP respectively to protect biometric data.

OE.TRUSTED_ADMIN TOE Administrators are trusted to follow and apply all administrator guidance in a trusted

manner.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 14 of 74

4. Extended Components Definition

All of the extended requirements in this ST have been drawn from the MDFPP33/WLANC10/PKGTLS11/ BT10. The

MDFPP33/WLANC10/PKGTLS11/BT10 defines the following extended requirements and since they are not

redefined in this ST the MDFPP33/WLANC10/PKGTLS11/BT10 should be consulted for more information in regard

to those CC extensions.

Extended SFRs:

 - MDFPP33:FCS_CKM_EXT.1: Cryptographic Key Support

 - MDFPP33:FCS_CKM_EXT.2: Cryptographic Key Random Generation

 - MDFPP33:FCS_CKM_EXT.3: Cryptographic Key Generation

 - MDFPP33:FCS_CKM_EXT.4: Key Destruction

 - MDFPP33:FCS_CKM_EXT.5: TSF Wipe

 - MDFPP33:FCS_CKM_EXT.6: Salt Generation

 - BT10:FCS_CKM_EXT.8: Bluetooth Key Generation

 - MDFPP33:FCS_HTTPS_EXT.1: HTTPS Protocol

 - MDFPP33:FCS_IV_EXT.1: Initialization Vector Generation

 - MDFPP33:FCS_RBG_EXT.1: Random Bit Generation - per TD0677

 - MDFPP33:FCS_SRV_EXT.1: Cryptographic Algorithm Services

 - MDFPP33:FCS_SRV_EXT.2: Cryptographic Algorithm Services

 - MDFPP33:FCS_STG_EXT.1: Cryptographic Key Storage

 - MDFPP33:FCS_STG_EXT.2: Encrypted Cryptographic Key Storage

 - MDFPP33:FCS_STG_EXT.3: Integrity of Encrypted Key Storage

 - PKGTLS11:FCS_TLS_EXT.1: TLS Protocol

 - PKGTLS11:FCS_TLSC_EXT.1: TLS Client Protocol

 - WLANC10:FCS_TLSC_EXT.1/WLAN: TLS Client Protocol (EAP-TLS for WLAN)

 - PKGTLS11:FCS_TLSC_EXT.2: TLS Client Support for Mutual Authentication

 - WLANC10:FCS_TLSC_EXT.2/WLAN: TLS Client Support for Supported Groups Extension (EAP-TLS for

WLAN)

 - PKGTLS11:FCS_TLSC_EXT.4: TLS Client Support for Renegotiation

 - PKGTLS11:FCS_TLSC_EXT.5: TLS Client Support for Supported Groups Extension

 - WLANC10:FCS_WPA_EXT.1: Supported WPA Versions - per TD0710

 - MDFPP33:FDP_ACF_EXT.1: Access Control for System Services

 - MDFPP33:FDP_ACF_EXT.2: Extended: Security access control

 - MDFPP33:FDP_DAR_EXT.1: Protected Data Encryption

 - MDFPP33:FDP_DAR_EXT.2: Sensitive Data Encryption

 - MDFPP33:FDP_IFC_EXT.1: Subset Information Flow Control

 - MDFPP33:FDP_STG_EXT.1: User Data Storage

 - MDFPP33:FDP_UPC_EXT.1/APPS: Inter-TSF User Data Transfer Protection (Applications)

 - MDFPP33:FDP_UPC_EXT.1/BLUETOOTH: Inter-TSF User Data Transfer Protection (Bluetooth)

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 15 of 74

 - MDFPP33:FIA_AFL_EXT.1: Authentication Failure Handling

 - BT10:FIA_BLT_EXT.1: Bluetooth User Authorization

 - BT10:FIA_BLT_EXT.2: Bluetooth Mutual Authentication

 - BT10:FIA_BLT_EXT.3: Rejection of Duplicate Bluetooth Connections

 - BT10:FIA_BLT_EXT.4: Secure Simple Pairing

 - BT10:FIA_BLT_EXT.6: Trusted Bluetooth Device User Authorization

 - BT10:FIA_BLT_EXT.7: Untrusted Bluetooth Device User Authorization

 - WLANC10:FIA_PAE_EXT.1: Port Access Entity Authentication

 - MDFPP33:FIA_PMG_EXT.1: Password Management

 - MDFPP33:FIA_TRT_EXT.1: Authentication Throttling

 - MDFPP33:FIA_UAU_EXT.1: Authentication for Cryptographic Operation

 - MDFPP33:FIA_UAU_EXT.2: Timing of Authentication

 - MDFPP33:FIA_X509_EXT.1: X.509 Validation of Certificates - per TD0689

 - WLANC10:FIA_X509_EXT.1/WLAN: X.509 Certificate Validation

 - MDFPP33:FIA_X509_EXT.2: X.509 Certificate Authentication

 - WLANC10:FIA_X509_EXT.2/WLAN: X.509 Certificate Authentication (EAP-TLS for WLAN) - TD0703

applied

 - MDFPP33:FIA_X509_EXT.3: Request Validation of Certificates

 - WLANC10:FIA_X509_EXT.6: Certificate Storage and Management

 - MDFPP33:FMT_MOF_EXT.1: Management of Security Functions Behavior

 - BT10:FMT_SMF_EXT.1/BT: Specification of Management Functions

 - MDFPP33:FMT_SMF_EXT.2: Specification of Remediation Actions

 - MDFPP33:FMT_SMF_EXT.3: Current Administrator

 - MDFPP33:FPT_AEX_EXT.1: Application Address Space Layout Randomization

 - MDFPP33:FPT_AEX_EXT.2: Memory Page Permissions

 - MDFPP33:FPT_AEX_EXT.3: Stack Overflow Protection

 - MDFPP33:FPT_AEX_EXT.4: Domain Isolation

 - MDFPP33:FPT_AEX_EXT.5: Kernel Address Space Layout Randomization

 - MDFPP33:FPT_BBD_EXT.1: Application Processor Mediation

 - MDFPP33:FPT_JTA_EXT.1: JTAG Disablement

 - MDFPP33:FPT_KST_EXT.1: Key Storage

 - MDFPP33:FPT_KST_EXT.2: No Key Transmission

 - MDFPP33:FPT_KST_EXT.3: No Plaintext Key Export

 - MDFPP33:FPT_NOT_EXT.1: Self-Test Notification

 - MDFPP33:FPT_TST_EXT.1: TSF Cryptographic Functionality Testing

 - MDFPP33:FPT_TST_EXT.2/PREKERNEL: TSF Integrity Checking (Pre-Kernel)

 - MDFPP33:FPT_TST_EXT.2/POSTKERNEL: TSF Integrity Checking (Post-Kernel)

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 16 of 74

 - WLANC10:FPT_TST_EXT.3/WLAN: TSF Cryptographic Functionality Testing (WLAN Client)

 - MDFPP33:FPT_TUD_EXT.1: TSF Version Query

 - MDFPP33:FPT_TUD_EXT.2: TSF Update Verification

 - MDFPP33:FPT_TUD_EXT.3: Application Signing

 - MDFPP33:FPT_TUD_EXT.6: Trusted Update Verification

 - MDFPP33:FTA_SSL_EXT.1: TSF- and User-Initiated Locked State

 - WLANC10:FTA_WSE_EXT.1: Wireless Network Access

 - BT10:FTP_BLT_EXT.1: Bluetooth Encryption

 - BT10:FTP_BLT_EXT.2: Persistence of Bluetooth Encryption

 - BT10:FTP_BLT_EXT.3/BR: Bluetooth Encryption Parameters (BR/EDR) - per TD0640

 - BT10:FTP_BLT_EXT.3/LE: Bluetooth Encryption Parameters (LE)

 - MDFPP33:FTP_ITC_EXT.1: Trusted Channel Communication

 - WLANC10:FTP_ITC.1/WLAN: Trusted Channel Communication (Wireless LAN)

Extended SARs:

 - ALC_TSU_EXT.1: Timely Security Updates

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 17 of 74

5. Security Requirements

This section defines the Security Functional Requirements (SFRs) and Security Assurance Requirements (SARs) that

serve to represent the security functional claims for the Target of Evaluation (TOE) and to scope the evaluation effort.

The SFRs have all been drawn from the MDFPP33/WLANC10/PKGTLS11/BT10. The refinements and operations

already performed in the MDFPP33/WLANC10/PKGTLS11/BT10 are not identified (e.g., highlighted) here, rather

the requirements have been copied from the MDFPP33/WLANC10/PKGTLS11/ BT10 and any residual operations

have been completed herein. Of particular note, the MDFPP33/WLANC10/ PKGTLS11/BT10 made a number of

refinements and completed some of the SFR operations defined in the Common Criteria (CC) and that PP should be

consulted to identify those changes if necessary.

The SARs are also drawn from the MDFPP33/WLANC10/PKGTLS11/BT10. The

MDFPP33/WLANC10/PKGTLS11/BT10 should be consulted for the assurance activity definitions.

5.1 TOE Security Functional Requirements

The following table identifies the SFRs that are satisfied by Zebra Devices on Android 14 TOE.

Requirement Class Requirement Component

FAU: Security

audit

MDFPP33:FAU_GEN.1: Audit Data Generation

BT10:FAU_GEN.1/BT: Audit Data Generation (Bluetooth) - per TD0707

WLANC10:FAU_GEN.1/WLAN: Audit Data Generation (Wireless LAN)

MDFPP33:FAU_SAR.1: Audit Review

MDFPP33:FAU_STG.1: Audit Storage Protection

MDFPP33:FAU_STG.4: Prevention of Audit Data Loss

FCS:

Cryptographic

support

MDFPP33:FCS_CKM.1: Cryptographic Key Generation

WLANC10:FCS_CKM.1/WPA: Cryptographic Key Generation (Symmetric Keys

for WPA2/WPA3 Connections)

MDFPP33:FCS_CKM.2/LOCKED: Cryptographic Key Establishment

MDFPP33:FCS_CKM.2/UNLOCKED: Cryptographic Key Establishment

WLANC10:FCS_CKM.2/WLAN: Cryptographic Key Distribution (Group

Temporal Key for WLAN)

MDFPP33:FCS_CKM_EXT.1: Cryptographic Key Support

MDFPP33:FCS_CKM_EXT.2: Cryptographic Key Random Generation

MDFPP33:FCS_CKM_EXT.3: Cryptographic Key Generation

MDFPP33:FCS_CKM_EXT.4: Key Destruction

MDFPP33:FCS_CKM_EXT.5: TSF Wipe

MDFPP33:FCS_CKM_EXT.6: Salt Generation

BT10:FCS_CKM_EXT.8: Bluetooth Key Generation

MDFPP33:FCS_COP.1/CONDITION: Cryptographic Operation

MDFPP33:FCS_COP.1/ENCRYPT: Cryptographic Operation

MDFPP33:FCS_COP.1/HASH: Cryptographic Operation

MDFPP33:FCS_COP.1/KEYHMAC: Cryptographic Operation

MDFPP33:FCS_COP.1/SIGN: Cryptographic Operation

MDFPP33:FCS_HTTPS_EXT.1: HTTPS Protocol

MDFPP33:FCS_IV_EXT.1: Initialization Vector Generation

MDFPP33:FCS_RBG_EXT.1: Random Bit Generation - per TD0677

MDFPP33:FCS_SRV_EXT.1: Cryptographic Algorithm Services

MDFPP33:FCS_SRV_EXT.2: Cryptographic Algorithm Services

MDFPP33:FCS_STG_EXT.1: Cryptographic Key Storage

MDFPP33:FCS_STG_EXT.2: Encrypted Cryptographic Key Storage

MDFPP33:FCS_STG_EXT.3: Integrity of Encrypted Key Storage

PKGTLS11:FCS_TLS_EXT.1: TLS Protocol

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 18 of 74

PKGTLS11:FCS_TLSC_EXT.1: TLS Client Protocol

WLANC10:FCS_TLSC_EXT.1/WLAN: TLS Client Protocol (EAP-TLS for

WLAN)

PKGTLS11:FCS_TLSC_EXT.2: TLS Client Support for Mutual Authentication

WLANC10:FCS_TLSC_EXT.2/WLAN: TLS Client Support for Supported Groups

Extension (EAP-TLS for WLAN)

PKGTLS11:FCS_TLSC_EXT.4: TLS Client Support for Renegotiation

PKGTLS11:FCS_TLSC_EXT.5: TLS Client Support for Supported Groups

Extension

WLANC10:FCS_WPA_EXT.1: Supported WPA Versions - per TD0710

FDP: User data

protection

MDFPP33:FDP_ACF_EXT.1: Access Control for System Services

MDFPP33:FDP_ACF_EXT.2: Extended: Security access control

MDFPP33:FDP_DAR_EXT.1: Protected Data Encryption

MDFPP33:FDP_DAR_EXT.2: Sensitive Data Encryption

MDFPP33:FDP_IFC_EXT.1: Subset Information Flow Control

MDFPP33:FDP_STG_EXT.1: User Data Storage

MDFPP33:FDP_UPC_EXT.1/APPS: Inter-TSF User Data Transfer Protection

(Applications)

MDFPP33:FDP_UPC_EXT.1/BLUETOOTH: Inter-TSF User Data Transfer

Protection (Bluetooth)

FIA: Identification

and authentication

MDFPP33:FIA_AFL_EXT.1: Authentication Failure Handling

BT10:FIA_BLT_EXT.1: Bluetooth User Authorization

BT10:FIA_BLT_EXT.2: Bluetooth Mutual Authentication

BT10:FIA_BLT_EXT.3: Rejection of Duplicate Bluetooth Connections

BT10:FIA_BLT_EXT.4: Secure Simple Pairing

BT10:FIA_BLT_EXT.6: Trusted Bluetooth Device User Authorization

BT10:FIA_BLT_EXT.7: Untrusted Bluetooth Device User Authorization

WLANC10:FIA_PAE_EXT.1: Port Access Entity Authentication

MDFPP33:FIA_PMG_EXT.1: Password Management

MDFPP33:FIA_TRT_EXT.1: Authentication Throttling

MDFPP33:FIA_UAU.5: Multiple Authentication Mechanisms

MDFPP33:FIA_UAU.6/CREDENTIAL: Re-Authenticating (Credential Change)

MDFPP33:FIA_UAU.6/LOCKED: Re-Authenticating (TSF Lock)

MDFPP33:FIA_UAU.7: Protected Authentication Feedback

MDFPP33:FIA_UAU_EXT.1: Authentication for Cryptographic Operation

MDFPP33:FIA_UAU_EXT.2: Timing of Authentication

MDFPP33:FIA_X509_EXT.1: X.509 Validation of Certificates - per TD0689

WLANC10:FIA_X509_EXT.1/WLAN: X.509 Certificate Validation

MDFPP33:FIA_X509_EXT.2: X.509 Certificate Authentication

WLANC10:FIA_X509_EXT.2/WLAN: X.509 Certificate Authentication (EAP-

TLS for WLAN) - TD0703 applied

MDFPP33:FIA_X509_EXT.3: Request Validation of Certificates

WLANC10:FIA_X509_EXT.6: Certificate Storage and Management

FMT: Security

management

MDFPP33:FMT_MOF_EXT.1: Management of Security Functions Behavior

MDFPP33:FMT_SMF.1: Specification of Management Functions

BT10:FMT_SMF_EXT.1/BT: Specification of Management Functions

WLANC10:FMT_SMF.1/WLAN: Specification of Management Functions (WLAN

Client) - per TD0667

MDFPP33:FMT_SMF_EXT.2: Specification of Remediation Actions

MDFPP33:FMT_SMF_EXT.3: Current Administrator

FPT: Protection of

the TSF

MDFPP33:FPT_AEX_EXT.1: Application Address Space Layout Randomization

MDFPP33:FPT_AEX_EXT.2: Memory Page Permissions

MDFPP33:FPT_AEX_EXT.3: Stack Overflow Protection

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 19 of 74

MDFPP33:FPT_AEX_EXT.4: Domain Isolation

MDFPP33:FPT_AEX_EXT.5: Kernel Address Space Layout Randomization

MDFPP33:FPT_BBD_EXT.1: Application Processor Mediation

MDFPP33:FPT_JTA_EXT.1: JTAG Disablement

MDFPP33:FPT_KST_EXT.1: Key Storage

MDFPP33:FPT_KST_EXT.2: No Key Transmission

MDFPP33:FPT_KST_EXT.3: No Plaintext Key Export

MDFPP33:FPT_NOT_EXT.1: Self-Test Notification

MDFPP33:FPT_STM.1: Reliable time stamps

MDFPP33:FPT_TST_EXT.1: TSF Cryptographic Functionality Testing

MDFPP33:FPT_TST_EXT.2/PREKERNEL: TSF Integrity Checking (Pre-Kernel)

MDFPP33:FPT_TST_EXT.2/POSTKERNEL: TSF Integrity Checking (Post-

Kernel)

WLANC10:FPT_TST_EXT.3/WLAN: TSF Cryptographic Functionality Testing

(WLAN Client)

MDFPP33:FPT_TUD_EXT.1: TSF Version Query

MDFPP33:FPT_TUD_EXT.2: TSF Update Verification

MDFPP33:FPT_TUD_EXT.3: Application Signing

MDFPP33:FPT_TUD_EXT.6: Trusted Update Verification

FTA: TOE access MDFPP33:FTA_SSL_EXT.1: TSF- and User-Initiated Locked State

MDFPP33:FTA_TAB.1: Default TOE Access Banners

WLANC10:FTA_WSE_EXT.1: Wireless Network Access

FTP: Trusted

path/channels

BT10:FTP_BLT_EXT.1: Bluetooth Encryption

BT10:FTP_BLT_EXT.2: Persistence of Bluetooth Encryption

BT10:FTP_BLT_EXT.3/BR: Bluetooth Encryption Parameters (BR/EDR) - per

TD0640

BT10:FTP_BLT_EXT.3/LE: Bluetooth Encryption Parameters (LE)

MDFPP33:FTP_ITC_EXT.1: Trusted Channel Communication

WLANC10:FTP_ITC.1/WLAN: Trusted Channel Communication (Wireless LAN)

Table 1 TOE Security Functional Components

5.1.1 Security audit (FAU)

5.1.1.1 Audit Data Generation (MDFPP33:FAU_GEN.1)

MDFPP33:FAU_GEN.1.1

The TSF shall be able to generate an audit record of the following auditable events:

1. Start-up and shutdown of the audit functions

2. All auditable events for the not selected level of audit

3. All administrative actions

4. Start-up and shutdown of the OS

5. Insertion or removal of removable media

6. Specifically defined auditable events in Table 2

7. [no additional auditable events].

MDFPP33:FAU_GEN.1.2

The TSF shall record within each audit record at least the following information:

1. Date and time of the event

2. Type of event

3. Subject identity

4. The outcome (success or failure) of the event

5. Additional information in Table 2

6. [no additional information]

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 20 of 74

Requirement Audit Event Additional Contents

MDFPP33:FAU_GEN.1 No events specified N/A

MDFPP33:FAU_SAR.1 No events specified N/A

MDFPP33:FAU_STG.1 No events specified N/A

MDFPP33:FAU_STG.4 No events specified N/A

MDFPP33:FCS_CKM.1 (2) [None]. No additional information.

MDFPP33:FCS_CKM.2/LOCKED No events specified N/A

MDFPP33:FCS_CKM.2/UNLOCKED No events specified N/A

MDFPP33:FCS_CKM_EXT.1 (2) [None]. No additional information.

MDFPP33:FCS_CKM_EXT.2 No events specified N/A

MDFPP33:FCS_CKM_EXT.3 No events specified N/A

MDFPP33:FCS_CKM_EXT.4 No events specified N/A

MDFPP33:FCS_CKM_EXT.5 (2) [None]. No additional information.

MDFPP33:FCS_CKM_EXT.6 No events specified N/A

MDFPP33:FCS_COP.1/CONDITION No events specified N/A

MDFPP33:FCS_COP.1/ENCRYPT No events specified N/A

MDFPP33:FCS_COP.1/HASH No events specified N/A

MDFPP33:FCS_COP.1/KEYHMAC No events specified N/A

MDFPP33:FCS_COP.1/SIGN No events specified N/A

MDFPP33:FCS_IV_EXT.1 No events specified N/A

MDFPP33:FCS_SRV_EXT.1 No events specified N/A

MDFPP33:FCS_SRV_EXT.2 No events specified N/A

MDFPP33:FCS_STG_EXT.1 (2) Import or destruction of key.

[None].

Identity of key, role and

identity of requestor.

MDFPP33:FCS_STG_EXT.2 No events specified

MDFPP33:FCS_STG_EXT.3 (2) Failure to verify integrity of

stored key.

Identity of key being verified.

MDFPP33:FDP_ACF_EXT.1 No events specified N/A

MDFPP33:FDP_ACF_EXT.2 No events specified N/A

MDFPP33:FDP_BCK_EXT.1 No events specified N/A

MDFPP33:FDP_BLT_EXT.1 No events specified N/A

MDFPP33:FDP_DAR_EXT.1 (2) [None]. No additional information.

MDFPP33:FDP_DAR_EXT.2 (2) [None]. No additional information.

MDFPP33:FDP_STG_EXT.1 (2) Addition or removal of certificate

from Trust Anchor Database.

Subject name of certificate.

MDFPP33:FIA_PMG_EXT.1 No events specified N/A

MDFPP33:FIA_TRT_EXT.1 No events specified N/A

MDFPP33:FIA_UAU.5 No events specified N/A

MDFPP33:FIA_UAU.6/

CREDENTIAL

No events specified N/A

MDFPP33:FIA_UAU.7 No events specified N/A

MDFPP33:FIA_UAU_EXT.1 No events specified N/A

MDFPP33:FIA_X509_EXT.1 (2) Failure to validate X.509v3

certificate.

Reason for failure of

validation.

MDFPP33:FIA_X509_EXT.3 No events specified N/A

MDFPP33:FMT_SMF_EXT.3 No events specified N/A

MDFPP33:FPT_AEX_EXT.1 No events specified N/A

MDFPP33:FPT_AEX_EXT.2 No events specified N/A

MDFPP33:FPT_AEX_EXT.3 No events specified N/A

MDFPP33:FPT_AEX_EXT.4 No events specified N/A

MDFPP33:FPT_AEX_EXT.5 No events specified N/A

MDFPP33:FPT_BBD_EXT.1 No events specified N/A

MDFPP33:FPT_BLT_EXT.1 No events specified N/A

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 21 of 74

Requirement Audit Event Additional Contents

MDFPP33:FPT_JTA_EXT.1 No events specified N/A

MDFPP33:FPT_KST_EXT.1 No events specified N/A

MDFPP33:FPT_KST_EXT.2 No events specified N/A

MDFPP33:FPT_KST_EXT.3 No events specified N/A

MDFPP33:FPT_NOT_EXT.1 (2) [None]. [No additional information].

MDFPP33:FPT_STM.1 No events specified N/A

MDFPP33:FPT_TST_EXT.1 (2) Initiation of self-test.

Failure of self-test.

No additional information.

 [No additional information].

MDFPP33:FPT_TST_EXT.2/

POSTKERNEL

(3) [None]. [No additional information].

MDFPP33:FPT_TST_EXT.2/

PREKERNEL

(2) Start-up of TOE.

[None].

No additional information.

[No additional information].

MDFPP33:FPT_TST_EXT.3 No events specified N/A

MDFPP33:FPT_TUD_EXT.1 No events specified N/A

MDFPP33:FPT_TUD_EXT.6 No events specified N/A

MDFPP33:FTA_SSL_EXT.1 No events specified N/A

MDFPP33:FTA_TAB.1 No events specified N/A

Table 2 MDFPP33 Audit Events

Note: Entries with a (2) or (3) in the column indicates from which MDFPP table they are taken.

5.1.1.2 Audit Data Generation (Bluetooth) - per TD0707 (BT10:FAU_GEN.1/BT)

BT10:FAU_GEN.1.1/BT

The TSF shall be able to generate an audit record of the following auditable events:

a. Start-up and shutdown of the audit functions

b. All auditable events for the not specified level of audit (TD0707 applied)

c. Specifically defined auditable events in the Auditable Events table.

BT10:FAU_GEN.1.2/BT

The TSF shall record within each audit record at least the following information:

a. Date and time of the event

b. Type of event

c. Subject identity

d. The outcome (success or failure) of the event

e. For each audit event type, based on the auditable event definitions of the functional components

included in the PP/ST, Additional information in the Auditable Events table. (TD0707 applied)

Requirement Auditable Events Additional Audit Record Contents

BT10:FCS_CKM_EXT.8 None.

BT10:FIA_BLT_EXT.1 Failed user authorization

of Bluetooth device.

Failed user authorization

for local Bluetooth

Service.

User authorization decision (e.g., user

rejected connection, incorrect pin entry).

[Complete] [BT ADDR and [no other

information]].

Bluetooth profile. Identity of local service

with [service ID,]. (TD0645 applied)

BT10:FIA_BLT_EXT.2 Initiation of Bluetooth

connection.

Failure of Bluetooth

connection.

[Complete] [BT ADDR and [no other

information]].

Reason for failure. (TD0645 applied)

BT10:FIA_BLT_EXT.3 Duplicate connection

attempt.

[Complete] [BT ADDR of connection

attempt]. (TD0645 applied)

BT10:FIA_BLT_EXT.4 None.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 22 of 74

Requirement Auditable Events Additional Audit Record Contents

BT10:FIA_BLT_EXT.6 None.

BT10:FIA_BLT_EXT.7 None.

BT10:FTP_BLT_EXT.1 None.

BT10:FTP_BLT_EXT.2 None.

BT10:FTP_BLT_EXT.3/BR None.

BT10:FTP_BLT_EXT.3/LE None.

Table 3 Bluetooth Audit Events

5.1.1.3 Audit Data Generation (Wireless LAN) (WLANC10:FAU_GEN.1/WLAN)

WLANC10:FAU_GEN.1.1/WLAN

The TSF shall [implement functionality] to generate an audit record of the following auditable

events:

a. Startup and shutdown of the audit functions;

b. All auditable events for not specified level of audit; and

c. all auditable events for mandatory SFRs specified in Table 2 and selected SFRs in Table 5

(Table 4 in the ST).

WLANC10:FAU_GEN.1.2/WLAN

The [TSF] shall record within each audit record at least the following information:

a. Date and time of the event, type of event, subject identity, (if relevant) the outcome (success or

failure) of the event; and

b. For each audit event type, based on the auditable event definitions of the functional components

included in the PP-Module/ST, Additional Audit Record Contents as specified

in Table 2 and Table 5 (Table 4 in the ST).

Requirement Audit Event Additional Contents

WLANC10:FAU_GEN.1/WLAN No events specified.

WLANC10:FCS_CKM.1/WPA No events specified.

WLANC10:FCS_CKM.2/WLAN No events specified.

WLANC10:FCS_TLSC_EXT.1/WLAN Failure to establish an EAP-

TLS session.

Establishment/termination of an

EAP-TLS session.

Reason for failure.

Non-TOE endpoint of connection.

WLANC10:FCS_TLSC_EXT.2/WLAN No events specified.

WLANC10:FCS_WPA_EXT.1 No events specified.

WLANC10:FIA_PAE_EXT.1 No events specified.

WLANC10:FIA_X509_EXT.1/WLAN Failure to validate X.509v3

certificate

Reason for failure of validation.

WLANC10:FIA_X509_EXT.2/WLAN No events specified.

WLANC10:FIA_X509_EXT.6 Attempts to load certificates.

Attempts to revoke certificates.

None

WLANC10:FMT_SMF.1/WLAN No events specified.

WLANC10:FPT_TST_EXT.3/WLAN Execution of this set of TSF

self-tests.

None.

WLANC10:FTA_WSE_EXT.1 All attempts to connect to

access points.

For each access point record the

[Complete SSID and MAC] of the

MAC Address Success and failures

(including reason for failure).

WLANC10:FTP_ITC.1/WLAN All attempts to establish a

trusted channel.

Identification of the non-TOE

endpoint of the channel.

Table 4 WLAN Audit Events

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 23 of 74

5.1.1.4 Audit Review (MDFPP33:FAU_SAR.1)

MDFPP33:FAU_SAR.1.1

The TSF shall provide the administrator with the capability to read all audited events and record

contents from the audit records.

MDFPP33:FAU_SAR.1.2

The TSF shall provide the audit records in a manner suitable for the user to interpret the

information.

5.1.1.5 Audit Storage Protection (MDFPP33:FAU_STG.1)

MDFPP33:FAU_STG.1.1

The TSF shall protect the stored audit records in the audit trail from unauthorized deletion.

MDFPP33:FAU_STG.1.2

The TSF shall be able to prevent unauthorized modifications to the stored audit records in the

audit trail.

5.1.1.6 Prevention of Audit Data Loss (MDFPP33:FAU_STG.4)

MDFPP33:FAU_STG.4.1

The TSF shall overwrite the oldest stored audit records if the audit trail is full.

5.1.2 Cryptographic support (FCS)

5.1.2.1 Cryptographic Key Generation (MDFPP33:FCS_CKM.1)

MDFPP33:FCS_CKM.1.1

The TSF shall generate asymmetric cryptographic keys in accordance with a specified

cryptographic key generation algorithm [

- RSA schemes using cryptographic key sizes of [2048-bit, 3072-bits] that meet FIPS PUB

186-4, "Digital Signature Standard (DSS)", Appendix B.3,,

- ECC schemes using: ['NIST curves' P-384 and [P-256, P-521] that meet the following:

FIPS PUB 186-4, "Digital Signature Standard (DSS)", Appendix B.4]]. (TD0950 applied)

5.1.2.2 Cryptographic Key Generation (Symmetric Keys for WPA2/WPA3 Connections)

(WLANC10:FCS_CKM.1/WPA)

WLANC10:FCS_CKM.1.1/WPA

The TSF shall generate symmetric cryptographic keys in accordance with a specified

cryptographic key generation algorithm PRF-384 and [PRF-512] (as defined in IEEE 802.11-

2012) and specified cryptographic key sizes 256 bits and [128 bits] using a Random Bit Generator

as specified in FCS_RBG_EXT.1.

5.1.2.3 Cryptographic Key Establishment (MDFPP33:FCS_CKM.2/LOCKED)

MDFPP33:FCS_CKM.2.1/LOCKED

The TSF shall perform cryptographic key establishment in accordance with a specified

cryptographic key establishment method:

[RSA-based key establishment schemes that meets the following: NIST Special Publication 800-

56B, "Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization

Cryptography]]

for the purposes of encrypting sensitive data received while the device is locked.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 24 of 74

5.1.2.4 Cryptographic Key Establishment (MDFPP33:FCS_CKM.2/UNLOCKED)

MDFPP33:FCS_CKM.2.1/UNLOCKED

The TSF shall perform cryptographic key establishment in accordance with a specified

cryptographic key establishment method:

[RSA-based key establishment schemes that meets the following [NIST Special Publication 800-

56B, 'Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization

Cryptography'],

Elliptic curve-based key establishment schemes that meets the following: NIST Special

Publication 800-56A Revision 3, 'Recommendation for Pair-Wise Key Establishment Schemes

Using Discrete Logarithm Cryptography'].

5.1.2.5 Cryptographic Key Distribution (Group Temporal Key for WLAN)

(WLANC10:FCS_CKM.2/WLAN)

WLANC10:FCS_CKM.2.1/WLAN

The TSF shall decrypt Group Temporal Key in accordance with a specified cryptographic key

distribution method AES Key Wrap (as defined in RFC 3394) in an EAPOL-Key frame (as

defined in IEEE 802.11-2012) for the packet format and timing considerations and does not

expose the cryptographic keys.

5.1.2.6 Cryptographic Key Support (MDFPP33:FCS_CKM_EXT.1)

MDFPP33:FCS_CKM_EXT.1.1

The TSF shall support [immutable hardware] REKs with a [symmetric] key of strength [256 bits].

MDFPP33:FCS_CKM_EXT.1.2

Each REK shall be hardware-isolated from the OS on the TSF in runtime.

MDFPP33:FCS_CKM_EXT.1.3

Each REK shall be generated by a RBG in accordance with FCS_RBG_EXT.1.

5.1.2.7 Cryptographic Key Random Generation (MDFPP33:FCS_CKM_EXT.2)

MDFPP33:FCS_CKM_EXT.2.1

All DEKs shall be [randomly generated] with entropy corresponding to the security strength of

AES key sizes of [128, 256] bits.

5.1.2.8 Cryptographic Key Generation (MDFPP33:FCS_CKM_EXT.3)

MDFPP33:FCS_CKM_EXT.3.1

The TSF shall use [asymmetric KEKs of [128-bit] security strength, symmetric KEKs of [256-bit]

security strength corresponding to at least the security strength of the keys encrypted by the

KEK].

MDFPP33:FCS_CKM_EXT.3.2

The TSF shall generate all KEKs using one of the following methods:

- Derive the KEK from a Password Authentication Factor according to

FCS_COP.1.1/CONDITION and [

- Generate the KEK using an RBG that meets this profile (as specified in FCS_RBG_EXT.1)

- Generate the KEK using a key generation scheme that meets this profile (as specified in

FCS_CKM.1),

- Combine the KEK from other KEKs in a way that preserves the effective entropy of each factor

by [concatenating the keys and using a KDF (as described in SP 800-108)]].

5.1.2.9 Key Destruction (MDFPP33:FCS_CKM_EXT.4)

MDFPP33:FCS_CKM_EXT.4.1

The TSF shall destroy cryptographic keys in accordance with the specified cryptographic key

destruction methods:

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 25 of 74

- By clearing the KEK encrypting the target key

- In accordance with the following rules

o For volatile memory, the destruction shall be executed by a single direct overwrite

[consisting of zeroes].

o For non-volatile EEPROM, the destruction shall be executed by a single direct

overwrite consisting of a pseudo random pattern using the TSF's RBG

(as specified in FCS_RBG_EXT.1), followed by a read-verify.

o For non-volatile flash memory, that is not wear-leveled, the destruction shall be

executed [by a block erase that erases the reference to memory that

stores data as well as the data itself].

o For non-volatile flash memory, that is wear-leveled, the destruction shall be executed

[by a block erase].

o For non-volatile memory other than EEPROM and flash, the destruction shall be

executed by a single direct overwrite with a random pattern that is

changed before each write.

MDFPP33:FCS_CKM_EXT.4.2

The TSF shall destroy all plaintext keying material and critical security parameters when no longer

needed.

5.1.2.10 TSF Wipe (MDFPP33:FCS_CKM_EXT.5)

MDFPP33:FCS_CKM_EXT.5.1

The TSF shall wipe all protected data by [

- Cryptographically erasing the encrypted DEKs or the KEKs in nonvolatile memory by

following the requirements in FCS_CKM_EXT.4.1,

- Overwriting all PD according to the following rules:

o For EEPROM, the destruction shall be executed by a single direct overwrite

consisting of a pseudo random pattern using the TSF's RBG (as specified in

FCS_RBG_EXT.1, followed by a read-verify.

o For flash memory, that is not wear-leveled, the destruction shall be executed [by a

block erase that erases the reference to memory that stores data as well as the data

itself].

o For flash memory, that is wear-leveled, the destruction shall be executed [by a

block erase].

o For non-volatile memory other than EEPROM and flash, the destruction shall be

executed by a single direct overwrite with a random pattern that is changed before

each write.].

MDFPP33:FCS_CKM_EXT.5.2

The TSF shall perform a power cycle on conclusion of the wipe procedure.

5.1.2.11 Salt Generation (MDFPP33:FCS_CKM_EXT.6)

MDFPP33:FCS_CKM_EXT.6.1

The TSF shall generate all salts using a RBG that meets FCS_RBG_EXT.1.

5.1.2.12 Bluetooth Key Generation (BT10:FCS_CKM_EXT.8)

BT10:FCS_CKM_EXT.8.1

The TSF shall generate public/private ECDH key pairs every [Bluetooth connection

establishment].

5.1.2.13 Cryptographic Operation (MDFPP33:FCS_COP.1/CONDITION)

MDFPP33:FCS_COP.1.1/CONDITION

The TSF shall perform conditioning in accordance with a specified cryptographic algorithm

HMAC-[SHA-256] using a salt, and [[key stretching with scrypt]] and output cryptographic key

sizes [256] that meet the following: [no standard].

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 26 of 74

5.1.2.14 Cryptographic Operation (MDFPP33:FCS_COP.1/ENCRYPT)

MDFPP33:FCS_COP.1.1/ENCRYPT

The TSF shall perform encryption/decryption in accordance with a specified cryptographic

algorithm:

- AES-CBC (as defined in FIPS PUB 197, and NIST SP 800-38A) mode

- AES-CCMP (as defined in FIPS PUB 197, NIST SP 800-38C and IEEE 802.11-2012), and

[AES Key Wrap (KW) (as defined in NIST SP 800-38F),

AES-GCM (as defined in NIST SP 800-38D),

AES-XTS (as defined in NIST SP 800-38E) mode]

and cryptographic key sizes 128-bit key sizes and [256-bit key sizes].

5.1.2.15 Cryptographic Operation (MDFPP33:FCS_COP.1/HASH)

MDFPP33:FCS_COP.1.1/HASH

The TSF shall perform cryptographic hashing in accordance with a specified cryptographic

algorithm SHA-1 and [SHA-256, SHA-384, SHA-512] and message digest sizes 160 and [256

bits, 384 bits, 512 bits] that meet the following: FIPS Pub 180-4.

5.1.2.16 Cryptographic Operation (MDFPP33:FCS_COP.1/KEYHMAC)

MDFPP33:FCS_COP.1.1/KEYHMAC

The TSF shall perform keyed-hash message authentication in accordance with a specified

cryptographic algorithm HMAC-SHA-1 and [HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-

512] and cryptographic key sizes [160, 256, 384, 512] and message digest sizes 160 and [256, 384,

512] bits that meet the following: FIPS Pub 198-1, 'The Keyed-Hash Message Authentication

Code', and FIPS Pub 180-4, 'Secure Hash Standard'.

5.1.2.17 Cryptographic Operation (MDFPP33:FCS_COP.1/SIGN)

MDFPP33:FCS_COP.1.1/SIGN

The TSF shall perform cryptographic signature services (generation and verification) in

accordance with a specified cryptographic algorithm [

- RSA schemes using cryptographic key sizes of 2048-bit or greater that meet the following:

FIPS PUB 186-4, 'Digital Signature Standard (DSS)', Section 4,

- ECDSA schemes using 'NIST curves' P-384 and [P-256, P-521] that meet the following:

FIPS PUB 186-4, 'Digital Signature Standard (DSS)', Section 5].

5.1.2.18 HTTPS Protocol (MDFPP33:FCS_HTTPS_EXT.1)

MDFPP33:FCS_HTTPS_EXT.1.1

The TSF shall implement the HTTPS protocol that complies with RFC 2818.

MDFPP33:FCS_HTTPS_EXT.1.2

The TSF shall implement HTTPS using TLS as defined in the Functional Package for Transport

Layer Security (TLS), version 1.1.

MDFPP33:FCS_HTTPS_EXT.1.3

The TSF shall notify the application and [not establish the connection] if the peer certificate is

deemed invalid.

5.1.2.19 Initialization Vector Generation (MDFPP33:FCS_IV_EXT.1)

MDFPP33:FCS_IV_EXT.1.1

The TSF shall generate IVs in accordance with Table 11: References and IV Requirements for

NIST-approved Cipher Modes.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 27 of 74

Cipher Mode Reference IV Requirements

Electronic Codebook (ECB) SP 800-38A No IV

Counter (CTR) SP 800-38A 'Initial Counter' shall be non-repeating. No

counter value shall be repeated across multiple

messages with the same secret key.

Cipher Block Chaining (CBC) SP 800-38A IVs shall be unpredictable. Repeating IVs leak

information about whether the first one or more

blocks are shared between two messages, so

IVs should be non-repeating in such situations.

Output Feedback (OFB) SP 800-38A IVs shall be non-repeating and shall not be

generated by invoking the cipher on another IV.

Cipher Feedback (CFB) SP 800-38A IVs should be non-repeating as repeating IVs

leak information about the first plaintext block

and about common shared prefixes in messages.

XEX (XOR Encrypt XOR) Tweakable

Block Cipher with Ciphertext Stealing

(XTS)

SP 800-38E No IV. Tweak values shall be non-negative

integers, assigned consecutively, and starting at

an arbitrary non-negative integer.

Cipher-based Message Authentication

Code (CMAC)

SP 800-38B No IV

Key Wrap and Key Wrap with Padding SP 800-38F No IV

Counter with CBC-Message

Authentication Code (CCM)

SP 800-38C No IV. Nonces shall be non-repeating.

Galois Counter Mode (GCM) SP 800-38D IV shall be non-repeating. The number of

invocations of GCM shall not exceed 2^32 for a

given secret key unless an implementation only

uses 96-bit IVs (default length).

5.1.2.20 Random Bit Generation - per TD0677 (MDFPP33:FCS_RBG_EXT.1)

MDFPP33:FCS_RBG_EXT.1.1

The TSF shall perform all deterministic random bit generation services in accordance with NIST

Special Publication 800-90A using [Hash_DRBG (any), CTR_DRBG (AES)].

MDFPP33:FCS_RBG_EXT.1.2

The deterministic RBG shall be seeded by an entropy source that accumulates entropy from [TSF-

hardware-based noise source] with a minimum of [256 bits, 384 bits] of entropy at least equal to

the greatest security strength (according to NIST SP 800-57) of the keys and hashes that it will

generate. (TD0934 applied)

MDFPP33:FCS_RBG_EXT.1.3

The TSF shall be capable of providing output of the RBG to applications running on the TSF that

request random bits.

5.1.2.21 Cryptographic Algorithm Services (MDFPP33:FCS_SRV_EXT.1)

MDFPP33:FCS_SRV_EXT.1.1

The TSF shall provide a mechanism for applications to request the TSF to perform the following

cryptographic operations:

- All mandatory and [selected algorithms] in FCS_CKM.2/LOCKED

- The following algorithms in FCS_COP.1/ENCRYPT: AES-CBC, [AES-GCM]

- All selected algorithms in FCS_COP.1/SIGN

- All mandatory and selected algorithms in FCS_COP.1/HASH

- All mandatory and selected algorithms in FCS_COP.1/KEYHMAC

[All mandatory and [selected algorithms] in FCS_CKM.1].

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 28 of 74

5.1.2.22 Cryptographic Algorithm Services (MDFPP33:FCS_SRV_EXT.2)

MDFPP33:FCS_SRV_EXT.2.1

The TSF shall provide a mechanism for applications to request the TSF to perform the following

cryptographic operations:

- Algorithms in FCS_COP.1/ENCRYPT

- Algorithms in FCS_COP.1/SIGN

by keys stored in the secure key storage.

5.1.2.23 Cryptographic Key Storage (MDFPP33:FCS_STG_EXT.1)

MDFPP33:FCS_STG_EXT.1.1

The TSF shall provide [software-based] secure key storage for asymmetric private keys and

[symmetric keys, persistent secrets].

MDFPP33:FCS_STG_EXT.1.2

The TSF shall be capable of importing keys or secrets into the secure key storage upon request of

[the user, the administrator] and [applications running on the TSF].

MDFPP33:FCS_STG_EXT.1.3

The TSF shall be capable of destroying keys or secrets in the secure key storage upon request of

[the user, the administrator].

MDFPP33:FCS_STG_EXT.1.4

The TSF shall have the capability to allow only the application that imported the key or secret the

use of the key or secret. Exceptions may only be explicitly authorized by [a common application

developer].

MDFPP33:FCS_STG_EXT.1.5

The TSF shall allow only the application that imported the key or secret to request that the key or

secret be destroyed. Exceptions may only be explicitly authorized by [a common application

developer].

5.1.2.24 Encrypted Cryptographic Key Storage (MDFPP33:FCS_STG_EXT.2)

MDFPP33:FCS_STG_EXT.2.1

The TSF shall encrypt all DEKs, KEKs, [WPA2/WPA3 PSK, Bluetooth Keys] and [all software-

based key storage] by KEKs that are

[Protected by the REK with

 [encryption by a KEK chaining from a REK,

encryption by a KEK that is derived from a REK],

Protected by the REK and the password with

[encryption by a KEK chaining to a REK and the password-derived KEK, encryption by

a KEK that is derived from a REK and the password-derived or biometric-unlocked

KEK]].

MDFPP33:FCS_STG_EXT.2.2

DEKs, KEKs, [WPA2/WPA3 PSK, Bluetooth Keys] and [all software-based key storage] shall

be encrypted using one of the following methods:

[using a SP800-56B key establishment scheme, using AES in the [GCM, CCM mode]].

5.1.2.25 Integrity of Encrypted Key Storage (MDFPP33:FCS_STG_EXT.3)

MDFPP33:FCS_STG_EXT.3.1

The TSF shall protect the integrity of any encrypted DEKs and KEKs and [long-term trusted

channel key material, all software-based key storage] by [[GCM, CCM] cipher mode for

encryption according to FCS_STG_EXT.2].

MDFPP33:FCS_STG_EXT.3.2

The TSF shall verify the integrity of the [MAC] of the stored key prior to use of the key.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 29 of 74

5.1.2.26 TLS Protocol (PKGTLS11:FCS_TLS_EXT.1)

PKGTLS11:FCS_TLS_EXT.1.1

The product shall implement [TLS as a client].

5.1.2.27 TLS Client Protocol (PKGTLS11:FCS_TLSC_EXT.1)

PKGTLS11:FCS_TLSC_EXT.1.1

The product shall implement TLS 1.2 (RFC 5246) and [no earlier TLS versions] as a client that

supports the cipher suites [

- TLS_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5288,

- TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,

- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,

- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289] and also

supports functionality for [mutual authentication,, session renegotiation,] (TD0442 applied)

PKGTLS11:FCS_TLSC_EXT.1.2

The product shall verify that the presented identifier matches the reference identifier according to

RFC 6125.

PKGTLS11:FCS_TLSC_EXT.1.3

The product shall not establish a trusted channel if the server certificate is invalid [with no

exceptions]

5.1.2.28 TLS Client Protocol (EAP-TLS for WLAN) (WLANC10:FCS_TLSC_EXT.1/WLAN)

WLANC10:FCS_TLSC_EXT.1.1/WLAN

The TSF shall implement TLS 1.2 (RFC 5246) and [TLS 1.1 (RFC 4346)] in support of the EAP-

TLS protocol as specified in RFC 5216 supporting the following cipher suites: [

- TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246,

- TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,

- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,

- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289].

WLANC10:FCS_TLSC_EXT.1.2/WLAN

The TSF shall generate random values used in the EAP-TLS exchange using the RBG specified in

FCS_RBG_EXT.1.

WLANC10:FCS_TLSC_EXT.1.3/WLAN

The TSF shall use X509 v3 certificates as specified in FIA_X509_EXT.1/WLAN.

WLANC10:FCS_TLSC_EXT.1.4/WLAN

The TSF shall verify that the server certificate presented includes the Server Authentication

purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in the extendedKeyUsage field.

WLANC10:FCS_TLSC_EXT.1.5/WLAN

The TSF shall allow an authorized administrator to configure the list of CAs that are allowed to

sign authentication server certificates that are accepted by the TOE.

5.1.2.29 TLS Client Support for Mutual Authentication (PKGTLS11:FCS_TLSC_EXT.2)

PKGTLS11:FCS_TLSC_EXT.2.1

The product shall support mutual authentication using X.509v3 certificates.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 30 of 74

5.1.2.30 TLS Client Support for Supported Groups Extension (EAP-TLS for WLAN)

(WLANC10:FCS_TLSC_EXT.2/WLAN)

WLANC10:FCS_TLSC_EXT.2.1/WLAN

The TSF shall present the Supported Groups Extension in the Client Hello with the following

NIST curves: [secp256r1, secp384r1].

5.1.2.31 TLS Client Support for Renegotiation (PKGTLS11:FCS_TLSC_EXT.4)

PKGTLS11:FCS_TLSC_EXT.4.1

The product shall support secure renegotiation through use of the 'renegotiation_info' TLS

extension in accordance with RFC 5746.

5.1.2.32 TLS Client Support for Supported Groups Extension (PKGTLS11:FCS_TLSC_EXT.5)

PKGTLS11:FCS_TLSC_EXT.5.1

The product shall present the Supported Groups Extension in the Client Hello with the supported

groups [secp256r1, secp384r1]

5.1.2.33 Supported WPA Versions - per TD0710 (WLANC10:FCS_WPA_EXT.1)

WLANC10:FCS_WPA_EXT.1.1

The TSF shall support WPA3 and [WPA2] security type.

5.1.3 User data protection (FDP)

5.1.3.1 Access Control for System Services (MDFPP33:FDP_ACF_EXT.1)

MDFPP33:FDP_ACF_EXT.1.1

The TSF shall provide a mechanism to restrict the system services that are accessible to an

application.

MDFPP33:FDP_ACF_EXT.1.2

The TSF shall provide an access control policy that prevents [application, groups of applications]

from accessing [all] data stored by other [application, groups of applications]. Exceptions may

only be explicitly authorized for such sharing by [a common application developer, no one].

5.1.3.2 Extended: Security access control (MDFPP33:FDP_ACF_EXT.2)

MDFPP33:FDP_ACF_EXT.2.1
The TSF shall provide a separate [address book, calendar, [keychain]] for each application group and only

allow applications within that process group to access the resource. Exceptions may only be explicitly

authorized for such sharing by [the administrator, no one].

5.1.3.3 Protected Data Encryption (MDFPP33:FDP_DAR_EXT.1)

MDFPP33:FDP_DAR_EXT.1.1

Encryption shall cover all protected data.

MDFPP33:FDP_DAR_EXT.1.2

Encryption shall be performed using DEKs with AES in the [XTS] mode with key size [256] bits.

5.1.3.4 Sensitive Data Encryption (MDFPP33:FDP_DAR_EXT.2)

MDFPP33:FDP_DAR_EXT.2.1

The TSF shall provide a mechanism for applications to mark data and keys as sensitive.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 31 of 74

MDFPP33:FDP_DAR_EXT.2.2

The TSF shall use an asymmetric key scheme to encrypt and store sensitive data received while

the product is locked.

MDFPP33:FDP_DAR_EXT.2.3

The TSF shall encrypt any stored symmetric key and any stored private key of the asymmetric

keys used for the protection of sensitive data according to FCS_STG_EXT.2.1 selection 2.

MDFPP33:FDP_DAR_EXT.2.4

The TSF shall decrypt the sensitive data that was received while in the locked state upon

transitioning to the unlocked state using the asymmetric key scheme and shall re-encrypt that

sensitive data using the symmetric key scheme.

5.1.3.5 Subset Information Flow Control (MDFPP33:FDP_IFC_EXT.1)

MDFPP33:FDP_IFC_EXT.1.1

The TSF shall [provide an interface which allows a VPN client to protect all IP traffic using

IPsec] with the exception of IP traffic needed to manage the VPN connection, and [[traffic needed

to determine if the network connection has connectivity to the internet and responses to local

ICMP echo requests on the local subnet]], when the VPN is enabled.

5.1.3.6 User Data Storage (MDFPP33:FDP_STG_EXT.1)

MDFPP33:FDP_STG_EXT.1.1

The TSF shall provide protected storage for the Trust Anchor Database.

5.1.3.7 Inter-TSF User Data Transfer Protection (Applications) (MDFPP33:FDP_UPC_EXT.1/APPS)

MDFPP33:FDP_UPC_EXT.1.1/APPS

The TSF shall provide a means for non-TSF applications executing on the TOE to use

- Mutually authenticated TLS as defined in the Functional Package for Transport Layer Security

(TLS), version 1.1,

- HTTPS,

and

- [no other protocol]

to provide a protected communication channel between the non-TSF application and another IT

product that is logically distinct from other communication channels, provides assured

identification of its end points, protects channel data from disclosure, and detects modification of

the channel data.

MDFPP33:FDP_UPC_EXT.1.2/APPS

The TSF shall permit the non-TSF applications to initiate communication via the trusted channel.

5.1.3.8 Inter-TSF User Data Transfer Protection (Bluetooth) (MDFPP33:FDP_UPC_EXT.1/BLUETOOTH)

MDFPP33:FDP_UPC_EXT.1.1/BLUETOOTH

The TSF shall provide a means for non-TSF applications executing on the TOE to use

- Bluetooth BR/EDR in accordance with the PP-Module for Bluetooth, version 1.0,

and

- [Bluetooth LE in accordance with the PP-Module for Bluetooth, version 1.0]

to provide a protected communication channel between the non-TSF application and another IT

product that is logically distinct from other communication channels, provides assured

identification of its end points, protects channel data from disclosure, and detects modification of

the channel data.

MDFPP33:FDP_UPC_EXT.1.2/BLUETOOTH

The TSF shall permit the non-TSF applications to initiate communication via the trusted channel.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 32 of 74

5.1.4 Identification and authentication (FIA)

5.1.4.1 Authentication Failure Handling (MDFPP33:FIA_AFL_EXT.1)

MDFPP33:FIA_AFL_EXT.1.1

The TSF shall consider password and [no other mechanism] as critical authentication

mechanisms.

MDFPP33:FIA_AFL_EXT.1.2

The TSF shall detect when a configurable positive integer within [0-50] of [non-unique]

unsuccessful authentication attempts occur related to last successful authentication for each

authentication mechanism.

MDFPP33:FIA_AFL_EXT.1.3

The TSF shall maintain the number of unsuccessful authentication attempts that have occurred

upon power off.

MDFPP33:FIA_AFL_EXT.1.4

When the defined number of unsuccessful authentication attempts has exceeded the maximum

allowed for a given authentication mechanism, all future authentication attempts will be limited to

other available authentication mechanisms, unless the given mechanism is designated as a critical

authentication mechanism.

MDFPP33:FIA_AFL_EXT.1.5

When the defined number of unsuccessful authentication attempts for the last available

authentication mechanism or single critical authentication mechanism has been surpassed, the TSF

shall perform a wipe of all protected data.

MDFPP33:FIA_AFL_EXT.1.6

The TSF shall increment the number of unsuccessful authentication attempts prior to notifying the

user that the authentication was unsuccessful.

5.1.4.2 Bluetooth User Authorization (BT10:FIA_BLT_EXT.1)

BT10:FIA_BLT_EXT.1.1

The TSF shall require explicit user authorization before pairing with a remote Bluetooth device.

5.1.4.3 Bluetooth Mutual Authentication (BT10:FIA_BLT_EXT.2)

BT10:FIA_BLT_EXT.2.1

The TSF shall require Bluetooth mutual authentication between devices prior to any data transfer

over the Bluetooth link.

5.1.4.4 Rejection of Duplicate Bluetooth Connections (BT10:FIA_BLT_EXT.3)

BT10:FIA_BLT_EXT.3.1

The TSF shall discard pairing and session initialization attempts from a Bluetooth device address

(BD_ADDR) to which an active session already exists.

5.1.4.5 Secure Simple Pairing (BT10:FIA_BLT_EXT.4)

BT10:FIA_BLT_EXT.4.1

The TOE shall support Bluetooth Secure Simple Pairing, both in the host and the controller.

BT10:FIA_BLT_EXT.4.2

The TOE shall support Secure Simple Pairing during the pairing process.

5.1.4.6 Trusted Bluetooth Device User Authorization (BT10:FIA_BLT_EXT.6)

BT10:FIA_BLT_EXT.6.1

The TSF shall require explicit user authorization before granting trusted remote devices access to

services associated with the following Bluetooth profiles: [OPP, MAP].

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 33 of 74

5.1.4.7 Untrusted Bluetooth Device User Authorization (BT10:FIA_BLT_EXT.7)

BT10:FIA_BLT_EXT.7.1

The TSF shall require explicit user authorization before granting untrusted remote devices access

to services associated with the following Bluetooth profiles: [OPP, MAP].

5.1.4.8 Port Access Entity Authentication (WLANC10:FIA_PAE_EXT.1)

WLANC10:FIA_PAE_EXT.1.1

The TSF shall conform to IEEE Standard 802.1X for a Port Access Entity (PAE) in the

'Supplicant' role.

5.1.4.9 Password Management (MDFPP33:FIA_PMG_EXT.1)

MDFPP33:FIA_PMG_EXT.1.1

The TSF shall support the following for the Password Authentication Factor:

1. Passwords shall be able to be composed of any combination of [upper and lower case letters],

numbers, and special characters: ['!', '@', '#', '$', '%', '^', '&', '*', '(', ')', [= + - _ ` ~ |] [˜ ‘ ;

: / ? . > , <]] ;

2. Password length up to [16] characters shall be supported.

5.1.4.10 Authentication Throttling (MDFPP33:FIA_TRT_EXT.1)

MDFPP33:FIA_TRT_EXT.1.1

The TSF shall limit automated user authentication attempts by [enforcing a delay between

incorrect authentication attempts] for all authentication mechanisms selected in FIA_UAU.5.1.

The minimum delay shall be such that no more than 10 attempts can be attempted per 500

milliseconds.

5.1.4.11 Multiple Authentication Mechanisms (MDFPP33:FIA_UAU.5)

MDFPP33:FIA_UAU.5.1

The TSF shall provide password and [no other mechanism] to support user authentication.

MDFPP33:FIA_UAU.5.2

The TSF shall authenticate any user's claimed identity according to the [

- To authenticate unlocking the device immediately after boot (first unlock after reboot):

User passwords are required after reboot to unlock the user's Credential encrypted

(CE files) and keystore keys.

- To authenticate unlocking the device after device lock (not following a reboot):

The TOE verifies user credentials (password) via the gatekeeper trusted application

(running inside the Trusted Execution Environment, TEE), which compares the

entered credential to a derived value long-term trusted channel key material.

- To change protected settings or issue certain commands:

The TOE requires password after a reboot, when changing settings (Screen lock and

Smart Lock settings), and when factory resetting].

5.1.4.12 Re-Authenticating (Credential Change) (MDFPP33:FIA_UAU.6/CREDENTIAL)

MDFPP33:FIA_UAU.6.1/CREDENTIAL

The TSF shall re-authenticate the user via the Password Authentication Factor under the

conditions attempted change to any supported authentication mechanisms.

5.1.4.13 Re-Authenticating (TSF Lock) (MDFPP33:FIA_UAU.6/LOCKED)

MDFPP33:FIA_UAU.6.1/LOCKED

The TSF shall re-authenticate the user via an authentication factor defined in FIA_UAU.5.1 under

the conditions TSF-initiated lock, user-initiated lock, [no other conditions].

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 34 of 74

5.1.4.14 Protected Authentication Feedback (MDFPP33:FIA_UAU.7)

MDFPP33:FIA_UAU.7.1

The TSF shall provide only obscured feedback to the device's display to the user while the

authentication is in progress.

5.1.4.15 Authentication for Cryptographic Operation (MDFPP33:FIA_UAU_EXT.1)

MDFPP33:FIA_UAU_EXT.1.1

The TSF shall require the user to present the Password Authentication Factor prior to decryption

of protected data and encrypted DEKs, KEKs and [long-term trusted channel key material, all

software-based key storage] at startup.

5.1.4.16 Timing of Authentication (MDFPP33:FIA_UAU_EXT.2)

MDFPP33:FIA_UAU_EXT.2.1

The TSF shall allow [[Take screen shots (stored internally)

 - Enter password to unlock

 - Make/receive emergency calls

 - Take pictures (stored internally) - unless the camera was disabled

 - Turn the TOE off

 - Restart the TOE

- See notifications (note that some notifications identify actions, for example to view a

screenshot; however, selecting those notifications highlights the password prompt and require

the password to access that data)

 - Set the volume (up and down) for ringtone

 - Receive calls

 - Adjust screen brightness

 - Access notification widgets (without authentication):

 o Flashlight toggle

 o Hotspot

 o Auto rotate toggle

 o Night light filter toggle

 o Internet (Wi-fi) Toggle

 o Bluetooth Toggle

 o Do Not Disturb Toggle

 o Battery Saver Toggle (button shows as unavailable when device is plugged in

and fully charged)]]] on behalf of the user to be performed before the user is authenticated.

MDFPP33:FIA_UAU_EXT.2.2

The TSF shall require each user to be successfully authenticated before allowing any other TSF-

mediated actions on behalf of that user.

5.1.4.17 X.509 Validation of Certificates - per TD0689 (MDFPP33:FIA_X509_EXT.1)

MDFPP33:FIA_X509_EXT.1.1

The TSF shall validate certificates in accordance with the following rules:

- RFC 5280 certificate validation and certificate path validation.

- The certificate path must terminate with a certificate in the Trust Anchor Database.

- The TSF shall validate a certificate path by ensuring the presence of the basicConstraints

extension, that the CA flag is set to TRUE for all CA certificates, and that any path constraints

are met.

- The TSF shall validate that any CA certificate includes caSigning purpose in the key usage field.

- The TSF shall validate the revocation status of the certificate using [OCSP as specified in RFC

6960]

- The TSF shall validate the extendedKeyUsage field according to the following rules:

o Certificates used for trusted updates and executable code integrity verification shall have the

Code Signing purpose (id-kp 3 with OID 1.3.6.1.5.5.7.3.3) in the extendedKeyUsage field.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 35 of 74

o Server certificates presented for TLS shall have the Server Authentication purpose (id-kp 1 with

OID 1.3.6.1.5.5.7.3.1) in the extendedKeyUsage field.

o Server certificates presented for EST shall have the CMC Registration Authority (RA) purpose

(id-kp-cmcRA with OID 1.3.6.1.5.5.7.3.28) in the extendedKeyUsage field. [conditional]

o Client certificates presented for TLS shall have the Client Authentication purpose (id-kp 2 with

OID 1.3.6.1.5.5.7.3.2) in the extendedKeyUsage field.

o OCSP certificates presented for OCSP responses shall have the OCSP Signing purpose (id-kp 9

with OID 1.3.6.1.5.5.7.3.9) in the extendedKeyUsage field. [conditional]

MDFPP33:FIA_X509_EXT.1.2

The TSF shall only treat a certificate as a CA certificate if the basicConstraints extension is

present and the CA flag is set to TRUE.

5.1.4.18 X.509 Certificate Validation (WLANC10:FIA_X509_EXT.1/WLAN)

WLANC10:FIA_X509_EXT.1.1/WLAN

The TSF shall validate certificates for EAP-TLS in accordance with the following rules:

-RFC 5280 certificate validation and certificate path validation

-The certificate path must terminate with a certificate in the Trust Anchor Database

-The TSF shall validate a certificate path by ensuring the presence of the basicConstraints

extension and that the CA flag is set to TRUE for all CA certificates

-The TSF shall validate the extendedKeyUsage field according to the following rules:

--Server certificates presented for TLS shall have the Server Authentication purpose (id-kp 1 with

OID 1.3.6.1.5.5.7.3.1) in the extendedKeyUsage field

--Client certificates presented for TLS shall have the Client Authentication purpose (id-kp 2 with

OID 1.3.6.1.5.5.7.3.2) in the extendedKeyUsage field.

WLANC10:FIA_X509_EXT.1.2/WLAN

The TSF shall only treat a certificate as a CA certificate if the basicConstraints extension is

present and the CA flag is set to TRUE.

5.1.4.19 X.509 Certificate Authentication (MDFPP33:FIA_X509_EXT.2)

MDFPP33:FIA_X509_EXT.2.1

The TSF shall use X.509v3 certificates as defined by RFC 5280 to support authentication for

mutually authenticated TLS as defined in the Functional Package for Transport Layer Security

(TLS), version 1.1, HTTPS, [no other protocol], and [no additional uses].

MDFPP33:FIA_X509_EXT.2.2

When the TSF cannot establish a connection to determine the revocation status of a certificate, the

TSF shall [not accept the certificate].

5.1.4.20 X.509 Certificate Authentication (EAP-TLS for WLAN) - TD0703 applied

(WLANC10:FIA_X509_EXT.2/WLAN)

WLANC10:FIA_X509_EXT.2.1/WLAN

The TSF shall use X.509v3 certificates as defined by RFC 5280 to support authentication for

EAP-TLS exchanges.

5.1.4.21 Request Validation of Certificates (MDFPP33:FIA_X509_EXT.3)

MDFPP33:FIA_X509_EXT.3.1

The TSF shall provide a certificate validation service to applications.

MDFPP33:FIA_X509_EXT.3.2

The TSF shall respond to the requesting application with the success or failure of the validation.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 36 of 74

5.1.4.22 Certificate Storage and Management (WLANC10:FIA_X509_EXT.6)

WLANC10:FIA_X509_EXT.6.1

The TSF shall [invoke [software-based key storage]] to store and protect certificate(s) from

unauthorized deletion and modification

WLANC10:FIA_X509_EXT.6.2

The TSF shall [rely on [the TOE certificate management system] to load X.509v3 certificates

into [software-based key storage]] for use by the TSF.

5.1.5 Security management (FMT)

5.1.5.1 Management of Security Functions Behavior (MDFPP33:FMT_MOF_EXT.1)

MDFPP33:FMT_MOF_EXT.1.1

The TSF shall restrict the ability to perform the functions in column 3 of Table 5 to the user.

MDFPP33:FMT_MOF_EXT.1.2

The TSF shall restrict the ability to perform the functions in column 5 of Table 5 to the

administrator when the device is enrolled and according to the administrator-configured policy.

5.1.5.2 Specification of Management Functions (MDFPP33:FMT_SMF.1)

MDFPP33:FMT_SMF.1.1

The TSF shall be capable of performing the following management functions:

Management Function

Im
p

le
m

en
te

d

U
ser O

n
ly

A
d

m
in

A
d

m
in

 O
n

ly

1. configure password policy:

• Minimum password length

• Minimum password complexity

• Maximum password lifetime

The administrator can configure the required password characteristics (minimum

length, complexity, and lifetime) using the Android MDM APIs.

Length: an integer value of characters

Complexity: Unspecified, Something, Numeric, Alphabetic, Alphanumeric, Complex.

Lifetime: an integer value of seconds (0 = no maximum).

M - M M

2. configure session locking policy:

• screen-lock enabled/disabled

• screen lock timeout

• number of authentication failures

The administrator can configure the session locking policy using the Android MDM

APIs.

Screen lock timeout: an integer number of minutes before the TOE locks (0 = no lock

timeout)

Authentication failures: an integer number (-2,147,483,648 to 2,147,483,648 [negative

integers and zero means no limit]).

M - M M

Status Markers:

M – Mandatory

I – Implemented optional

function

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 37 of 74

Management Function

Im
p

le
m

en
te

d

U
ser O

n
ly

A
d

m
in

A
d

m
in

 O
n

ly

3. enable/disable the VPN protection:

• across device

• [no other method]

Both users (using the TOE’s settings UI) and administrator (using the TOE’s MDM

APIs) can configure a third-party VPN client and then enable the VPN client to protect

traffic. The User can set up VPN protection, but if an admin enables VPN protection,

the user cannot disable it.

M - I I

4. enable/disable [Bluetooth]

enable/disable [NFC, Wi-Fi, cellular]

The administrator can disable the radios using the TOE’s MDM APIs. Once Bluetooth

is disabled, a user cannot enable it; all other radios can be re-enabled by the user. The

TOE’s radios operate at frequencies of 2.4 GHz (NFC/Bluetooth), 2.4/5 GHz (Wi-Fi),

and 850, 900, 1800, 1900 MHz (4G/LTE).

The radios are initialized during the initial power-up sequence. If the radio is supposed

to be off (by setting), it will be turned off after the initial check.

M

M

-

I

I

-

I

-

5. enable/disable [microphone, camera]:

• Across device,

• [on a per-app basis]

An administrator can enable/disable the device’s microphone via an MDM API. Once

the microphone has been disabled, the user cannot re-enable it until the administrator

enables it.

In the user’s settings, a user can view a permission by type (i.e. camera, microphone).

The user can access this by going to the settings UI (Settings -> Privacy -> Permission

manager -> <camera/microphone>) and revoking any applications.

M

M

-

-

I

-

I

-

6. transition to the locked state

Both users (using the TOE’s settings UI) and administrators (using the TOE’s MDM

APIs) can transition the TOE into a locked state.

M - M -

7. TSF wipe of protected data

Both users (using the TOE’s settings UI) and administrators (using the TOE’s MDM

APIs) can force the TOE to perform a full wipe (factory reset) of data.

M - M -

8. configure application installation policy by: [

• restricting the sources of applications,

• denying installation of applications]

The administrator (using the TOE’s MDM APIs) can configure the TOE so that

applications cannot be installed and can also block the use of the Google Market Place.

M - M M

9. import keys or secrets into the secure key storage

Both users (using the TOE’s settings UI) and administrators (using the TOE’s MDM

APIs) can import secret keys into the secure key storage.

M - I -

Status Markers:

M – Mandatory

I – Implemented optional

function

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 38 of 74

Management Function

Im
p

le
m

en
te

d

U
ser O

n
ly

A
d

m
in

A
d

m
in

 O
n

ly

10. destroy imported keys or secrets and [no other keys or secrets] in the secure key

storage

Both users and administrators (using the TOE’s MDM APIs) can destroy secret keys in

the secure key storage.

M - I -

11. import X.509v3 certificates into the Trust Anchor Database

Both users (using the TOE’s settings UI) and administrators (using the TOE’s MDM

APIs) can import X.509v3 certificates into the Trust Anchor Database.

M - M -

12. remove imported X.509v3 certificates and [no other X.509v3 certificates] in the

Trust Anchor Database

Both users (using the TOE’s settings UI) and administrators (using the TOE’s MDM

APIs) can remove imported X.509v3 certificates from the Trust Anchor Database as

well as disable any of the TOE’s default Root CA certificates (in the latter case, the

CA certificate still resides in the TOE’s read-only system partition; however, the TOE

will treat that Root CA certificate and any certificate chaining to it as untrusted).

M - I -

13. enroll the TOE in management

TOE users can enroll the TOE in management according to the instructions specific to

a given MDM. Presumably any enrollment would involve at least some user functions

(e.g., install an MDM agent application) on the TOE prior to enrollment.

M - - -

14. remove applications

Both users (using the TOE’s settings UI) and administrators (using the TOE’s MDM

APIs) can uninstall user and administrator installed applications on the TOE.

M - M -

15. update system software

Users can check for updates and cause the device to update if an update is available.

An administrator can use MDM APIs to query the version of the TOE and query the

installed applications and an MDM agent on the TOE could issue pop-ups, initiate

updates, block communication, etc. until any necessary updates are completed.

M - M -

16. install applications

Both users and administrators (using the TOE’s MDM APIs) can install applications

on the TOE.

M - M -

17. remove Enterprise applications

An administrator (using the TOE’s MDM APIs) can uninstall Enterprise installed

applications on the TOE.

M - M -

18. enable/disable display notification in the locked state of: [

• all notifications]

Notifications can be configured to display in the following formats:

• Users & administrators: show all notification content

• Users: hide sensitive content

• Users & administrators: hide notifications entirely

If the administrator sets any of the above settings, the user cannot change it.

M - I I

Status Markers:

M – Mandatory

I – Implemented optional

function

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 39 of 74

Management Function

Im
p

le
m

en
te

d

U
ser O

n
ly

A
d

m
in

A
d

m
in

 O
n

ly

19. enable data-at rest protection

The TOE always encrypts its user data storage.

M - - -

20. enable removable media’s data-at-rest protection

Implicitly met as the device does not support removable media.

- - - -

21. enable/disable location services:

• Across device

• [no other method]

The administrator (using the TOE’s MDM APIs) can enable or disable location

services.

An additional MDM API can prohibit TOE users’ ability to enable and disable location

services.

M - I I

22. enable/disable the use of [Biometric Authentication Factor, Hybrid Authentication
Factor]

- - - -

23. configure whether to allow or disallow establishment of [assignment:
configurable trusted channel in FTP_ITC_EXT.1.1 or FDP_UPC_EXT.1.1/APPS] if the
peer or server certificate is deemed invalid.

- - - -

24. enable/disable all data signaling over [assignment: list of externally accessible
hardware ports]

- - - -

25. enable/disable [Bluetooth tethering]

The administrator (using the TOE’s MDM APIs) can enable/disable all tethering

methods (i.e. all or none disabled).

The TOE acts as a server (acting as an access point, a USB Ethernet adapter, and as a

Bluetooth Ethernet adapter respectively) in order to share its network connection with

another device.

I - I I

26. enable/disable developer modes

The administrator (using the TOE’s MDM APIs) can disable Developer Mode.

Unless disabled by the administrator, TOE users can enable and disable Developer

Mode.

I - I I

27. enable/disable bypass of local user authentication
N/A – It is not possible to bypass local user auth for this TOE

- - - -

28. wipe Enterprise data

An administrator (using the TOE’s MDM APIs) can remove Enterprise applications

and their data.

I I

29. approve [selection: import, removal] by applications of X.509v3 certificates in the
Trust Anchor Database

- - - -

30. configure whether to allow or disallow establishment of a trusted channel if the
TSF cannot establish a connection to determine the validity of a certificate

- - - -

31. enable/disable the cellular protocols used to connect to cellular network base
stations

- - - -

Status Markers:

M – Mandatory

I – Implemented optional

function

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 40 of 74

Management Function

Im
p

le
m

en
te

d

U
ser O

n
ly

A
d

m
in

A
d

m
in

 O
n

ly

32. read audit logs kept by the TSF

Only the administrator is able to read the SecurityLog, but events tracked through

logcat may be read by a user (based on the setting in #26).

I - I -

33. configure [selection: certificate, public-key] used to validate digital signature on
applications

- - - -

34. approve exceptions for shared use of keys or secrets by multiple applications - - - -

35. approve exceptions for destruction of keys or secrets by applications that did not
import the key or secret

- - - -

36. configure the unlock banner

The administrator (using the TOE’s MDM APIs) can specify text to always be shown

on the lock screen.

M - I -

37. configure the auditable items - - - -

38. retrieve TSF-software integrity verification values - - - -

39. enable/disable [

• USB mass storage mode]

The administrator (using the TOE’s MDM APIs) can specify whether the device can

have its storage mounted as USB storage available for read/write (when the device is

unlocked) to another device (such as a computer).

I - I -

40. enable/disable backup for [all applications] to [remote system]

The administrator (using the TOE’s MDM APIs) can specify whether applications can

back up their data to a remote host based on the device user account. This is a global

setting using the Google accounts on the device and does not apply to individual

applications that may implement internal backup capabilities.

I - I I

41. enable/disable [

• Hotspot functionality authenticated by [pre-shared key],

• USB tethering authenticated by [no authentication]]

The administrator (using the TOE’s MDM APIs) can disable the Wi-Fi hotspot and

USB tethering.

Unless disabled by the administrator, TOE users can configure the Wi-Fi hotspot with

a pre-shared key and can configure USB tethering (with no authentication, though the

device must be unlocked to establish the initial tethering connection).

I - I I

42. approve exceptions for sharing data between [groups of application]

The administrator (using the TOE’s MDM APIs) can specify grouping of applications

to restrict sharing data between the groups.

I - I I

43. place applications into application process groups based on [assignment:
enterprise configuration settings]

- - - -

44. unenroll the TOE from management

The administrator (using the TOE’s MDM APIs) or the user (using the TOE’s settings

UI) can choose to remove the TOE from management.

I - I -

Status Markers:

M – Mandatory

I – Implemented optional

function

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 41 of 74

Management Function

Im
p

le
m

en
te

d

U
ser O

n
ly

A
d

m
in

A
d

m
in

 O
n

ly

45. enable/disable the Always On VPN protection

• Across device

• [no other method]

The administrator (using the TOE’s MDM APIs) can specify whether a VPN

connection is required for the device to access any network services. The configuration

would specify the VPN connection(s) required.

I - I I

46. revoke Biometric template - - - -

47.[assignment: list of other management functions to be provided by the TSF] - - - -

Table 5 MDFPP Management Functions

5.1.5.3 Specification of Management Functions (BT10:FMT_SMF_EXT.1/BT)

BT10:FMT_SMF_EXT.1.1/BT

The TSF shall be capable of performing the following Bluetooth management functions:

(Status Markers: M - Mandatory, I – Implemented, O - Claimed Optional/Objective, blank - Unclaimed

Optional/Objective)

Function Impl. User Only Admin Admin Only

BT-1. Configure the Bluetooth trusted channel. -

Disable/enable the Discoverable (for BR/EDR) and

Advertising (for LE) modes;

M I - -

BT-2. Change the Bluetooth device name (separately for
BR/EDR and LE);

- - - -

BT-3. Provide separate controls for turning the BR/EDR
and LE radios on and off;

- - - -

BT-4. Allow/disallow the following additional wireless
technologies to be used with Bluetooth: [selection: Wi-Fi,
NFC, [assignment: other wireless technologies]];

- - - -

BT-5. Configure allowable methods of Out of Band pairing
(for BR/EDR and LE);

- - - -

BT-6. Disable/enable the Discoverable (for BR/EDR) and
Advertising (for LE) modes separately;

- - - -

BT-7. Disable/enable the Connectable mode (for BR/EDR
and LE);

- - - -

BT-8. Disable/enable the Bluetooth [assignment: list of
Bluetooth service and/or profiles available on the OS (for
BR/EDR and LE)];

- - - -

BT-9. Specify minimum level of security for each pairing
(for BR/EDR and LE);

- - - -

5.1.5.4 Specification of Management Functions (WLAN Client) - per TD0667

(WLANC10:FMT_SMF.1/WLAN)

WLANC10:FMT_SMF.1.1/WLAN

The TSF shall be capable of performing the following management functions:

Status Markers:

M – Mandatory

I – Implemented optional

function

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 42 of 74

(Status Markers: M - Mandatory, O - Claimed Optional/Objective, blank - Unclaimed Optional/Objective)

Management Function Impl Admin User

WL-1 configure security policy for each wireless network: - [specify the CA(s) from

which the TSF will accept WLAN authentication server certificate(s] , - security

type, - authentication protocol, - client credentials to be used for authentication

M M -

WL-2 specify wireless networks (SSIDs) to which the TSF may connect M M -

WL-3 enable/disable disable wireless network bridging capability (for example, bridging

a connection between the WLAN and cellular radios to function as a hotspot)

authenticated by [pre-shared key, passcode]

M M -

WL-4 enable/disable certificate revocation list checking - - -

WL-5 disable ad hoc wireless client-to-client connection capability - - -

WL-6 disable roaming capability - - -

WL-7 enable/disable IEEE 802.1X pre-authentication - - -

WL-8 loading X.509 certificates into the TOE - - -

WL-9 revoke X.509 certificates loaded into the TOE - - -

WL-10 enable/disable and configure PMK caching: - set the amount of time (in minutes)
for which PMK entries are cached, - set the maximum number of PMK entries
that can be cached

- - -

WL-11 configure security policy for each wireless network: set wireless frequency band
to [selection: 2.4 GHz, 5 GHz, 6 GHz]

- - -

5.1.5.5 Specification of Remediation Actions (MDFPP33:FMT_SMF_EXT.2)

MDFPP33:FMT_SMF_EXT.2.1

The TSF shall offer [wipe of protected data, wipe of sensitive data, remove Enterprise applications,

remove all device-stored Enterprise resource data] upon unenrollment and [[factory reset]].

5.1.5.6 Current Administrator (MDFPP33:FMT_SMF_EXT.3)

MDFPP33:FMT_SMF_EXT.3.1

The TSF shall provide a mechanism that allows users to view a list of currently authorized

administrators and the management functions that each administrator is authorized to perform.

5.1.6 Protection of the TSF (FPT)

5.1.6.1 Application Address Space Layout Randomization (MDFPP33:FPT_AEX_EXT.1)

MDFPP33:FPT_AEX_EXT.1.1

The TSF shall provide address space layout randomization ASLR to applications.

MDFPP33:FPT_AEX_EXT.1.2

The base address of any user-space memory mapping will consist of at least 8 unpredictable bits.

5.1.6.2 Memory Page Permissions (MDFPP33:FPT_AEX_EXT.2)

MDFPP33:FPT_AEX_EXT.2.1

The TSF shall be able to enforce read, write, and execute permissions on every page of physical

memory.

5.1.6.3 Stack Overflow Protection (MDFPP33:FPT_AEX_EXT.3)

MDFPP33:FPT_AEX_EXT.3.1

TSF processes that execute in a non-privileged execution domain on the application processor

shall implement stack-based buffer overflow protection.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 43 of 74

5.1.6.4 Domain Isolation (MDFPP33:FPT_AEX_EXT.4)

MDFPP33:FPT_AEX_EXT.4.1

The TSF shall protect itself from modification by untrusted subjects.

MDFPP33:FPT_AEX_EXT.4.2

The TSF shall enforce isolation of address space between applications.

5.1.6.5 Kernel Address Space Layout Randomization (MDFPP33:FPT_AEX_EXT.5)

MDFPP33:FPT_AEX_EXT.5.1

The TSF shall provide address space layout randomization (ASLR) to the kernel.

MDFPP33:FPT_AEX_EXT.5.2

The base address of any kernel-space memory mapping will consist of [4] unpredictable bits.

5.1.6.6 Application Processor Mediation (MDFPP33:FPT_BBD_EXT.1)

MDFPP33:FPT_BBD_EXT.1.1

The TSF shall prevent code executing on any baseband processor (BP) from accessing application

processor (AP) resources except when mediated by the AP.

5.1.6.7 JTAG Disablement (MDFPP33:FPT_JTA_EXT.1)

MDFPP33:FPT_JTA_EXT.1.1

The TSF shall [control access by a signing key] to JTAG.

5.1.6.8 Key Storage (MDFPP33:FPT_KST_EXT.1)

MDFPP33:FPT_KST_EXT.1.1

The TSF shall not store any plaintext key material in readable non-volatile memory.

5.1.6.9 No Key Transmission (MDFPP33:FPT_KST_EXT.2)

MDFPP33:FPT_KST_EXT.2.1

The TSF shall not transmit any plaintext key material outside the security boundary of the TOE.

5.1.6.10 No Plaintext Key Export (MDFPP33:FPT_KST_EXT.3)

MDFPP33:FPT_KST_EXT.3.1

The TSF shall ensure it is not possible for the TOE users to export plaintext keys.

5.1.6.11 Self-Test Notification (MDFPP33:FPT_NOT_EXT.1)

MDFPP33:FPT_NOT_EXT.1.1

The TSF shall transition to non-operational mode and [no other actions] when the following types

of failures occur:

- failures of the self-tests

- TSF software integrity verification failures

- [no other failures]

5.1.6.12 Reliable time stamps (MDFPP33:FPT_STM.1)

MDFPP33:FPT_STM.1.1

The TSF shall be able to provide reliable time stamps for its own use.

5.1.6.13 TSF Cryptographic Functionality Testing (MDFPP33:FPT_TST_EXT.1)

MDFPP33:FPT_TST_EXT.1.1

The TSF shall run a suite of self-tests during initial start-up (on power on) to demonstrate the

correct operation of all cryptographic functionality.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 44 of 74

5.1.6.14 TSF Integrity Checking (Pre-Kernel) (MDFPP33:FPT_TST_EXT.2/PREKERNEL)

MDFPP33:FPT_TST_EXT.2.1/PREKERNEL

The TSF shall verify the integrity of the bootchain up through the Application Processor OS

kernel stored in mutable media prior to its execution through the use of [an immutable hardware

hash of an asymmetric key].

5.1.6.15 TSF Integrity Checking (Post-Kernel) (MDFPP33:FPT_TST_EXT.2/POSTKERNEL)

MDFPP33:FPT_TST_EXT.2.1/POSTKERNEL

The TSF shall verify the integrity of [[the /system and /vendor partition]] stored in mutable media

prior to its execution through the use of [hardware-protected hash].

5.1.6.16 TSF Cryptographic Functionality Testing (WLAN Client) (WLANC10:FPT_TST_EXT.3/WLAN)

WLANC10:FPT_TST_EXT.3.1/WLAN

The [TOE platform] shall run a suite of self-tests during initial start-up (on power on) to

demonstrate the correct operation of the TSF.

WLANC10:FPT_TST_EXT.3.2/WLAN

The [TOE platform] shall provide the capability to verify the integrity of stored TSF executable

code when it is loaded for execution through the use of the TSF-provided cryptographic services.

5.1.6.17 TSF Version Query (MDFPP33:FPT_TUD_EXT.1)

MDFPP33:FPT_TUD_EXT.1.1

The TSF shall provide authorized users the ability to query the current version of the TOE

firmware/software.

MDFPP33:FPT_TUD_EXT.1.2

The TSF shall provide authorized users the ability to query the current version of the hardware

model of the device.

MDFPP33:FPT_TUD_EXT.1.3

The TSF shall provide authorized users the ability to query the current version of installed mobile

applications.

5.1.6.18 TSF Update Verification (MDFPP33:FPT_TUD_EXT.2)

MDFPP33:FPT_TUD_EXT.2.1

The TSF shall verify software updates to the Application Processor system software and

[[baseband processor]] using a digital signature verified by the manufacturer trusted key prior to

installing those updates.

MDFPP33:FPT_TUD_EXT.2.2

The TSF shall [update only by verified software] the TSF boot integrity [key].

MDFPP33:FPT_TUD_EXT.2.3

The TSF shall verify that the digital signature verification key used for TSF updates [matches an

immutable hardware public key].

5.1.6.19 Application Signing (MDFPP33:FPT_TUD_EXT.3)

MDFPP33:FPT_TUD_EXT.3.1

The TSF shall verify mobile application software using a digital signature mechanism prior to

installation.

5.1.6.20 Trusted Update Verification (MDFPP33:FPT_TUD_EXT.6)

MDFPP33:FPT_TUD_EXT.6.1

The TSF shall verify that software updates to the TSF are a current or later version than the current

version of the TSF.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 45 of 74

5.1.7 TOE access (FTA)

5.1.7.1 TSF- and User-Initiated Locked State (MDFPP33:FTA_SSL_EXT.1)

MDFPP33:FTA_SSL_EXT.1.1

The TSF shall transition to a locked state after a time interval of inactivity.

MDFPP33:FTA_SSL_EXT.1.2

The TSF shall transition to a locked state after initiation by either the user or the administrator.

MDFPP33:FTA_SSL_EXT.1.3

The TSF shall, upon transitioning to the locked state, perform the following operations:

a. Clearing or overwriting display devices, obscuring the previous contents;

b. [no other actions].

5.1.7.2 Default TOE Access Banners (MDFPP33:FTA_TAB.1)

MDFPP33:FTA_TAB.1.1

Before establishing a user session, the TSF shall display an advisory warning message regarding

unauthorized use of the TOE.

5.1.7.3 Wireless Network Access (WLANC10:FTA_WSE_EXT.1)

WLANC10:FTA_WSE_EXT.1.1

The TSF shall be able to attempt connections only to wireless networks specified as acceptable

networks as configured by the administrator in FMT_SMF.1.1/WLAN.

5.1.8 Trusted path/channels (FTP)

5.1.8.1 Bluetooth Encryption (BT10:FTP_BLT_EXT.1)

BT10:FTP_BLT_EXT.1.1

The TSF shall enforce the use of encryption when transmitting data over the Bluetooth trusted

channel for BR/EDR and [LE].

BT10:FTP_BLT_EXT.1.2

The TSF shall use key pairs per FCS_CKM_EXT.8 for Bluetooth encryption.

5.1.8.2 Persistence of Bluetooth Encryption (BT10:FTP_BLT_EXT.2)

BT10:FTP_BLT_EXT.2.1

The TSF shall [terminate the connection] if the remote device stops encryption while connected

to the TOE.

5.1.8.3 Bluetooth Encryption Parameters (BR/EDR) - per TD0640 (BT10:FTP_BLT_EXT.3/BR)

BT10:FTP_BLT_EXT.3.1/BR

The TSF shall set the minimum encryption key size to [128 bits] for BR/EDR and not negotiate

encryption key sizes smaller than the minimum size.

5.1.8.4 Bluetooth Encryption Parameters (LE) (BT10:FTP_BLT_EXT.3/LE)

BT10:FTP_BLT_EXT.3.1/LE

The TSF shall set the minimum encryption key size to [128 bits] for LE and not negotiate

encryption key sizes smaller than the minimum size.

5.1.8.5 Trusted Channel Communication (MDFPP33:FTP_ITC_EXT.1)

MDFPP33:FTP_ITC_EXT.1.1

The TSF shall use

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 46 of 74

- 802.11-2012 in accordance with the PP-Module for Wireless LAN Clients, version 1.0,

- 802.1X in accordance with the PP-Module for Wireless LAN Clients, version 1.0,

- EAP-TLS in accordance with the PP-Module for Wireless LAN Clients, version 1.0,

- mutually authenticated TLS in accordance with the Functional Package for Transport Layer

Security (TLS), version 1.1

and

[HTTPS]

protocols to provide a communication channel between itself and another trusted IT product that is

logically distinct from other communication channels, provides assured identification of its end

points, protects channel data from disclosure, and detects modification of the channel data.

MDFPP33:FTP_ITC_EXT.1.2

The TSF shall permit the TSF to initiate communication via the trusted channel.

MDFPP33:FTP_ITC_EXT.1.3

The TSF shall initiate communication via the trusted channel for wireless access point

connections, administrative communication, configured enterprise connections, and [no other

connections].

5.1.8.6 Trusted Channel Communication (Wireless LAN) (WLANC10:FTP_ITC.1/WLAN)

WLANC10:FTP_ITC.1.1/WLAN

The TSF shall use 802.11-2012, 802.1X, and EAP-TLS to provide a trusted communication

channel between itself and a wireless access point that is logically distinct from other

communication channels and provides assured identification of its end points and protection of the

channel data from modification or disclosure.

WLANC10:FTP_ITC.1.2/WLAN

The TSF shall permit the TSF to initiate communication via the trusted channel.

WLANC10:FTP_ITC.1.3/WLAN

The TSF shall initiate communication via the trusted channel for wireless access point

connections.

5.2 TOE Security Assurance Requirements

The SARs for the TOE are the components as specified in Part 3 of the Common Criteria. Note that the SARs have

effectively been refined with the assurance activities explicitly defined in association with both the SFRs and SARs.

Requirement Class Requirement Component

ADV: Development ADV_FSP.1: Basic Functional Specification

AGD: Guidance documents AGD_OPE.1: Operational User Guidance

AGD_PRE.1: Preparative Procedures

ALC: Life-cycle support ALC_CMC.1: Labeling of the TOE

ALC_CMS.1: TOE CM Coverage

ALC_TSU_EXT.1: Timely Security Updates

ATE: Tests ATE_IND.1: Independent Testing - Conformance

AVA: Vulnerability assessment AVA_VAN.1: Vulnerability Survey

Table 6 Assurance Components

5.2.1 Development (ADV)

5.2.1.1 Basic Functional Specification (ADV_FSP.1)

ADV_FSP.1.1d

The developer shall provide a functional specification.

ADV_FSP.1.2d

The developer shall provide a tracing from the functional specification to the SFRs.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 47 of 74

ADV_FSP.1.1c

The functional specification shall describe the purpose and method of use for each SFR-enforcing

and SFR-supporting TSFI.

ADV_FSP.1.2c

The functional specification shall identify all parameters associated with each SFR-enforcing and

SFR-supporting TSFI.

ADV_FSP.1.3c

The functional specification shall provide rationale for the implicit categorization of interfaces as

SFR-non-interfering.

ADV_FSP.1.4c

The tracing shall demonstrate that the SFRs trace to TSFIs in the functional specification.

ADV_FSP.1.1e

The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

ADV_FSP.1.2e

The evaluator shall determine that the functional specification is an accurate and complete

instantiation of the SFRs.

5.2.2 Guidance documents (AGD)

5.2.2.1 Operational User Guidance (AGD_OPE.1)

AGD_OPE.1.1d

The developer shall provide operational user guidance.

AGD_OPE.1.1c

The operational user guidance shall describe, for each user role, the user-accessible functions and

privileges that should be controlled in a secure processing environment, including appropriate

warnings.

AGD_OPE.1.2c

The operational user guidance shall describe, for each user role, how to use the available interfaces

provided by the TOE in a secure manner.

AGD_OPE.1.3c

The operational user guidance shall describe, for each user role, the available functions and

interfaces, in particular all security parameters under the control of the user, indicating secure

values as appropriate.

AGD_OPE.1.4c

The operational user guidance shall, for each user role, clearly present each type of security-

relevant event relative to the user-accessible functions that need to be performed, including

changing the security characteristics of entities under the control of the TSF.

AGD_OPE.1.5c

The operational user guidance shall identify all possible modes of operation of the OS (including

operation following failure or operational error), their consequences, and implications for

maintaining secure operation.

AGD_OPE.1.6c

The operational user guidance shall, for each user role, describe the security measures to be

followed in order to fulfill the security objectives for the operational environment as described in

the ST.

AGD_OPE.1.7c

The operational user guidance shall be clear and reasonable.

AGD_OPE.1.1e

The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 48 of 74

5.2.2.2 Preparative Procedures (AGD_PRE.1)

AGD_PRE.1.1d

The developer shall provide the TOE, including its preparative procedures.

AGD_PRE.1.1c

The preparative procedures shall describe all the steps necessary for secure acceptance of the

delivered TOE in accordance with the developer's delivery procedures.

AGD_PRE.1.2c

The preparative procedures shall describe all the steps necessary for secure installation of the TOE

and for the secure preparation of the operational environment in accordance with the security

objectives for the operational environment as described in the ST.

AGD_PRE.1.1e

The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

AGD_PRE.1.2e

The evaluator shall apply the preparative procedures to confirm that the OS can be prepared

securely for operation.

5.2.3 Life-cycle support (ALC)

5.2.3.1 Labeling of the TOE (ALC_CMC.1)

ALC_CMC.1.1d

The developer shall provide the TOE and a reference for the TOE.

ALC_CMC.1.1c

The TOE shall be labeled with a unique reference.

ALC_CMC.1.1e

The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

5.2.3.2 TOE CM Coverage (ALC_CMS.1)

ALC_CMS.1.1d

The developer shall provide a configuration list for the TOE.

ALC_CMS.1.1c

The configuration list shall include the following: the TOE itself; and the evaluation evidence

required by the SARs.

ALC_CMS.1.2c

The configuration list shall uniquely identify the configuration items.

ALC_CMS.1.1e

The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

5.2.3.3 Timely Security Updates (ALC_TSU_EXT.1)

ALC_TSU_EXT.1.1d

The developer shall provide a description in the TSS of how timely security updates are made to

the TOE.

ALC_TSU_EXT.1.1c

The description shall include the process for creating and deploying security updates for the TOE

software.

ALC_TSU_EXT.1.2c

The description shall express the time window as the length of time, in days, between public

disclosure of a vulnerability and the public availability of security updates to the TOE.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 49 of 74

ALC_TSU_EXT.1.3c

The description shall include the mechanisms publicly available for reporting security issues

pertaining to the TOE.

ALC_TSU_EXT.1.4c

The description shall include where users can seek information about the availability of new

updates including details (e.g. CVE identifiers) of the specific public vulnerabilities corrected by

each update.

ALC_TSU_EXT.1.1e

The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

5.2.4 Tests (ATE)

5.2.4.1 Independent Testing - Conformance (ATE_IND.1)

ATE_IND.1.1d

The developer shall provide the TOE for testing.

ATE_IND.1.1c

The TOE shall be suitable for testing.

ATE_IND.1.1e

The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

ATE_IND.1.2e

The evaluator shall test a subset of the TSF to confirm that the TSF operates as specified.

5.2.5 Vulnerability assessment (AVA)

5.2.5.1 Vulnerability Survey (AVA_VAN.1)

AVA_VAN.1.1d

The developer shall provide the TOE for testing.

AVA_VAN.1.1c

The TOE shall be suitable for testing.

AVA_VAN.1.1e

The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

AVA_VAN.1.2e

The evaluator shall perform a search of public domain sources to identify potential vulnerabilities

in the TOE.

AVA_VAN.1.3e

The evaluator shall conduct penetration testing, based on the identified potential vulnerabilities, to

determine that the TOE is resistant to attacks performed by an attacker possessing Basic attack

potential.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 50 of 74

6. TOE Summary Specification

This chapter describes the security functions:

 - Security audit

 - Cryptographic support

 - User data protection

 - Identification and authentication

 - Security management

 - Protection of the TSF

 - TOE access

 - Trusted path/channels

6.1 Security audit

MDFPP33/BT10/WLANC10:FAU_GEN.1:

The TOE uses different forms of logs to meet all the required management logging events Table 2 and Table 3 of the

MDFPP33, Table 2 of the BT10 and Table 2 of the WLANC10:

1. Security Logs

2. Logcat Logs

Each of the above logging methods are described below.

• Security Logs: A full list of all auditable events can be found here:

https://developer.android.com/reference/android/app/admin/SecurityLog#constants_1. Values found in this

list represent Security Log keywords used in this logging function along with a description of what the log

means and any additional information/variables present in the audit record. Additionally, the following link

provides the additional information that can be grabbed when an MDM requests a copy of the logs:

https://developer.android.com/reference/android/app/admin/SecurityLog.SecurityEvent. Each log contains

a keyword or phrase describing the event, subject identity, the date and time of the event, and further event-

specific values that provide success, failure, and other information relevant to the event.

• Logcat Logs: Similar to Security Logs, Logcat Logs contain date, time, and further event-specific values

within the logs. In addition, Logcat Logs provide a value that maps to a user ID to identify which user caused

the event that generated the log. Finally, Logcat Logs are descriptive and do not require the administrator to

know the template of the log to understand its values. Logcat Logs cannot be exported but can be viewed

by an administrator via an MDM agent.

Both types of logs, when full, wrap around and overwrite the oldest log (as the start of the buffer). The WLAN client

components are integrated into the operating system and write directly to the SecurityLog and Logcat (as needed).

The details of the audit records are found in the Admin Guide for the device in Section 8.

The audit events are enumerated in the following tables:

• MDFPP33 - Table 2 MDFPP33 Audit Events.

• BT10 - Table 3 Bluetooth Audit Events

• WLANC10 - Table 4 WLAN Audit Events

Some audit records, while logged, are unavailable to the administrator due to a number of reasons. Such audits and

their explanations are identified below:

- MDFPP33:FAU_GEN.1 – Shutdown of the audit functions: Upon log shutdown, the security log buffer is

deallocated and no longer available to be read, rendering the viewing of such an audit unavailable for the

administrator to view.

https://developer.android.com/reference/android/app/admin/SecurityLog#constants_1
https://developer.android.com/reference/android/app/admin/SecurityLog.SecurityEvent

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 51 of 74

- MDFPP33:FAU_GEN.1 – Shutdown of the OS: Since security logs are stored in memory, a shutdown of the

system clears the audit record that is generated stating that the system is shutting down.

- MDFPP33:FPT_TST_EXT.1 - Failure of self-test: Self-tests take place prior to the initialization of audit

records. While the self-test success/failure audit is queued up to be logged upon security logs being

initialized, when a self-test failure occurs the boot process is halted prior to security logs being initialized.

MDFPP33:FAU_SAR.1:

The TOE provides an MDM API to allow a Device-Owner MDM agent to read the security logs.

MDFPP33:FAU_STG.1:

For security logs, the TOE stores all audit records in memory, making it only accessible to the logd daemon, and only

device owner applications can call the MDM API to retrieve a copy of the logs. Additionally, only new logs can be

added. There is no designated method allowing for the deletion or modification of logs already present in memory,

but reading the security logs clears the buffer at the time of the read.

The TOE stores Logcat Logs in memory and only allows access by an administrator via an MDM Agent. The TOE

prevents deleted of these logs by any method other than USB debugging (and enabling USB Debugging takes the

phone out of the evaluated configuration).

MDFPP33:FAU_STG.4:

The security logs and logcat logs are stored in memory in a circular log buffer of 10KB/64KB, respectively. Logcat

logs alone have a configurable size, able to be set by an MDM API. There is no limit to the size that the Logcat log

buffer can be configured to and it is limited to the size of the system’s memory. Once the log is full, it begins

overwriting the oldest message and continues overwriting the oldest message with each new auditable event. These

logs persist until they are either overwritten or the device is restarted.

6.2 Cryptographic support

MDFPP33:FCS_CKM.1:

The TOE provides generation of asymmetric keys including:

Algorithm Key/Curve Sizes Usage

RSA, FIPS 186-4 2048/3072 API/Application & Sensitive Data Protection

(FDP_DAR_EXT.2)

ECDSA, FIPS 186-4 P-256/384/521 API/Application

ECDHE keys (not domain parameters) P-256/384 TLS KeyEx (WPA3/WPA2 w/ EAP-TLS & HTTPS)

Table 7 Asymmetric Key Generation

The TOE’s cryptographic algorithm implementations have received NIST algorithm certificates (please see tables in

FCS_COP.1 for all of the TOE’S algorithm certificates). The TOE itself does not generate any RSA/ECDSA

authentication key pairs for TOE functionality (the user or administrator must load certificates for use with WPA2

with EAP-TLS authentication); however, the TOE provides key generation APIs to mobile applications to allow them

to generate RSA/ECDSA key pairs. The TOE generates only ECDH key pairs (as BoringSSL does not support

DH/DHE cipher suites) and does not generate domain parameters (curves) for use in TLS Key Exchange.

The TOE will provide a library for application developers to use for Sensitive Data Protection (SDP). This library

(class) generates asymmetric RSA keys for use to encrypt and decrypt data that comes to the device while in a locked

state. Any data received for a specified application (that opts into SDP via this library), is encrypted using the public

key and stored until the device is unlocked. The public key stays in memory no matter the state of the device (locked

or unlocked). However, when the device is locked, the private key is evicted from memory and unavailable for use

until the device is unlocked. Upon unlock, the private key is re-derived and used to decrypt data received and encrypted

while locked.

WLANC10:FCS_CKM.1/WPA:

The TOE adheres to IEEE 802.11-2012 for key generation. The TOE’s wpa_supplicant provides PRF384 for

WPA3/WPA2 derivation of 128-bit AES Temporal Key (using the HMAC implementation provided by BoringSSL)

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 52 of 74

and employs its BoringSSL AES-256 DRBG when generating random values used in the EAP-TLS and 802.11 4-

way handshake. The TOE supports the AES-128 CCMP encryption mode. The TOE has successfully completed

certification (including WPA3/WPA2 Enterprise) and received Wi-Fi CERTIFIED Interoperability Certificates from

the Wi-Fi Alliance. The Wi-Fi Alliance maintains a website providing further information about the testing

program: http://www.wi-fi.org/certification.

Device Name Wi-Fi Alliance Certificate Numbers

660 Mobile Handhelds WFA97981, WFA99859, WFA113336, WFA113833, WFA114039,

WFA114040, WFA114043, WFA114044, WFA114045,

WFA114046, WFA114047, WFA114232, WFA114233,

WFA114901, WFA114903, WFA114906, WFA114907,

WFA114908, WFA114910, WFA114911, WFA114914

6490/5430 Mobile Handhelds WFA118214, WFA119111, WFA120000, WFA123252,

WFA123888, WFA125523, WFA126056, WFA127940, WFA127941

6375 Mobile Handhelds WFA112221, WFA113714, WFA119406, WFA120159

4490 Mobile Handhelds WFA127943, WFA128271, WFA130548, WFA130549,

WFA131317, WFA131562, WFA131563

Table 8 Device WFA Certificates

MDFPP33:FCS_CKM.2/LOCKED:

The TOE provides an SDP library for applications that uses a hybrid crypto scheme based on 3072-bit RSA based key

establishment. Applications can utilize this library to implement SDP that encrypts incoming data received while the

phone is locked in a manner compliant with this requirement.

MDFPP33:FCS_CKM.2/UNLOCKED:

The TOE performs key establishment as part of EAP-TLS and TLS session establishment. Table 7 Asymmetric Key

Generation enumerates the TOE’S supported key establishment implementations (RSA/ECDH for TLS/EAP-TLS).

The TOE's RSA key exchange mechanism is used in the TLS handshake process and during product development,

the TOE's implementation undergoes testing to ensure TLS compatibility. In all cases, the TOE acts as a client.

WLANC10:FCS_CKM.2/WLAN:

The TOE adheres to RFC 3394 and 802.11-2012 standards and unwraps the GTK (sent encrypted with the

WPA3/WPA2 KEK using AES Key Wrap in an EAPOL-Key frame). The TOE, upon receiving an EAPOL frame,

will subject the frame to a number of checks (frame length, EAPOL version, frame payload size, EAPOL-Key type,

key data length, EAPOL-Key CCMP descriptor version, and replay counter) to ensure a proper EAPOL message

and then decrypt the GTK using the KEK, thus ensuring that it does not expose the Group Temporal Key (GTK).

MDFPP33:FCS_CKM_EXT.1:

The TOE includes a Root Encryption Key (REK) stored in a 256-bit fuse bank within the application processor. The

TOE generates the REK/fuse value during manufacturing using its hardware DRBG. The application processor

protects the REK by preventing any direct observation of the value and prohibiting any ability to modify or update

the value. The application processor loads the fuse value into an internal hardware crypto register and the Trusted

Execution Environment (TEE) provides trusted applications the ability to derive KEKs from the REK (using an SP

800-108 KDF to combine the REK with a salt). Additionally, the when the REK is loaded, the fuses for the REK

become locked, preventing any further changing or loading of the REK value. The TEE does not allow trusted

applications to use the REK for encryption or decryption, only the ability to derive a KEK from the REK. The TOE

includes a TEE application that calls into the TEE in order to derive a KEK from the 256-bit REK/fuse value and

then only permits use of the derived KEK for encryption and decryption as part of the TOE key hierarchy. More

information regarding Trusted Execution Environments may be found at the GlobalPlatform website.

MDFPP33:FCS_CKM_EXT.2:

The TOE utilizes its approved RBGs to generate DEKs. When generating AES keys for itself (for example, the TOE’S

sensitive data encryption keys or for the Secure Key Storage), the TOE utilizes the RAND_bytes() API call from its

http://www.wi-fi.org/certification
https://globalplatform.org/

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 53 of 74

BoringSSL AES-256 CTR_DRBG to generate a 256-bit AES key. The TOE also utilizes that same DRBG when

servicing API requests from mobile applications wishing to generate AES keys (either 128 or 256-bit).

In all cases, the TOE generates DEKs using a compliant RBG seeded with sufficient entropy so as to ensure that the

generated key cannot be recovered with less work than a full exhaustive search of the key space.

MDFPP33:FCS_CKM_EXT.3: (see KMD for more information)

The TOE takes the user-entered password and conditions/stretches this value before combining the factor with other

KEK.

The TOE generates all non-derived KEKs using the RAND_bytes() API call from its BoringSSL AES-256

CTR_DRBG to ensure a full 128/256-bits of strength for asymmetric/symmetric keys, respectively. And the TOE

combines KEKs by encrypting one KEK with the other so as to preserve entropy.

MDFPP33:FCS_CKM_EXT.4:

The TOE clears sensitive cryptographic material (plaintext keys, authentication data, other security parameters) from

memory when no longer needed or when transitioning to the device’s locked state (in the case of the Sensitive Data

Protection keys). Public keys (such as the one used for Sensitive Data Protection) can remain in memory when the

phone is locked, but all crypto-related private keys are evicted from memory upon device lock. No plaintext

cryptographic material resides in the TOE’S Flash as the TOE encrypts all keys stored in Flash. When performing a

full wipe of protected data, the TOE cryptographically erases the protected data by clearing the Data-At-Rest DEK.

Because the TOE’S keystore resides within the user data partition, the TOE effectively cryptographically erases those

keys when clearing the Data-At-Rest DEK. In turn, the TOE clears the Data-At-Rest DEK and Secure Key Storage

SEK through a secure direct overwrite (BLKSECDISCARD ioctl) of the wear-leveled Flash memory containing the

key followed by a read-verify.

MDFPP33:FCS_CKM_EXT.5:

The TOE stores all protected data in encrypted form within the user data partition (either protected data or sensitive

data). Upon request, the TOE cryptographically erases the Data-At-Rest DEK protecting the user data partition and

the SDP Master KEK protecting sensitive data files in the user data partition, clears those keys from memory,

reformats the partition, and then reboots. The TOE’s clearing of the keys follows the requirements of

FCS_CKM_EXT.4.

MDFPP33:FCS_CKM_EXT.6:

The TOE generates salt nonces (which are just salt values used in WPA3/WPA2) using its /dev/urandom.

Salt value and size RBG origin Salt storage location

User password salt (128-bit) BoringSSL’s AES-256 CTR_DRBG Flash filesystem

TLS client_random (256-bit) BoringSSL’s AES-256 CTR_DRBG N/A (ephemeral)

TLS pre_master_secret (384-bit) BoringSSL’s AES-256 CTR_DRBG N/A (ephemeral)

TLS ECDHE private value (256, 384) BoringSSL’s AES-256 CTR_DRBG N/A (ephemeral)

WPA3/WPA2 4-way handshake supplicant

nonce (SNonce)

BoringSSL’s AES-256 CTR_DRBG N/A (ephemeral)

BT10:FCS_CKM_EXT.8

The TOE generates public/private ECDH key pairs every Bluetooth connection establishment.

MDFPP33:FCS_COP.1:

The TOE implements cryptographic algorithms in accordance with the following NIST standards and has received the

following CAVP algorithm certificates.

The TOE’s BoringSSL Library (version 2023042800) with both Processor Algorithm Accelerators (PAA) and

without PAA) provides the following algorithms:

SFR Algorithm NIST Standard Cert#

FCS_CKM.1 (Key Gen) RSA IFC Key Generation – FIPS 186-4, RSA A6791

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=39401

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 54 of 74

SFR Algorithm NIST Standard Cert#

2048/3072 bits

ECDSA ECC Key Generation - P-

256/384/521

FIPS 186-4, ECDSA A6791

FCS_CKM.2/LOCKED

FCS_CKM.2/UNLOCKED

RSA key establishment SP 800-56B Tested with

known good

implementation

FCS_CKM.2/UNLOCKED KAS ECC- P-256/384/521 SP 800-56A A6791

FCS_COP.1/ENCRYPT

(AES)

AES - 128/256 CBC, GCM, KW FIPS 197, SP 800-

38A/D/F

A6791

WLANC10:FCS_CKM.2/W

LAN

AES - 128/256 KW FIPS 197, SP 800-38F A6791

FCS_COP.1/HASH SHA Hashing - 1/256/384/512 FIPS 180-4 A6791

FCS_COP.1/SIGN RSA Sign/Verify - 2048/3072 bits FIPS 186-4, RSA A6791

ECDSA Sign/Verify - P-

256/384/521

FIPS 186-4, ECDSA A6791

FCS_COP.1/KEYHMAC

WLANC10:FCS_CKM.2/W

LAN

HMAC-SHA -1/256/384/512 FIPS 198-1 & 180-4 A6791

FCS_RBG_EXT.1 (Random) CTR DRBG Bit Generation – 256

bits

SP 800-90A (Counter) A6791

Table 9 - BoringSSL Cryptographic Algorithms

Android’s LockSettings service (version 77561fc30db9aedc1f50f5b07504aa65b4268b88) provides the TOE’S SP

800-108 key based key derivation function for deriving KEKs.

SFR Algorithm NIST Standard Cert#

FCS_CKM_EXT.3

FCS_CKM_EXT.2
LockSettings service KBKDF 256 bits SP 800-108 A1978

Table 10 – LockSettings Service Cryptographic Algorithms

The devices contain unique Wi-Fi chipsets based on the model of the device. The chipsets are listed here.

Device Wi-Fi Chipset Wi-Fi Chipset Details

• TC52ax

• MC33ax

• ET40

• ET40HC

• ET45

• ET45HC

Broadcom BCM43752 Incorporates Broadcom’s Crypto Hardware Module

aes_core_gcm_simult_5_cycle.vhd

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=39401
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=39401
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=39401
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=39401
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=39401
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=39401
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=39401
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=39401
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=39401
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34587

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 55 of 74

Device Wi-Fi Chipset Wi-Fi Chipset Details

• CC600

• CC6000

• ET51

• ET56

• L10A

• MC20

• MC9300

• PS20

• TC52

• TC52-HC

• TC52x

• TC52x-HC

• TC57

• TC57x

• TC72

• TC77

• TC83

• VC83

• WT6300

• EC30

• EC50

• EC55

• MC2200

• MC2700

• MC330x

• MC33xR

Qualcomm WCN3990 Incorporates the Qualcomm AES engine-256w

• TC21

• TC21-HC

• TC26

• TC26-HC

Qualcomm WCN3980 Incorporates the Qualcomm AES engine-256w

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 56 of 74

Device Wi-Fi Chipset Wi-Fi Chipset Details

• MC3400

• MC3450

• MC9400

• MC9450

• PS30

• TC53e

• TC58e

• FR55/FR55S

• WT5400

• WT6400

• HC20

• HC50

• TC22

• TC27

• TC22R

• TC27R

• EM45

• TC73-5430

• TC78-5430

• KC50S

• KC50L

• HC25

• HC55

• ZEC500

• ET60

• ET65

• TC53

• TC58

• TC73

• TC78

Qualcomm WCN6856 Incorporates Qualcomm's Lithium AES engine-256w

• TC15

• TN28

Qualcomm WCN3988 Incorporates the Qualcomm AES engine-256w

Table 11 - Wi-Fi Hardware Components

The Wi-Fi chipsets provide the following algorithms.

Algorithm NIST Standard SFR Reference Cert#

AES 128 CCM (Qualcomm Wi-Fi) FIPS 197, SP 800-

38C

FCS_COP.1/ENCRYPT 5663, 4748

AES 128 CCM (Broadcom Wi-Fi) FIPS 197, SP 800-

38C

FCS_COP.1/ENCRYPT C1025

Table 12 - Wi-Fi Chip Algorithms

The TOE’s application processor (Snapdragon 695 [SM6375], SDM660, QCM6490, and QCM4490) provide the

following cryptographic algorithms.

SFR Algorithm NIST Standard Cert#

FCS_COP.1/ENCRYPT (AES) (QTI

CEC*)
AES 128/256 CBC FIPS 197, SP 800-38A

5383, A805, A2752,

A3694

FCS_COP.1/ENCRYPT (AES) (QTI

UFS**)
AES 128/256 XTS FIPS 197, SP 800-38E

5393, 5394,

A771, A772, A2116,

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=21654
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=8370
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=31422
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9411
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33400
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35363
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=36304&displayMode=Aggregated
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9458
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9459
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=13229
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=13230
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34725

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 57 of 74

SFR Algorithm NIST Standard Cert#

A2117

FCS_COP.1/HASH (QTI CEC) SHA 1/256 Hashing FIPS 180-4
4319, A805, A2752,

A3694

FCS_COP.1/HASH) (DRBG) SHA 256 Hashing FIPS 180-4

4333/4316, A1630,

A2753, A3756,

A3755

FCS_COP.1/KEYHMAC (QTI CEC) HMAC-SHA-1/256 FIPS 198-1 & 180-4
3566, A805, A2752,

A3694

FCS_RBG_EXT.1 (Random) (DRBG)
DRBG Bit

Generation 256 bits
SP 800-90A (Hash-256)

2095, A1630, A2753,

A3756
*QTI CEC – Qualcomm Technologies, Inc. Crypto Engine Core v5.3.4 for SDM 660, v5.6.0 for SM6375 and QCM6490, v5.7.3 for QCM4490

**QTI UFS - Qualcomm Technologies, Inc. Inline Crypto Engine (UFS) v3.0.0 for SDM660, v3.2.0 for SM6375 and QCM6490, v3.2.1 for

QCM4490

Table 13 - SoC Cryptographic Algorithms

MDFPP33:FCS_COP.1/CONDITION:

The TOE stretches the user’s password to create a password derived key. The TOE stretching function uses a series

of steps to increase the memory required for key derivation (thus thwarting GPU-acceleration, off-line brute force,

and precomputed dictionary attacks) and ensure proper conditioning and stretching of the user’s password.

The TOE conditions the user’s password using two iterations of PBKDFv2 w HMAC-SHA-256 in addition to some

ROMix operations in an algorithm named scrypt. Scrypt consists of one iteration of PBKDFv2, followed by a series

of ROMix operations, and finished with a final iteration of PBKDFv2. The ROMix operations increase the memory

required for key derivation, thus thwarting GPU-acceleration (which can greatly decrease the time needed to brute

force PBKDFv2 alone). The time needed to derive keying material does not impact or lessen the difficulty faced by

an attacker’s exhaustive guessing as the combination of the password derived KEK with REK value entirely prevents

offline attacks and the TOE’s maximum incorrect login attempts.

The following scrypt diagram shows how the password and salt are used with PBKDFv2 and ROMix to fulfil the

requirements for password conditioning.

The resulting derived key from this operation is combined with keys chaining to the Application Processor REK and

then used to decrypt the FBE DEKs and also to derive the User Keystore Daemon Value.

MDFPP33:FCS_COP.1/ENCRYPT:

The TOE has received an ACVP certificate for its encryption/decryption routines as described in the tables above.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34726
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9411
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33400
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35363
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=36304&displayMode=Aggregated
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9460
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9410
https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/details?source=A&number=1630
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35364
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=36366&displayMode=Aggregated
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=36365&displayMode=Aggregated
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9411
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=33400
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35363
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=36304&displayMode=Aggregated
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=9460
https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/details?source=A&number=1630
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=35364
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=36366&displayMode=Aggregated

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 58 of 74

MDFPP33:FCS_COP.1/HASH:

The TOE uses byte-wise hashing operations as part of signatures as well as part of HMAC (keyed hashing) operations.

MDFPP33:FCS_COP.1/KEYHMAC:

The TOE uses HMAC as part of the TLS ciphersuites and makes HMAC functionality available to mobile applications.

For TLS, the TOE uses HMAC using SHA-1 (with a 160-bit key) to generate a 160-bit MAC, SHA-256 (with a 256-

bit key) to generate a 256-bit MAC, SHA-384 (with a 384-bit key) to generate a 384-bit MAC. For mobile

applications, the TOE provides all of the previous HMACs as well as SHA-512 (with a 512-bit key) to generate a 512-

bit MAC. FIPS 198-1 & 180-4 dictate the block size used, and they specify block sizes/output MAC lengths of

512/160, 512/160, 1024/384, and 1024/512-bits for HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384, and

HMAC-SHA-512 respectively.

MDFPP33:FCS_COP.1/SIGN:

The TOE has received a CAVP certificate for its signature operations as described in the tables above.

MDFPP33:FCS_HTTPS_EXT.1:

The TOE supports the HTTPS protocol (compliant with RFC 2818) so that (mobile and system) applications executing

on the TOE can act as HTTPS clients and securely connect to external servers using HTTPS. Administrators have no

credentials and cannot use HTTPS or TLS to establish administrative sessions with the TOE as the TOE does not

provide any such capabilities.

MDFPP33:FCS_IV_EXT.1: (see KMD for more information)

The TOE generates IVs by reading from /dev/urandom for use with all keys. In all cases, the TOE uses /dev/urandom

and generates the IVs in compliance with the requirements of table 11 of MDFPP33.

MDFPP33:FCS_RBG_EXT.1:

The TOE provides a number of different RBGs including:

1. A SHA-256 Hash_DRBG provided in the hardware of the Application Processor.

2. An AES-256 CTR_DRBG provided by BoringSSL. This is the only accredited and supported DRBG present

in the system and available to independently developed applications. As such, the TOE provides mobile

applications access (through an Android Java API) to random data drawn from its AES-256 CTR_DRBG.

The TOE initializes its AP Hash_DRBG with enough data from its hardware noise source to ensure at least 256-bits

of entropy. The TOE then uses its AP Hash_DRBG to continuously fill the Linux Kernel Random Number Generator

(LKRNG) input pool, and the LKRNG makes entropy easily available to the rest of the system (e.g., the BoringSSL

DRBG draws from the LKRNG).

The TOE seeds its BoringSSL AES-256 CTR_DRBG using 384-bits of data from /dev/random, thus ensuring at least

256-bits of entropy. The TOE uses its BoringSSL DRBG for all random generation including salts.

MDFPP33:FCS_SRV_EXT.1:

The TOE provides applications access to the cryptographic operations including encryption (AES), hashing (SHA),

signing and verification (RSA & ECDSA), key hashing (HMAC), keyed message digests (HMAC-SHA-256),

generation of asymmetric keys for key establishment (RSA and ECDH), and generation of asymmetric keys for

signature generation and verification (RSA, ECDSA). The TOE provides access through the Android operating

system’s Java API, through the native BoringSSL API, and through the application processor module (user and kernel)

APIs.

MDFPP33:FCS_SRV_EXT.2:

The TOE provides applications with APIs to perform the functions referenced in FCS_COP.1/ENCRYPT and

FCS_COP.1/SIGN.

MDFPP33:FCS_STG_EXT.1:

The TOE provides the user, administrator, and mobile applications the ability to import and use asymmetric public

and private keys into the TOE’S software-based Secure Key Storage. Certificates are stored in files using UID-based

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 59 of 74

permissions and an API virtualizes the access. Additionally, the user and administrator can request the TOE to destroy

the keys stored in the Secure Key Storage. While normally mobile applications cannot use or destroy the keys of

another application, applications that share a common application developer (and are thus signed by the same

developer key) may do so. In other words, applications with a common developer (and which explicitly declare a

shared UUID in their application manifest) may use and destroy each other’s keys located within the Secure Key

Storage.

The TOE also provides additional protections on keys beyond including key attestation, to allow enterprises and

application developers the ability to ensure which keys have been generated securely within the phone.

MDFPP33:FCS_STG_EXT.2: (see KMD for more information)

The TOE employs a key hierarchy that protects all DEKs and KEKs by encryption with either the REK or by the REK

and password derived KEK.

The TOE encrypts Long-term Trusted channel Key Material (LTTCKM, i.e., Bluetooth and WiFi keys) values using

AES-256 GCM encryption and stores the encrypted values within their respective configuration files.

All keys are 256-bits in size. All keys are generated using the TOE’S BoringSSL AES-256 CTR_DRBG or application

processor SHA-256 Hash_DRBG. By utilizing only 256-bit KEKs, the TOE ensures that all keys are encrypted by an

equal or larger sized key.

In the case of Wi-Fi, the TOE utilizes the 802.11-2012 KCK and KEK keys to unwrap (decrypt) the WPA2/WPA3

Group Temporal Key received from the access point. The TOE protects persistent Wi-Fi keys (user certificates and

private keys) by storing them in the Android Key Store.

MDFPP33:FCS_STG_EXT.3:

The TOE protects the integrity of all DEKs and KEKs (including LTTCKM keys) stored in Flash by using

authenticated encryption/decryption methods (GCM and CCM when CCMP is used in transit).

PKGTLS11:FCS_TLS_EXT.1:

PKGTLS11:FCS_TLSC_EXT.1/2:

The TOE provides mobile applications (through its Android API) the use of TLS version 1.2 as a client including

support for the selections in chosen in section 5 for FCS_TLSC_EXT.1 (and the TOE requires no configuration other

than using the appropriate library APIs as described in the Admin Guidance).

When an application uses the combined APIs provided in the Admin Guide to attempt to establish a trusted channel

connection based on TLS or HTTPS, the TOE supports only Subject Alternative Name (SAN) (DNS and IP address)

as reference identifiers (the TOE does not accept reference identifiers in the Common Name[CN]). The TOE supports

client (mutual) authentication (only a certificate is required to provide support for mutual authentication). The TOE

in its evaluated configuration and, by design, supports elliptic curves for TLS (P-256 and P-384) and has a fixed set

of supported curves (thus the admin cannot and need not configure any curves).

No additional configuration is needed to restrict allow the device to use the supported cipher suites, as only the claimed

cipher suites are supported in the aforementioned library as each of the aforementioned ciphersuites are supported on

the TOE by default or through the use of the TLS library.

While the TOE supports the use of wildcards in X.509 reference identifiers (SAN only), the TOE does not support

certificate pinning. If the TOE cannot determine the revocation status of a peer certificate, the TOE rejects the

certificate and rejects the connection.

WLANC10:FCS_TLSC_EXT.1/2/WLAN:

The TSF supports TLS versions 1.1, and 1.2 and also supports the selected ciphersuites utilizing SHA-1, SHA-256,

and SHA-384 (see the selections in section 5 for FCS_TLSC_EXT.1/WLAN) for use with EAP-TLS as part of

WPA3/WPA2. The TOE in its evaluated configuration and, by design, supports only evaluated elliptic curves (P-256

& P-384 and no others) and has a fixed set of supported curves (thus the admin cannot and need not configure any

curves).

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 60 of 74

The TOE, allows the user to load and utilize authentication certificates for EAP-TLS used with WPA3/2. The Android

UI (Settings->Security->Credential storage: Install from device storage) allows the user to import an RSA or ECDSA

certificate and designate its use as Wi-Fi.

PKGTLS11:FCS_TLSC_EXT.4:

The TOE includes the ‘renegotiation_info’ TLS extension in its TLS client hello message.

PKGTLS11:FCS_TLSC_EXT.5:

The TOE supports the secp256r1 andsecp384r1 groups in its TLS client hello message ‘supported_groups’ extension.

WLANC10:FCS_WPA_EXT.1:

The TSF supports WPA2 and WPA3 security types for Wi-Fi networks.

6.3 User data protection

MDFPP33:FDP_ACF_EXT.1: (see KMD for more information)

The TOE provides a mechanism based on the use of assigned permissions to specify the level of access any

application may have to any system service. A system service may have multiple permissions associated with it,

depending on the functionality of the service (for example read and write access may be separate controls on one

service while both may be combined into a single control on another service). When an application wants to access

the system service in question, the calling application must be granted access to the permission by the user.

Some permissions are granted automatically for applications that are installed by Google (these are only for Google

applications and are not provided for any third party applications) while all the user of the device must authorize

other permissions. Applications using API Level 23 (Android 6.0) or higher (the current API Level is 34) will prompt

the user to grant the permission the first time the permission is requested by the application. Applications written

to older API Levels will prompt the user for all permissions the first time the application runs. If the user has approved

the permission persistently, it will be allowed every time the application runs, but if the user only approved the

permission for one time use, the user will be prompted to approve access every time the permission is requested by

the application.

Permissions in API Level 34 are assigned a protectionLevel based on the implied potential risk to accessing data

protected by the permission. The protectionLevel is divided into two types: base permissions and protection flags.

Base permissions are associated with the level of risk while the flags are modifiers that may provide context or

refinement of the base permission.

The TOE provides the following base permissions to applications (for API Level 34):

1. Normal - A lower-risk permission that gives an application access to isolated application-level features, with

minimal risk to other applications, the system, or the user. The system automatically grants this type of

permission to a requesting application at installation, without asking for the user's explicit approval (though

the user always has the option to review these permissions before installing).

2. Dangerous - A higher-risk permission that would give a requesting application access to private user data

or control over the device that can negatively impact the user. Because this type of permission introduces

potential risk, the system cannot automatically grant it to the requesting application. For example, any

dangerous permissions requested by an application will be displayed to the user and require confirmation

before proceeding, or some other approach can be taken to avoid the user automatically allowing the use

https://developer.android.com/reference/android/R.attr#protectionLevel

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 61 of 74

of such facilities.

3. Signature - A permission that the system is to grant only if the requesting application is signed with the

same certificate as the application that declared the permission. If the certificates match, the system

automatically grants the permission without notifying the user or asking for the user's explicit approval.

4. Internal - a permission that is managed internally by the system and only granted according to the

protection flags.

An example of a normal permission is the ability to vibrate the device: android.permission.VIBRATE. This permission

allows an application to make the device vibrate, and an application that does not request (or declare) this

permission would have its vibration requests ignored.

An example of a dangerous privilege would be access to location services to determine the location of the mobile

device: android.permission.ACCESS_FINE_LOCATION. The TOE controls access to Dangerous permissions during the

running of the application. The TOE prompts the user to review the application’s requested permissions (by

displaying a description of each permission group, into which individual permissions map, that an application

requested access to). If the user approves, then the application is allowed to continue running. If the user

disapproves, the device continues to run, but cannot use the services protected by the denied permissions.

Thereafter, the mobile device grants that application during execution access to the set of permissions declared in

its Manifest file.

An example of a signature permission is the android.permission.BIND_VPN_SERVICE that an application must

declare in order to utilize the VpnService APIs of the device. Because the permission is a Signature permission, the

mobile device only grants this permission to an application (2nd installed app) that requests this permission and that

has been signed with the same developer key used to sign the application (1st installed app) declaring the permission

(in the case of the example, the Android Framework itself).

An example of an internal permission is the android.permission.SET_DEFAULT_ACCOUNT_FOR_CONTACTS, which is

only granted to system applications fulfilling the Contacts app role to allow the default account for new contacts to

be set.

Additionally, Android includes the following flags that layer atop the base categories.

1. privileged - this permission can also be granted to any applications installed as privileged apps on the system
image. Please avoid using this option, as the signature protection level should be sufficient for most needs
and works regardless of exactly where applications are installed. This permission flag is used for certain
special situations where multiple vendors have applications built in to a system image which need to share
specific features explicitly because they are being built together.

2. system - Old synonym for 'privileged'.

3. development - this permission can also (optionally) be granted to development applications (e.g., to allow
additional location reporting during beta testing).

4. appop - this permission is closely associated with an app op for controlling access.

5. pre23 - this permission can be automatically granted to apps that target API levels below API level 23
(Marshmallow/6.0).

6. installer - this permission can be automatically granted to system apps that install packages.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 62 of 74

7. verifier - this permission can be automatically granted to system apps that verify packages.

8. preinstalled - this permission can be automatically granted to any application pre-installed on the system
image (not just privileged apps) (the TOE does not prompt the user to approve the permission).

The Android 14 (Level 34) API (details found here https://developer.android.com/reference/packages) provides

services to mobile applications.

While Android provides a large number of individual permissions, they are grouped into categories or features that

provide similar functionality for the simplicity of the user interaction. These groupings do not affect the permissions

themselves; it is only a way to group them together for the user presentation. Table 14 shows a series of functional

categories centered on common functionality. The KMD contains a listing of each Android permission and its

associated base permission.

Service Features Description

Sensitive I/O Devices & Sensors Location services, Audio & Video capture, Body sensors

User Personal Information & Credentials Contacts, Calendar, Call logs, SMS

Metadata & Device ID Information IMEI, Phone Number

Data Storage Protection App data, App cache

System Settings & Application Management Date time, Reboot/Shutdown, Sleep, Force-close
application, Administrator Enrollment

Wi-Fi, Bluetooth, USB Access Wi-Fi, Bluetooth, USB tethering, debugging and file transfer

Mobile Device Management &
Administration

MDM APIs

Peripheral Hardware NFC, Camera, Headphones

Security & Encryption Certificate/Key Management, Password, Revocation rules

Table 14 - Functional Categories

MDFPP33:FDP_ACF_EXT.1.2:

Applications with a common developer have the ability to allow sharing of data between their applications. A common

application developer can sign their generated APK with a common certificate or key and set the permissions of their

application to allow data sharing. When the different applications’ signatures match and the proper permissions are

enabled, information can then be shared as needed.

The TOE supports Enterprise profiles to provide additional separation between application and application data

belonging to the Enterprise profile. Applications installed into the Enterprise versus Personal profiles cannot access

each other’s secure data, applications, and can have separate device administrators/managers. This functionality is

built into the device by default and does not require an application download. The Enterprise administrative app (an

MDM agent application installed into the Enterprise Profile) may enable cross-profile contacts search, in which case,

the device owner can search the address book of the enterprise profile. Please see the Admin Guide for additional

details regarding how to set up and use Enterprise profiles. Ultimately, the enterprise profile is under control of the

personal profile. The personal profile can decide to remove the enterprise profile, thus deleting all information and

applications stored within the enterprise profile. However, despite the “control” of the personal profile, the personal

profile cannot dictate the enterprise profile to share applications or data with the personal profile; the enterprise profile

MDM must allow for sharing of contacts before any information can be shared.

MDFPP33:FDP_ACF_EXT.2:

The TOE allows an administrator to allow sharing of the enterprise profile address book with the normal profile. Each

application group (profile) has its own calendar as well as keychain (keychain is the collection of user [not application]

keys, and only the user can grant the user’s applications access to use a given key in the user’s keychain), thus

Android’s personal and work profiles do not share calendar appointments nor keys.

MDFPP33:FDP_DAR_EXT.1:

https://developer.android.com/reference/packages

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 63 of 74

The TOE provides Data-At-Rest AES-256 XTS hardware encryption for all data stored on the TOE in the user data

partition (which includes both user data and TSF data). The TOE also has TSF data relating to key storage for TSF

keys not stored in the system’s Android Key Store. The TOE separately encrypts those TSF keys and data.

Additionally, the TOE includes read-only filesystems (system and vendor) in which the TOE’S system executables,

libraries, and their configuration data reside.

For its Data-At-Rest encryption of the data partition on the internal Flash (where the TOE stores all user data and all

application data), the TOE uses an AES-256 bit DEK with XTS feedback mode to encrypt each file in the data partition

using dedicated application processor hardware. The TOE uses File Based Encryption (FBE) to encrypt files either

using Device Encryption (DE) or Credential Encryption (CE), where the latter files the TOE combines a key chaining

to the REK with the user’s password to derive the CE encryption keys.

MDFPP33:FDP_DAR_EXT.2:

The vendor uses the NIAPSEC library (from Google) for Sensitive Data Protection (SDP) that application developers

must use to opt-in for sensitive data protection. When developers opt-in for SDP, all data that is received on the device

destined for that application is treated as sensitive. This library calls into the TOE to generate an RSA key that acts as

a master KEK for the SDP encryption process. When an application that has opted-in for SDP receives incoming data

while the device is locked, an AES symmetric DEK is generated to encrypt that data. The public key from the master

RSA KEK above is then used to encrypt the AES DEK. Once the device is unlocked, the RSA KEK private key is re-

derived and can be used to decrypt the AES DEK for each piece of information that was stored while the device was

locked. The TOE then takes that decrypted data and re-encrypts it following FDP_DAR_EXT.1.

The keys for SDP are stored in the keystore (FCS_STG_EXT.1) with the settings setUnlockedDeviceRequired and

setUserAuthenticationRequired to enable. These settings ensure that sensitive data cannot be unlocked except once

the user is authenticated to the TOE.

Application data marked as sensitive will have header information about how the data is encrypted that will specify

whether the data can only be read through the NIAPSEC library (utilizing the appropriate primary SDP KEK). To the

system as a whole, there is no difference between an SDP file and a non-SDP file to avoid calling out where sensitive

data is located; this is specifically limited to the header data of the file which would mark how the DEK is encrypted.

Application data is segregated from other applications as per FDP_ACF_EXT.1.2.

MDFPP33:FDP_IFC_EXT.1:

The TOE will route all traffic other than traffic necessary to establish the VPN connection to the VPN gateway (when

the gateway’s configuration specifies so) when the Always-On-VPN is enabled. The TOE includes an interceptor

kernel module that controls inbound and output packets. When a VPN is active, the interceptor will route all incoming

packets to the VPN and conversely route all outbound packets to the VPN before they are output.

Note that when the TOE tries to connect to a Wi-Fi network, it performs a standard captive portal check which sends

traffic that bypasses the full tunnel VPN configuration in order to detect whether the Wi-Fi network restricts Internet

access until one has authenticated or agreed to usage terms through a captive portal. If the administrator wishes to

deactivate the captive portal check (in order to prevent the plaintext traffic), they may do this by following the

instructions in the Admin Guide.

The only exception to all traffic being routed to the VPN is in the instance of ICMP echo requests. The TOE uses

ICMP echo responses on the local subnet to facilitate network troubleshooting and categorizes it as a part of ARP. As

such, if an ICMP echo request is issued on the subnet the TOE is part of, it will respond with an ICMP echo response,

but no other instances of traffic will be routed outside of the VPN.

MDFPP33:FDP_STG_EXT.1:

The TOE’s Trusted Anchor Database consists of the built-in certs and any additional user or admin/MDM loaded

certificates. The built-in certs are individually stored in the device’s read-only system image in the

/system/etc/security/cacerts directory, and the user can individually disable certs through the Android user interface:

Settings -> Security -> Advanced settings -> Encryption & credentials -> Trusted Credentials

Because the built-in CA certificates reside on the read-only system partition, the TOE places a copy of any disabled

built-in certificate into the /data/misc/user/X/cacerts-removed/ directory, where 'X' represents the user’s number

(which starts at 0). The TOE stores added CA certificates in the corresponding /data/misc/user/X/cacerts-added/

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 64 of 74

directory and also stores a copy of the CA certificate in the user’s Secure Key Storage (residing in the

/data/misc/keystore/user_X/ directory). The TOE uses Linux file permissions that prevent any mobile application or

entity other than the TSF from modifying these files. Only applications registered as an administrator (such as an

MDM Agent Application) have the ability to access these files, staying in accordance to the permissions established

in FMT_SMF.1 and FMT_MOF_EXT.1.

MDFPP33:FDP_UPC_EXT.1/APPS:

The TOE provides APIs allowing non-TSF applications (mobile applications) the ability to establish a secure channel

using TLS and HTTPS,. Mobile applications can use the following Android APIs for TLS and HTTPS respectively:

SSL:

javax.net.ssl.SSLContext:

https://developer.android.com/reference/javax/net/ssl/SSLSocket

Developers then need to swap SocketFactory for SecureSocketFactory, part of a private library provided by

Google.

Developers can request this library by emailing: niapsec@google.com

HTTPS:

javax.net.ssl.HttpsURLConnection:

https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection

Developers then need to swap HTTPSUrlConnections for SecureUrl part of a private library provided by

Google.

Developers can request this library by emailing: niapsec@google.com

MDFPP33:FDP_UPC_EXT.1/BLUETOOTH:

The TOE supports a means for non-TSF applications to initiate Bluetooth BR/EDR and LE connections.

The TOE provides APIs allowing non-TSF applications (mobile applications) the ability to establish a secure channel

using Bluetooth BR/EDR and LE. Mobile applications can use the following Android APIs for Bluetooth respectively:

Bluetooth:

android.bluetooth:

http://developer.android.com/reference/android/bluetooth/package-summary.html

6.4 Identification and authentication

MDFPP33:FIA_AFL_EXT.1:

The TOE maintains in persistent storage, for each user, the number of failed password logins since the last successful

login (the phone, in its evaluated configuration, only supports password authentication), and upon reaching the

maximum number of incorrect logins, the TOE performs a full wipe of all protected data (and in fact, wipes all user

data).

An administrator can adjust the number of failed logins for the cryptlock screen from the default of ten failed logins

to a value between 0 (deactivate wiping) and 50 through an MDM. The TOE validates passwords by providing them

to Android’s Gatekeeper (which runs in the Trusted Execution Environment). If the presented password fails to

validate, the TOE increments the incorrect password counter before displaying a visual error to the user. Android’s

Gatekeeper keeps this password counter in persistent secure storage and increments the counter before validating the

https://developer.android.com/reference/javax/net/ssl/SSLSocket
mailto:niapsec@google.com
https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection
mailto:niapsec@google.com
http://developer.android.com/reference/android/bluetooth/package-summary.html

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 65 of 74

password. Upon successful validation of the password, this counter is reset back to zero. By storing the counter

persistently, and by incrementing the counter prior to validating it, the TOE ensures a correct tally of failed attempts

even if it loses power.

BT10:FIA_BLT_EXT.1:

The TOE requires explicit user authorization before it will pair with a remote Bluetooth device. When pairing with

another device, the TOE requires that the user either confirm that a displayed numeric passcode matches between the

two devices or that the user enter (or choose) a numeric passcode that the peer device generates (or must enter). The

TOE requires this authorization (via manual input) for mobile application use of the Bluetooth trusted channel and in

situations where temporary (non-bonded) connections are formed.

BT10:FIA_BLT_EXT.2:

The TOE does not allow any data transfers with remote devices that have not been paired or authorized by the user of

the TOE. All Bluetooth connections require initial approval by the user in the user interface and cannot be done

programmatically. Bluetooth pairing (RFCOMM connections) is completed by confirming/entering a displayed

passcode in the user interface. TOE support for OBEX (OBject EXchange) through L2CAP (Logical Link Control

and Adaptation Protocol) requires the user to explicitly authorize the transfer via a popup that will be displayed to the

user.

BT10:FIA_BLT_EXT.3:

The TOE rejects duplicate Bluetooth connections by only allowing a single session per paired device. This ensures

that when the TOE receives a duplicate session attempt while the TOE already has an active session with that device,

then the TOE ignores the duplicate session.

BT10:FIA_BLT_EXT.4:

The TOE’S Bluetooth host and controller supports Bluetooth Secure Simple Pairing and the TOE utilizes this pairing

method when the remote host also supports it.

BT10:FIA_BLT_EXT.6:

The TOE requires explicit user authorization before granting trusted (paired) remote devices access to services

associated with the OPP and MAP Bluetooth profiles. Additionally, the TOE requires explicit user authorization

before granting untrusted (unpaired) remote devices access to services associated with all Bluetooth profiles.

BT10:FIA_BLT_EXT.7:

The TOE requires explicit user authorization before granting trusted remote devices access to services associated with

any available Bluetooth profile

WLANC10:FIA_PAE_EXT.1:

The TOE can join WPA3/2-802.1X (802.11i) wireless networks requiring EAP-TLS authentication, acting as a

client/supplicant (and in that role connect to the 802.11 access point and communicate with the 802.1X authentication

server).

MDFPP33:FIA_PMG_EXT.1:

The TOE authenticates the user through a password consisting of basic Latin characters (upper and lower case,

numbers, and the special characters noted in the selection (see the selections in section 5 for FIA_PMG_EXT.1)). The

TOE defaults to requiring passwords to have a minimum of four characters but no more than sixteen, contain at least

one letter; however, an MDM application can change these defaults. The Smart Lock feature is not allowed in the

evaluated configuration as this feature circumvents the requirements for FIA_PMG_EXT.1 and many others.

MDFPP33:FIA_TRT_EXT.1:

Android’s GateKeeper throttling is used to prevent brute-force attacks. After a user enters an incorrect password,

GateKeeper APIs return a value in milliseconds (500ms default) in which the caller must wait before attempting to

validate another password. Any attempts before the defined amount of time has passed will be ignored by GateKeeper.

Gatekeeper also keeps a count of the number of failed validation attempts since the last successful attempt. These two

values together are used to prevent brute-force attacks of the TOE’s password.

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 66 of 74

MDFPP33:FIA_UAU.5:

The TOE, in its evaluated configuration, allows the user to authenticate using a password. Upon boot, the first unlock

screen presented requires the user to enter their password to unlock the device.

Upon device lock during normal use of the device, the user has the ability to unlock the phone by entering their

password. Throttling of this input can be read about in the FIA_AFL_EXT.1 section. The entered password is

compared to a value derived as described in the key hierarchy and key table above (FCS_STG_EXT.2 and

FCS_CKM_EXT.4, respectively).

Some security related user settings (e.g. changing the password, setting up SmartLock, etc.) and actions (e.g. factory

reset) require the user to enter their password before modifying these settings or executing these actions.

The TOE’s evaluated configuration disallows other authentication mechanisms, such as pattern, PIN, or Smart Lock

mechanisms (on-body detection, trusted places, trusted devices, trusted face, trusted voice).

MDFPP33:FIA_UAU.6/CREDENTIAL, MDFPP33:FIA_UAU.6/LOCKED:

The TOE requires the user to enter their password to unlock the TOE. Additionally, the TOE requires the user to

confirm their current password when accessing the “Settings->Display->LockScreen->Screen Security->Select screen

lock” menu in the TOE’s user interface. The TOE can disable Smart Lock through management controls. Only after

entering their current user password can the user then elect to change their password.

MDFPP33:FIA_UAU.7:

The TOE allows the user to enter the user's password from the lock screen. The TOE will, by default, display the most

recently entered character of the password briefly or until the user enters the next character in the password, at which

point the TOE obscures the character by replacing the character with a dot symbol.

MDFPP33:FIA_UAU_EXT.1:

As described before, the TOE’s key hierarchy requires the user's password in order to derive the KEK_* keys in order

to decrypt other KEKs and DEKs. Thus, until it has the user's password, the TOE cannot decrypt the DEK utilized for

Data-At-Rest encryption, and thus cannot decrypt the user’s protected data.

MDFPP33:FIA_UAU_EXT.2:

The TOE, when configured to require a user password, allows a user to perform the actions assigned in

FIA_UAU_EXT.2.1 (see selections in section 5 for FIA_UAU_EXT.2) without first successfully authenticating.

Choosing the input method allows the user to select between different keyboard devices (say, for example, if the user

has installed additional keyboards). Note that the TOE automatically names and saves (to the internal Flash) any screen

shots or photos taken from the lock screen, and the TOE provides the user no opportunity to name them or change

where they are stored.

When configured, the user can also launch Google Assistant to initiate some features of the phone. However, if the

command requires access to the user’s data (e.g. contacts for calls or messages), the phone requires the user to

manually unlock the phone before the action can be completed.

Beyond those actions, a user cannot perform any other actions other than observing notifications displayed on the lock

screen until after successfully authenticating. Additionally, the TOE provides the user the ability to hide the contents

of notifications once a password (or any other locking authentication method) is enabled.

MDFPP33:FIA_X509_EXT.1:

WLANC10:FIA_X509_EXT.1/WLAN:

The TOE checks the validity of all imported CA certificates by checking for the presence of the basicConstraints

extension and that the CA flag is set to TRUE as the TOE imports the certificate. Additionally, the TOE verifies the

extendedKeyUsage Server Authentication purpose during WPA3/2-EAP-TLS negotiation. The TOE’S certificate

validation algorithm examines each certificate in the path (starting with the peer’s certificate) and first checks for

validity of that certificate (e.g., has the certificate expired; or if not yet valid, whether the certificate contains the

appropriate X.509 extensions [e.g., the CA flag in the basic constraints extension for a CA certificate, or that a server

certificate contains the Server Authentication purpose in the ExtendedKeyUsagefield]), then verifies each certificate

in the chain (applying the same rules as above, but also ensuring that the Issuer of each certificate matches the Subject

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 67 of 74

in the next rung “up” in the chain and that the chain ends in a self-signed certificate present in either the TOE’S trusted

anchor database or matches a specified Root CA), and finally the TOE performs revocation checking for all certificates

in the chain.

MDFPP33:FIA_X509_EXT.2:

WLANC10:FIA_X509_EXT.2/WLAN:

WLANC10:FIA_X509_EXT.6:

The TOE uses X.509v3 certificates during EAP-TLS, TLS, and HTTPS. The TOE comes with a built-in set of default

Trusted Credentials (Android's set of trusted CA certificates), and while the user cannot remove any of the built-in

default CA certificates, the user can disable any of those certificates through the user interface so that certificates

issued by disabled CA’s cannot validate successfully. In addition, a user and an administrator/MDM can import a new

trusted CA certificate into the Trust Anchor Database (the TOE stores the new CA certificate in the Security Key

Store). Users and administrators/MDMs can also import new client certificates as well via the settings UI and the

TOE’s MDM APIs, respectively. Users then select which client certificate to present during configuration of the

connection while administrators configure it while creating Wi-Fi connection profiles.

The TOE does not establish TLS connections itself (beyond EAP-TLS used for WPA2/WPA3 Wi-Fi connections),

but provides a series of APIs that mobile applications can use to check the validity of a peer certificate. The mobile

application, after correctly using the specified APIs, can be assured as to the validity of the peer certificate and be

assured that the TOE will not establish the trusted connection if the peer certificate cannot be verified (including

validity, certification path, and revocation [through OCSP]). If, during the process of certificate verification, the TOE

cannot establish a connection with the server acting as the OCSP Responder, the TOE will not deem the server’s

certificate as valid and will not establish a TLS connection with the server.

The user or administrator explicitly specifies the trusted CA that the TOE will use for EAP-TLS authentication of the

server’s certificate. For mobile applications, the application developer will specify whether the TOE should use the

Android system Trusted CAs, use application-specified trusted CAs, or a combination of the two. In this way, the

TOE always knows which trusted CAs to use.

The TOE, when acting as a WPA2/WPA3 supplicant uses X.509 certificates for EAP-TLS authentication. Because

the TOE may not have network connectivity to a revocation server prior to being admitted to the WPA2/WPA3

network and because the TOE cannot determine the IP address or hostname of the authentication server (the Wi-Fi

access point proxies the supplicant’s authentication request to the server), the TOE will accept the certificate of the

server.

MDFPP33:FIA_X509_EXT.3:

The NIAPSEC library created by the vendor provides the following functions to allow for certificate path validation

and revocation checking:

- public boolean isValid(List<Certificate> certs)

- public Boolean isValid(Certificate cert)

The first function allows for validation and revocation checking against a list of certificates, while the second checks

a singular certificate. Revocation checking is completed using OCSP. Please see the FIA_X509_EXT.2/WLAN

section for a further explanation on how the TOE handles revocation checking.

6.5 Security management

MDFPP33:FMT_MOF_EXT.1:

MDFPP33:FMT_SMF.1:

The TOE provides the management functions described in 5.1.5.2 in section 5. The table includes annotations

describing the roles that have access to each service and how to access the service. The TOE enforces administrative

configured restrictions by rejecting user configuration (through the UI) when attempted. It is worth noting that the

TOE’S ability to specify authorized application repositories takes the form of allowing enterprise applications (i.e.,

restricting applications to only those applications installed by an MDM Agent).

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 68 of 74

BT10:FMT_SMF_EXT.1/BT:

The TOE provides the management function described in 5.1.5.3 in section 5. As with MDFPP33:FMT_SMF_EXT.1,

the table includes annotations describing the roles that have access to each service and how to access the service. The

TOE enforces administrative configured restrictions by rejecting user configuration (through the UI) when attempted.

It is worth noting that the TOE’S ability to specify authorized application repositories takes the form of allowing

enterprise applications (i.e., restricting applications to only those applications installed by an MDM Agent).

WLANC10:FMT_SMF.1/WLAN:

The TOE provides the management functions described in 5.1.5.4 in section 5. As with MDFPP33:FMT_SMF_EXT.1,

the table includes annotations describing the roles that have access to each service and how to access the service. The

TOE enforces administrative configured restrictions by rejecting user configuration (through the UI) when attempted.

It is worth noting that the TOE’S ability to specify authorized application repositories takes the form of allowing

enterprise applications (i.e., restricting applications to only those applications installed by an MDM Agent).

MDFPP33:FMT_SMF_EXT.2:

The TOE offers MDM agents the ability to wipe protected data, wipe sensitive data, remove Enterprise applications,

and remove all device stored Enterprise resource data upon un-enrollment. The TOE offers MDM agents the ability

to wipe protected data (effectively wiping the device) at any time. Similarly, the TOE also offers the ability to remove

Enterprise applications and a full wipe of managed profile data of the TOE’s Enterprise data/applications at any time.

These capabilities are available as APIs that can be set through the MDM and then passed to the MDM agent to apply

(and start the action as specified).

MDFPP33:FMT_SMF_EXT.3:

The TOE offers MDM agents and the user (through the “Settings->Security->Device administrators” menu) the ability

to view each application that has been granted admin rights, and further to see what operations each admin app has

been granted.

6.6 Protection of the TSF

MDFPP33:FPT_AEX_EXT.1:

The Linux kernel of the TOE’S Android operating system provides address space layout randomization utilizing the

get_random_int(void) kernel random function to provide eight unpredictable bits to the base address of any user-space

memory mapping. The random function, though not cryptographic, ensures that one cannot predict the value of the

bits.

MDFPP33:FPT_AEX_EXT.2:

The TOE utilizes the 4.19/5.4/5.10 Linux kernel (https://source.android.com/devices/architecture/kernel/modular-

kernels#core-kernel-requirements), whose memory management unit (MMU) enforces read, write, and execute

permissions on all pages of virtual memory and ensures that write and execute permissions are not simultaneously

granted on all memory. The Android operating system (as of Android 2.3) sets the ARM No eXecute (XN) bit on

memory pages and the TOE’S ARMv8 Application Processor’s Memory Management Unit (MMU) circuitry

enforces the XN bits. From Android’s documentation (https://source.android.com/devices/tech/security/index.html),

Android 2.3 forward supports 'Hardware-based No eXecute (NX) to prevent code execution on the stack and heap'.

Section D.5 of the ARMv8 Architecture Reference Manual contains additional details about the MMU of ARM-

based processors: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.f/index.html.

MDFPP33:FPT_AEX_EXT.3: (see KMD for more information)

The TOE’s Android operating system provides explicit mechanisms to prevent stack buffer overruns in addition to

taking advantage of hardware-based No eXecute to prevent code execution on the stack and heap. Specifically, the

vendor builds the TOE (Android and support libraries) using gcc-fstack-protector compile option to enable stack

overflow protection and Android takes advantage of hardware-based eXecute-Never to make the stack and heap non-

executable. The vendor applies these protections to all TSF executable binaries and libraries.

MDFPP33:FPT_AEX_EXT.4:

https://source.android.com/devices/architecture/kernel/modular-kernels#core-kernel-requirements
https://source.android.com/devices/architecture/kernel/modular-kernels#core-kernel-requirements
https://source.android.com/devices/tech/security/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.f/index.html

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 69 of 74

The TOE protects itself from modification by untrusted subjects using a variety of methods. The first protection

employed by the TOE is a Secure Boot process that uses cryptographic signatures to ensure the authenticity and

integrity of the bootloader and kernels using data fused into the device processor.

The TOE protects its REK by limiting access to only trusted applications within the TEE (Trusted Execution

Environment). The TOE key manager includes a TEE module which utilizes the REK to protect all other keys in the

key hierarchy. All TEE applications are cryptographically signed, and when invoked at runtime (at the behest of an

untrusted application), the TEE will only load the trusted application after successfully verifying its cryptographic

signature.

Additionally, the TOE’S Android operating system provides 'sandboxing' that ensures that each third-party mobile

application executes with the file permissions of a unique Linux user ID, in a different virtual memory space. This

ensures that applications cannot access each other’s memory space or files and cannot access the memory space or

files of other applications (notwithstanding access between applications with a common application developer).

The TOE has a locked bootloader, which restricts a user to installing a new software image through the Zebra’s

proscribed OTA (Over The Air) methods. The TOE allows an operator to download and install an OTA update

through the system settings (Settings->System->Advanced->System update->Check for update) while the phone is

fully booted, or by separately downloading an OTA image, and then “sideloading via ADB” the OTA update from

Android’s recovery mode. In both cases, the TOE will verify the digital signature of the new OTA before applying

the new firmware.

No USSD nor MMI codes are available to be used while the phone is in the locked state. The user can only be presented

with a dialer from the lock screen by selecting the “Emergency” button. From this dialer, the user is only allowed to

dial a specific set of emergency phone numbers; any attempts to enter a USSD or MMI code results in a pop-up

message stating “Can’t call. <Phone number> is not an emergency number.” and the call is not made/the USSD or

MMI code is not submitted.

MDFPP33:FPT_AEX_EXT.5:

The TOE models provide Kernel Address Space Layout Randomization (KASLR) as a hardening feature to randomize

the location of kernel data structures at each boot, including the core kernel as a random physical address, mapping

the core kernel at a random virtual address in the vmalloc area, loading kernel modules at a random virtual address in

the vmalloc area, and mapping system memory at a random virtual address in the linear area. The entropy used to

dictate the randomization is based on the hardware present within the phone. For ARM devices, such as the TOE, 13–

25 bits of entropy are generated on boot, from which the starting memory address is generated.

MDFPP33:FPT_BBD_EXT.1:

The TOE’S hardware and software architecture ensures separation of the application processor (AP) from the baseband

or communications processor (CP) through internal controls of the TOE’S SoC, which contains both the AP and the

CP. The AP restricts hardware access control through a protection unit that restricts software access from the baseband

processor through a dedicated 'modem interface'. The protection unit combines the functionality of the Memory

Protection Unit (MPU), the Register Protection Unit (RPU), and the Address Protection Unit (APU) into a single

function that conditionally grants access by a master to a software defined area of memory, to registers, or to a pre-

decoded address region, respectively. The modem interface provides a set of APIs (grouped into five categories) to

enable a high-level OS to send messages to a service defined on the modem/baseband processor. The combination of

hardware and software restrictions ensures that the TOE’S AP prevents software executing on the modem or baseband

processor from accessing the resources of the application processor (outside of the defined methods, mediated by the

application processor).

MDFPP33:FPT_JTA_EXT.1:

The TOE prevents access to its processor’s JTAG interface by requiring use of a signing key to authenticate prior to

gaining JTAG access. Only a JTAG image with the accompanying device serial number (which is different for each

mobile device) that has been signed by the vendor’s private key can be used to access a device’s JTAG interface. The

private key corresponds to the vendor’s RSA 2048-bit public key (a SHA-256 hash of which is fused into the TOE’S

application processor).

MDFPP33:FPT_KST_EXT.1: (KMD)

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 70 of 74

The TOE does not store any plaintext key in its internal Flash; the TOE encrypts all keys before storing them. This

ensures that irrespective of how the TOE powers down (e.g., a user commands the TOE to power down, the TOE

reboots itself, or battery depletes or is removed), all keys stored in the internal Flash are wrapped with a KEK. Please

refer to section 6.2 of the TSS for further information (including the KEK used) regarding the encryption of keys

stored in the internal Flash. As the TOE encrypts all keys stored in Flash, upon boot-up, the TOE presents a password

authentication screen before any functionality is unlocked. Prior to the user authenticating with the password, all

DEKs, stored keys, and data remain encrypted. Upon user authentication, the password is used in conjunction to the

REK to decrypt all DEKs, stored keys, and data and they become available for use. Further information about this

process can be seen in the FDE Key Hierarchy slide in the KMD.

MDFPP33:FPT_KST_EXT.2:

The TOE itself (i.e., the mobile device) comprises a cryptographic module that utilizes cryptographic libraries

including BoringSSL, application processor cryptography (which leverages AP hardware), and the following system-

level executables that utilize KEKs: vold, wpa_supplicant, and the Android Key Store.

1. vold and QCT’s application processor hardware provides Data-At-Rest encryption of the user data partition

in Flash

2. wpa_supplicant provides 802.11-2014/WPA2/WPA3 services

3. the Android Key Store application provides key generation, storage, deletion services to mobile applications

and to user through the UI

The TOE ensures that plaintext key material is not exported by not allowing the REK to be exported and by ensuring

that only authenticated entities can request utilization of the REK. Furthermore, the TOE only allows the system-level

executables access to plaintext DEK values needed for their operation. The TSF software (the system-level

executables) protects those plaintext DEK values in memory both by not providing any access to these values and by

clearing them when no longer needed (in compliance with FCS_CKM_EXT.4).

MDFPP33:FPT_KST_EXT.3:

The TOE does not provide any way to export plaintext DEKs or KEKs (including all keys stored in the Android Key

Store) as the TOE chains or directly encrypts all KEKs to the REK.

Furthermore, the components of the device are designed to prevent transmission of key material outside the device.

Each internal system component requiring access to a plaintext key (for example the Wi-Fi driver) must have the

necessary precursor(s), whether that be a password from the user or file access to key in Flash (for example the

encrypted AES key used for encryption of the Flash data partition). With those appropriate precursors, the internal

system-level component may call directly to the system-level library to obtain the plaintext key value. The system

library in turn requests decryption from a component executing inside the trusted execution environment and then

directly returns the plaintext key value (assuming that it can successfully decrypt the requested key, as confirmed by

the CCM/GCM verification) to the calling system component. That system component will then utilize that key (in

the example, the kernel which holds the key in order to encrypt and decrypt reads and writes to the encrypted user

data partition files in Flash). In this way, only the internal system components responsible for a given activity have

access to the plaintext key needed for the activity, and that component receives the plaintext key value directly from

the system library.

For a user’s mobile applications, those applications do not have any access to any system-level components and only

have access to keys that the application has imported into the Android Key Store. Upon requesting access to a key,

the mobile application receives the plaintext key value back from the system library through the Android API. Mobile

applications do not have access to the memory space of any other mobile application so it is not possible for a malicious

application to intercept the plaintext key value to then log or transmit the value off the device.

MDFPP33:FPT_NOT_EXT.1:

When the TOE encounters a critical failure (either a self-test failure or TOE software integrity verification failure), a

failure is message is displayed to the screen, and the TOE attempts to reboot. If the failure persists between boots, the

user may attempt to boot to the recovery mode/kernel to wipe data and perform a factory reset in order to recover the

device.

MDFPP33:FPT_STM.1:

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 71 of 74

The TOE requires time for the Package Manager (which installs and verifies APK signatures and certificates), image

verifier, wpa_supplicant, and Android Key Store applications. These TOE components obtain time from the TOE

using system API calls [e.g., time() or gettimeofday()]. An application (unless a system application is residing in

/system/priv-app or signed by the vendor) cannot modify the system time as mobile applications need the Android

'SET_TIME' permission to do so. Likewise, only a process with root privileges can directly modify the system time

using system-level APIs. The TOE uses the Cellular Carrier time (obtained through the Carrier’s network time server)

as a trusted source; however, the user can also manually set the time through the TOE’S user interface. Further, this

stored time is used both for the time/date tags in audit logs and is used to track inactivity timeouts that force the TOE

into a locked state.

By default, the TOE uses the Cellular Carrier time (obtained through the Carrier’s network time server) as the trusted

time source. The admin can decide to not use cellular time as the trusted source but instead use a NTP server to set

the trusted time. The default NTP server is a Google-hosted server source, but this can be changed by the admin to

point to another trusted server. It is also possible to let the user set the date and time through the TOE’s user interface

and use the internal clock to maintain a local (as opposed to externally checked) trusted time.

MDFPP33:FPT_TST_EXT.1:

WLANC10:FPT_TST_EXT.3/WLAN:

The TOE automatically performs known answer power on self-tests (POST) on its cryptographic algorithms to ensure

that they are functioning correctly. Each component providing cryptography (application processor, and BoringSSL)

performs known answer tests on their cryptographic algorithms to ensure they are working correctly. Should any of

the tests fail, the TOE displays an error message stating “Boot Failure” and halts the boot process, displays an error to

the screen, and forces a reboot of the device.

Algorithm Implemented in Description

AES encryption/decryption BoringSSL Comparison of known answer to calculated value

ECDH key agreement BoringSSL Comparison of known answer to calculated value

DRBG random bit generation BoringSSL Comparison of known answer to calculated value

ECDSA sign/verify BoringSSL Comparison of known answer to calculated value

HMAC-SHA BoringSSL Comparison of known answer to calculated value

RSA sign/verify BoringSSL Comparison of known answer to calculated value

SHA hashing BoringSSL Comparison of known answer to calculated value

AES encryption/decryption Application Processor Comparison of known answer to calculated value

HMAC-SHA Application Processor Comparison of known answer to calculated value

DRBG random bit generation Application Processor Comparison of known answer to calculated value

SHA hashing Application Processor Comparison of known answer to calculated value

AES-XTS encrypt/decrypt Application Processor Comparison of known answer to calculated value

Table 15 Power-up Cryptographic Algorithm Known Answer Tests

The WLAN's supplicant links against BoringSSL, so it utilizes the same KAT self-tests described above. All TSF-

related modules are subject to these self-tests, which ensures that all TSF functionality is verified with each boot.

All executable modules stored on the TOE are verified for integrity via dm-verity, a file system integrity checking

module. The dm-verity feature looks at a block device, the underlying storage layer of the file system, and determines

if it matches its expected configuration. It does this using a cryptographic hash tree. For every block (typically 4k),

there is a SHA256 hash. This partition-wide integrity verification applies to the partition that houses all TSF function

executable modules (BoringSSL and, by association, WLAN supplicant), guaranteeing that these modules remain

unmodified upon boot.

Should dm-verity’s integrity check return a failure, the boot process halts and the device reboots, preventing an

attacker from successfully loading and running a compromised module onto the TOE.

MDFPP33:FPT_TST_EXT.2/POSTKERNEL:

MDFPP33:FPT_TST_EXT.2/PREKERNEL:

The TOE ensures a secure boot process in which the TOE verifies the digital signature of the bootloader software for

the Application Processor (using a public key whose hash resides in the processor’s internal fuses) before transferring

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 72 of 74

control. The bootloader, in turn, verifies the signature of the Linux kernel it loads. The TOE performs checking of the

entire /system and /vendor partition through use of Android’s dm_verity mechanism (and while the TOE will still

operate, it will log any blocks/executables that have been modified). Dm_verity looks at the underlying storage layer

of the file system, and determine if it matches its expected configuration using a cryptographic hash tree.

One can consider the TOE's bootloader mode as an auxiliary boot mode, and upon the user pressing a specific

combination of physical buttons, the TOE halts its boot process while in the bootloader (and the automatic boot of

Android. Until the user has booted to Android, authenticated, and then elected to unlock the bootloader (a process

that wipes all phone data), the TOE's bootloader mode only provides to additional status commands. As the TOE

always executes the bootloader during its normal boot process, the TOE always checks its integrity, and (typically

automatically) then verifies the integrity of the Android kernel and boots it.

MDFPP33:FPT_TUD_EXT.1:

The TOE’S user interface provides a method to query the current version of the TOE software/firmware (Android

version, baseband version, kernel version, build number, and software version) and hardware (model and version).

Additionally, the TOE provides users the ability to review the currently installed apps (including 3rd party 'built-in'

applications) and their version.

MDFPP332:FPT_TUD_EXT.2:

The TOE verifies all OTA (Over The Air) updates to the TOE software (which includes baseband processor updates)

using a public key chaining ultimately to the Root Public Key, a hardware protected key whose SHA-256 hash resides

inside the application processor. Should this verification fail, the software update will fail and the update will not be

installed.

The application processor verifies the bootloader’s authenticity and integrity (thus tying the bootloader and subsequent

stages to a hardware root of trust: the SHA-256 hash of the Root Public Key, which cannot be reprogrammed after the

“write-enable” fuse has been blown).

The Android OS on the TOE requires that all applications bear a valid signature before Android will install the

application. Additionally, Android allows updates through Google Play updates, including both APK and APEX files.

Both file types use Android APK signature format and the TOE verifies the accompanying signature prior to installing

the file (additionally, Android ensures that updates to existing files use the same signing certificate).

MDFPP33:FPT_TUD_EXT.3:

Android verifies the authenticity of applications by verifying the Android APK signature prior to installing the file

(additionally, Android ensures that updates to existing applications use the same signing certificate).

MDFPP33:FPT_TUD_EXT.6:

The TOE maintains a anti-rollback counter used to set a minimum version for the TOE software. Before a new update

can be installed, the version of the new software is compared to the counter version. The update is allowed only if the

version of the new software is equal or greater than the counter.

MDFPP33:ALC_TSU_EXT.1:

Google supports a bug filing system for the Android OS outlined here:

https://source.android.com/setup/contribute/report-bugs. This allows developers or users to search for, file, and vote

on bugs that need to be fixed. This helps to ensure that all bugs that affect large numbers of people get pushed up in

priority to be fixed.

The vendor also supports their own form of bug reporting, via their website: zebra.com/us/en/about-zebra/contact-

zebra/contact-tech-support.html

Google publishes monthly security updates which the vendor reviews and implements on their devices, releasing as a

part of their own monthly security update cycle. Once updates are available, they are immediately made available on

Zebra’s website here: https://www.zebra.com/us/en/support-downloads.html.

https://source.android.com/setup/contribute/report-bugs
https://www.zebra.com/us/en/about-zebra/contact-zebra/contact-tech-support.html
https://www.zebra.com/us/en/about-zebra/contact-zebra/contact-tech-support.html
https://www.zebra.com/us/en/support-downloads.html

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 73 of 74

6.7 TOE access

MDFPP33:FTA_SSL_EXT.1:

The TOE transitions to its locked state either immediately after a User initiates a lock by pressing the power button (if

configured) or after a (also configurable) period of inactivity, and as part of that transition, the TOE will display a

lock screen to obscure the previous contents and play a “lock sound” to indicate the phone’s transition; however, the

TOE’S lock screen still displays email notifications, calendar appointments, user configured widgets, text message

notifications, the time, date, call notifications, battery life, signal strength, and carrier network. But without

authenticating first, a user cannot perform any related actions based upon these notifications (they cannot respond to

emails, calendar appointments, or text messages) other than the actions assigned in FIA_UAU_EXT.2.1 (see selections

in section 5).

Note that during power up, the TOE presents the user with an unlock screen stating “unlock for all features and data”.

While at this screen, the TOE has already decrypted Device Encrypted (DE) files within the user’s data partition, but

cannot yet decrypt the user’s Credential Encrypted (CE) files. The user can only access a subset of device

functionality before authenticating (e.g. the user can make an emergency call, receive incoming calls, receiving alarms,

and any other “direct boot” functionality). After the user enters their password, the TOE decrypts the user’s CE files

within the user data partition and the user has unlocked the full functionality of the phone. After this initial

authentication, upon (re)locking the phone, the TOE presents the user with the previously mentioned KeyGuard lock

screen. While locked, the actions described in FIA_UAU_EXT.2.1 are available for the user to utilize.

MDFPP33:FTA_TAB.1:

The TOE can be configured to display a user-specified message on the Lock screen, and additionally an administrator

can also set a Lock screen message using an MDM.

WLANC10:FTA_WSE_EXT.1:

The TOE allows an administrator to specify (through the use of an MDM) a list of wireless networks (SSIDs) to which

the user may direct the TOE to connect to, the security type, authentication protocol, and the client credentials to be

used for authentication. When not enrolled with an MDM, the TOE allows the user to control to which wireless

networks the TOE should connect, but does not provide an explicit list of such networks, rather the user may scan for

available wireless network (or directly enter a specific wireless network), and then connect. Once a user has connected

to a wireless network, the TOE will automatically reconnect to that network when in range and the user has enabled

the TOE’S Wi-Fi radio.

6.8 Trusted path/channels

MOD_BT_V1.0:FTP_BLT_EXT.1:

MOD_BT_V1.0:FTP_BLT_EXT.3/BR:

MOD_BT_V1.0:FTP_BLT_EXT.3/LE:

The TOE provides support for both Bluetooth BR/EDR and Bluetooth LE connections. The TSF uses 128-bit keys to

encrypt Bluetooth connections (BR/EDR and LE) and does not allow the key length to be renegotiated below the

length set at the pairing (the request to change the size will be rejected, and the connection terminated if this is not

accepted). The TOE provides no method to configure alternate key sizes and all connections are encrypted by default.

MOD_BT_V1.0:FTP_BLT_EXT.2:

The TOE requires an encrypted connection between itself and another Bluetooth device, and should a remote device

stop encryption, the TSF will terminate the connection. The remote device can only attempt to re-establish a new,

encrypted channel (and if the connection were not encrypted, the TOE would refuse the connection).

MDFPP33:FTP_ITC_EXT.1:

WLANC10:FTP_ITC.1/WLAN:

The TOE provides secured (encrypted and mutually authenticated) communication channels between itself and other

trusted IT products through the use of IEEE 802.11-2012, 802.1X, and EAP-TLS and TLS, HTTPS. The TOE permits

itself and applications to initiate communicate via the trusted channel, and the TOE initiates communications via the

Zebra Devices on Android 14 Security Target Version 0.5, 10/07/2025

 Page 74 of 74

WPA3/WPA2 (IEEE 802.11-2012, 802.1X with EAP-TLS) trusted channel for connection to a wireless access point.

The TOE provides mobile applications and MDM agents access to HTTPS and TLS via published APIs, thus

facilitating administrative communication and configured enterprise connections. These APIs are accessible to any

application that needs an encrypted end-to-end trusted channel.

