

Supporting Document

Mandatory Technical Document

Full Drive Encryption: Enterprise

Management

January 2018

Version 2.0

CCDB-2018-xxxx

Foreword
This is a supporting document, intended to complement the Common Criteria version 3 and the

associated Common Evaluation Methodology for Information Technology Security Evaluation.

Supporting documents may be “Guidance Documents”, that highlight specific approaches and

application of the standard to areas where no mutual recognition of its application is required, and as

such, are not of normative nature, or “Mandatory Technical Documents”, whose application is

mandatory for evaluations whose scope is covered by that of the supporting document. The usage of

the latter class is not only mandatory, but certificates issued as a result of their application are recognized

under the CCRA.

This supporting document has been developed by Full Drive Encryption iTC and is designed to be used

to support the evaluations of products against products that claim conformance to the collaborative

Protection Profile Module for Full Drive Encryption – Enterprise Management.

Technical Editor:

FDE iTC

Document history:

V2.0 January 2018 (Initial release for public review, version set to 2.0 for consistency with other FDE

materials)

General Purpose:

The FDE technology type is special due to its physical scope and its limited external interfaces. This

leads to some difficulties in evaluating the correctness of the implementation of the TOE’s provided

security functions. In the case of the Encryption Engine, it may be difficult to trigger the interface to

demonstrate the TSF is properly encrypting the user data. Therefore, methods have to be described on

how to overcome this challenge (as well as others) in a comparable, transparent and repeatable manner

in this document.

Furthermore, the main functionality of FDEs is to store user data in encrypted form on the device. In

order to ensure comparable, transparent and repeatable evaluation of the implemented cryptographic

mechanisms, methods have to be described that may consist of agreed evaluation approaches, e.g. how

to prove that the claimed encryption of user data is really done by the TOE or how to prove that the user

data is only stored in encrypted form (and not additionally in clear text), but also of definitions of

possibly necessary special test tools and their manuals.

The introduction of an Enterprise Management capability greatly expands the attack surface of an FDE

because keys for multiple FDEs are stored, and potentially generated, on a remote server. This means

that malicious or careless administrators may adversely affect the behaviour of individual FDEs and

insecurely implemented communications or credential recovery processes can lead to compromise of

key data that was previously restricted to a single device.

Field of special use:

Full Drive Encryption devices that are deployed and managed underneath a single Enterprise

Management server that is responsible for the key lifecycle of the Authorization Acquisition component

of these devices.

Acknowledgements:

This Supporting Document was developed by the Full Drive Encryption international Technical

Community with representatives from industry, Government agencies, Common Criteria Test

Laboratories, and members of academia.

Table of Contents

1 INTRODUCTION 6

1.1 Technology Area and Scope of Supporting Document 6

1.2 Structure of the Document 6

1.3 Terminology 7
1.3.1 Glossary 7
1.3.2 Acronyms 9

2 EVALUATION ACTIVITIES FOR SFRS 11

2.1 Cryptographic Support (FCS) 12
2.1.1 Key Chaining (FCS_KYC_EXT) 12
2.1.2 Submask Combining (FCS_SMC_EXT) 13

2.2 Identification and Authentication (FIA) 13
2.2.1 User Authentication (FIA_UAU) 13
2.2.2 User Identification (FIA_UID) 14

2.3 Security Management (FMT) 15
2.3.1 Management of TSF Data (FMT_MTD) 15
2.3.2 Specification of Management Functions (FMT_SMF) 15
2.3.3 Security Management Roles (FMT_SMR) 18

2.4 Protection of the TSF (FPT) 18
2.4.1 Internal TOE TSF Data Transfer (FPT_ITT) 18
2.4.2 Key and Key Material Protection (FPT_KYP_EXT) 19

2.5 Trusted Path/Channels (FTP) 20
2.5.1 Inter-TSF Trusted Channel (FTP_ITC) 20

3 EVALUATION ACTIVITIES FOR OPTIONAL REQUIREMENTS 22

3.1 Cryptographic Support (FCS) 22
3.1.1 Cryptographic Key Management (FCS_CKM) 22
3.1.2 Cryptographic Operation (FCS_COP) 32
3.1.3 Random Bit Generation (FCS_RBG_EXT) 42
3.1.4 Salt, Nonce, and Initialization Vector Generation (FCS_SNI_EXT) 43

3.2 Identification and Authentication (FIA) 44
3.2.1 Authentication Using X.509 Certificates 44

3.3 Security Management (FMT) 47
3.3.1 Management of Functions in TSF (FMT_MOF) 47

4 EVALUATION ACTIVITIES FOR SELECTION-BASED REQUIREMENTS 48

4.1 Cryptographic Support (FCS) 48
4.1.1 Cryptographic Key Management (FCS_CKM) 48
4.1.2 HTTPS Protocol (FCS_HTTPS_EXT) 48
4.1.3 IPsec Protocol (FCS_IPSEC_EXT) 49
4.1.4 Cryptographic Key Derivation (FCS_KDF_EXT) 56
4.1.5 Cryptographic Construct and Conditioning (FCS_PCC_EXT) 57

4.1.6 SSH Client Protocol (FCS_SSHC_EXT) 58
4.1.7 SSH Server Protocol (FCS_SSHS_EXT) 61
4.1.8 TLS Client Protocol (FCS_TLSC_EXT) 63
4.1.9 TLS Server Protocol (FCS_TLSS_EXT) 67
4.1.10 Validation of Cryptographic Elements (FCS_VAL_EXT) 70

4.2 Identification and Authentication (FIA) 70
4.2.1 Challenge/Response Recovery Credential (FIA_CHR_EXT) 70
4.2.2 PIN Recovery Credential (FIA_PIN_EXT) 72
4.2.3 Support for Recovery Credentials (FIA_REC_EXT) 72

5 EVALUATION ACTIVITIES FOR SARS 74

5.1 ASE: Security Target Evaluation 74
5.1.1 Conformance Claims (ASE_CCL.1) 74

5.2 Development (ADV) 74
5.2.1 Basic Functional Specification (ADV_FSP.1) 74

5.3 Guidance Documents (AGD) 77
5.3.1 Operational User Guidance (AGD_OPE.1) 77
5.3.2 Preparative Procedures (AGD_PRE.1) 78

5.4 Life-cycle Support (ALC) 79
5.4.1 Labelling of the TOE (ALC_CMC.1) 79
5.4.2 TOE CM coverage (ALC_CMS.1) 79

5.5 Tests (ATE) 79
5.5.1 Independent Testing – Conformance (ATE_IND.1) 79

5.6 Vulnerability Assessment (AVA) 79
5.6.1 Vulnerability Survey (AVA_VAN.1) 79

6 REQUIRED SUPPLEMENTARY INFORMATION 83

7 REFERENCES 84

A. VULNERABILITY ANALYSIS 86

A.1 Sources of Vulnerability Information 86

A.1.1 Type 1 Hypotheses—Public-Vulnerability-based 86

A.1.2 Type 2 Hypotheses—iTC-Sourced 88

A.1.3 Type 3 Hypotheses—Evaluation-Team-Generated 89

A.1.4 Type 4 Hypotheses—Tool-Generated 89

A.2 Process for Evaluator Vulnerability Analysis 89

A.3 Reporting 90

B. FDE EQUIVALENCY CONSIDERATIONS 93

1 Introduction

1.1 Technology Area and Scope of Supporting Document

1 The purpose of the first set of Collaborative Protection Profiles (cPPs) for Full Drive

Encryption (FDE): Authorization Acquisition (AA) and Encryption Engine (EE) is to

provide requirements for Data-at-Rest protection for a lost device. These cPPs allow

FDE solutions based in software and/or hardware to meet the requirements. The form

factor for a storage device may vary, but could include: system hard drives/solid state

drives in servers, workstations, laptops, mobile devices, tablets, and external media. A

hardware solution could be a Self-Encrypting Drive or other hardware-based solutions;

the interface (USB, SATA, etc.) used to connect the storage device to the host machine

is outside the scope. The Enterprise Management Module, which the Supporting

Document is written for, provides a single-point method of managing FDE solutions,

which includes the following functionality:

 Centralized key management/storage for multiple FDEs

 Multi-user access to an endpoint protected by an FDE

 Remote user authentication

 Data recovery in the event of a lost or forgotten credential

2 As an extension of the FDE cPP – Authorization Acquisition, the Enterprise

Management Module extends the Target of Evaluation to a central server where the

key data for a number of FDEs (i.e. a number of instances of the same Authorization

Acquisition component) are maintained. Depending on the functionality provided by

an Enterprise Management server, it may be responsible solely for receiving and

maintaining key data generated by an AA, or it may also assume responsibility for

key generation in addition to storage.

3 This Supporting Document is mandatory for evaluations of products that claim

conformance to the following cPP-Module:

4 a) collaborative Protection Profile Module for Full Drive Encryption –

Enterprise Management, January 4, 2018

5 Although Evaluation Activities are defined mainly for the evaluators to follow, in

general they will also help Developers to prepare for evaluation by identifying specific

requirements for their TOE. The specific requirements in Evaluation Activities may

in some cases clarify the meaning of SFRs, and may identify particular requirements

for the content of Security Targets (especially the TOE Summary Specification), user

guidance documentation, and possibly supplementary information (e.g. for entropy

analysis or cryptographic key management architecture).

1.2 Structure of the Document

6 Evaluation Activities can be defined for both Security Functional Requirements and

Security Assurance Requirements. These are defined in separate sections of this

Supporting Document.

7 If any Evaluation Activity cannot be successfully completed in an evaluation then the

overall verdict for the evaluation is a ‘fail’. In rare cases there may be acceptable

reasons why an Evaluation Activity may be modified or deemed not applicable for a

particular TOE, but this must be agreed with the Certification Body for the evaluation.

8 In general, if all Evaluation Activities (for both SFRs and SARs) are successfully

completed in an evaluation then it would be expected that the overall verdict for the

evaluation is a ‘pass’. To reach a ‘fail’ verdict when the Evaluation Activities have

been successfully completed would require a specific justification from the evaluator

as to why the Evaluation Activities were not sufficient for that TOE.

9 Similarly, at the more granular level of Assurance Components, if the Evaluation

Activities for an Assurance Component and all of its related SFR Evaluation Activities

are successfully completed in an evaluation then it would be expected that the verdict

for the Assurance Component is a ‘pass’. To reach a ‘fail’ verdict for the Assurance

Component when these Evaluation Activities have been successfully completed would

require a specific justification from the evaluator as to why the Evaluation Activities

were not sufficient for that TOE.

1.3 Terminology

1.3.1 Glossary

10 For definitions of standard CC terminology, see [CC] part 1.

11 Supplementary information information that is not necessarily included in the

Security Target or operational guidance, and that may not necessarily be public.

Examples of such information could be entropy analysis, or description of a

cryptographic key management architecture used in (or in support of) the TOE. The

requirement for any such supplementary information will be identified in the relevant

cPP (see description in section 4).

Term Meaning

Authorization

Factor

A value that a user knows, has, or is (e.g. password, token,

etc.) submitted to the TOE to establish that the user is in the

community authorized to use the hard disk and that is used

in the derivation or decryption of the BEV and eventual

decryption of the DEK. Note that these values may or may

not be used to establish the particular identity of the user.

Assurance Grounds for confidence that a TOE meets the SFRs [CC1].

Border

Encryption Value

A value passed from the AA to the EE intended to link the

key chains of the two components.

Key Sanitization A method of sanitizing encrypted data by securely

overwriting the key that was encrypting the data.

Data Encryption

Key (DEK)

A key used to encrypt data-at-rest.

Term Meaning

Full Drive

Encryption

Refers to partitions of logical blocks of user accessible data

as managed by the host system that indexes and partitions and

an operating system that maps authorization to read or write

data to blocks in these partitions. For the sake of this Security

Program Definition (SPD) and cPP, FDE performs encryption

and authorization on one partition, so defined and supported

by the OS and file system jointly, under consideration. FDE

products encrypt all data (with certain exceptions) on the

partition of the storage device and permits access to the data

only after successful authorization to the FDE solution. The

exceptions include the necessity to leave a portion of the

storage device (the size may vary based on implementation)

unencrypted for such things as the Master Boot Record

(MBR) or other AA/EE pre-authentication software. These

FDE cPPs interpret the term “full drive encryption” to allow

FDE solutions to leave a portion of the storage device

unencrypted so long as it contains no protected data.

Intermediate Key A key used in a point between the initial user authorization

and the DEK.

Host Platform The local hardware and software the TOE is running on, this

does not include any peripheral devices (e.g. USB devices)

that may be connected to the local hardware and software.

Key Chaining The method of using multiple layers of encryption keys to

protect data. A top layer key encrypts a lower layer key which

encrypts the data; this method can have any number of layers.

Key Encryption

Key (KEK)

A key used to encrypt other keys, such as DEKs or storage

that contains keys.

Key Material Key material is commonly known as critical security

parameter (CSP) data, and also includes authorization data,

nonces, and metadata.

Key Release Key

(KRK)

A key used to release another key from storage, it is not used

for the direct derivation or decryption of another key.

Operating System

(OS)

Software which runs at the highest privilege level and can

directly control hardware resources.

Non-Volatile

Memory

A type of computer memory that will retain information

without power.

Powered-Off State The device has been shut down.

Protected Data This refers to all data on the storage device with the exception

of a small portion required for the TOE to function correctly.

It is all space on the disk a user could write data to and

includes the operating system, applications, and user data.

Protected data does not include the Master Boot Record or

Pre-authentication area of the drive – areas of the drive that

are necessarily unencrypted.

Submask A submask is a bit string that can be generated and stored in

a number of ways.

Term Meaning

Target of

Evaluation

A set of software, firmware and/or hardware possibly

accompanied by guidance. [CC1]

1.3.2 Acronyms

Acronym Meaning

AA Authorization Acquisition

AES Advanced Encryption Standard

BEV Border Encryption Value

BIOS Basic Input Output System

CBC Cipher Block Chaining

CC Common Criteria

CCM Counter with CBC-Message Authentication Code

CEM Common Evaluation Methodology

CPP Collaborative Protection Profile

DEK Data Encryption Key

DRBG Deterministic Random Bit Generator

DSS Digital Signature Standard

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

EE Encryption Engine

EEPRO

M

Electrically Erasable Programmable Read-Only Memory

FIPS Federal Information Processing Standards

FDE Full Drive Encryption

FFC Finite Field Cryptography

GCM Galois Counter Mode

HMAC Keyed-Hash Message Authentication Code

IEEE Institute of Electrical and Electronics Engineers

IT Information Technology

ITSEF IT Security Evaluation Facility

ISO/IEC International Organization for Standardization / International

Electrotechnical Commission

IV Initialization Vector

KEK Key Encryption Key

KMD Key Management Description

KRK Key Release Key

MBR Master Boot Record

NIST National Institute of Standards and Technology

OS Operating System

RBG Random Bit Generator

RNG Random Number Generator

RSA Rivest Shamir Adleman Algorithm

SAR Security Assurance Requirement

SED Self Encrypting Drive

SHA Secure Hash Algorithm

SFR Security Functional Requirement

SPD Security Problem Definition

SPI Serial Peripheral Interface

ST Security Target

TOE Target of Evaluation

TPM Trusted Platform Module

TSF TOE Security Functionality

TSS TOE Summary Specification

USB Universal Serial Bus

XOR Exclusive or

XTS XEX (XOR Encrypt XOR) Tweakable Block Cipher with Ciphertext

Stealing

2 Evaluation Activities for SFRs

12 Note that as an extension of the FDE cPP – Authorization Acquisition, all functionality

that is mandated by that cPP must be implemented by a TOE claiming conformance

with this module. For those functions that may be implemented by either the AA itself

or by the Enterprise Management component of the TOE, it is necessary for the

evaluator to perform the required assurance activities against the part of the TOE that

implements the function in question. In most cases, the actual testing method will not

differ based on the component that implements the function; only the tested component

will differ.

13 For cases where the Enterprise Management server implements functionality that was

originally defined for the AA component, the iteration ‘/Server’ has been appended to

the SFR so that the component implementing the function is clearly identified.

14 Note that many of the SFRs defined for this cPP-Module are selection-based or strictly

optional based on how the Enterprise Management server satisfies the required

functionality and what optional features are provided. The evaluator will only perform

the required assurance activities for the SFRs that are claimed in the TOE’s Security

Target.

15 The EAs presented in this section capture the actions the evaluator performs to address

technology specific aspects covering specific SARs (e.g.., ASE_TSS.1, ADV_FSP.1,

AGD_OPE.1, and ATE_IND.1) – this is in addition to the CEM work units that are

performed in Section 5.

16 Regarding design descriptions (designated by the subsections labelled TSS, as well as

any required supplementary material that may be treated as proprietary), the evaluator

must ensure there is specific information that satisfies the EA. For findings regarding

the TSS section, the evaluator’s verdicts will be associated with the CEM work unit

ASE_TSS.1-1. Evaluator verdicts associated with the supplementary evidence will also

be associated with ASE_TSS.1-1, since the requirement to provide such evidence is

specified in ASE in the cPP.

17 For ensuring the guidance documentation provides sufficient information for the

administrators/users as it pertains to SFRs, the evaluator’s verdicts will be associated

with CEM work units ADV_FSP.1-7, AGD_OPE.1-4, and AGD_OPE.1-5.

18 Finally, the subsection labelled Tests is where the iTC has determined that testing of

the product in the context of the associated SFR is necessary. While the evaluator is

expected to develop tests, there may be instances where it is more practical for the

developer to construct tests, or where the developer may have existing tests. Therefore,

it is acceptable for the evaluator to witness developer-generated tests in lieu of

executing the tests. In this case, the evaluator must ensure the developer’s tests are

executing both in the manner declared by the developer and as mandated by the EA.

The CEM work units that are associated with the EAs specified in this section are:

ATE_IND.1-3, ATE_IND.1-4, ATE_IND.1-5, ATE_IND.1-6, and ATE_IND.1-7.

2.1 Cryptographic Support (FCS)

2.1.1 Key Chaining (FCS_KYC_EXT)

2.1.1.1 FCS_KYC_EXT.1/Server Key Chaining (Initiator) (Management
Server)

2.1.1.1.1 TSS

19 The evaluator shall verify the TSS contains a high-level description of the BEV sizes

– that it supports BEV outputs of no fewer 128 bits for products that support only AES-

128, and no fewer than 256 bits for products that support AES-256.

20 The evaluator shall verify the TSS contains a description of the controls preventing the

BEV from being provided to the EE before validation has occurred.

2.1.1.1.2 Operational Guidance

21 If there are configurations to enable or disable use of enterprise server, which modify

the key chain, they shall be described.

22 If there are configurations on to enable recovery mechanisms, they shall be described.

2.1.1.1.3 KMD

23 The evaluator shall verify the KMD includes a description of the areas where keys and

key material reside and when the keys and key material are no longer needed.

24 The evaluator shall examine the KMD describes a high level description of the key

hierarchy for all authorizations methods selected in FCS_AFA_EXT.1 that are used to

protect the BEV. The evaluator shall examine the KMD to ensure it describes the key

chain in detail. The description of the key chain shall be reviewed to ensure it maintains

a chain of keys using key wrap or key derivation methods that meet FCS_COP.1(d)

and FCS_KDF_EXT.1. The evaluator shall ensure the chain of keys is maintained from

the authorization factor or recovery value to the BEV or from the authorization factor

or recovery value to the TOE server and then key chain from the server to the BEV.

25 The evaluator shall examine the KMD to ensure that it describes how the key chain

process functions, such that it does not expose any material that might compromise any

key in the chain. (e.g. using a key directly as a compare value against a TPM) This

description must include a diagram illustrating the key hierarchy implemented and

detail where all keys and keying material is stored or what it is derived from. The

evaluator shall examine the key hierarchy to ensure that at no point the chain could be

broken without a cryptographic exhaust, the initial authorization value, recovery value

or a compromise of the TOE server and the effective strength of the BEV is maintained

throughout the key chain.

26 The evaluator shall verify the KMD includes a description of the strength of keys

throughout the key chain.

2.1.1.1.4 Test

27 There are no test evaluation activities for this SFR.

2.1.2 Submask Combining (FCS_SMC_EXT)

2.1.2.1 FCS_SMC_EXT.1/Server Submask Combining (Management Server)

2.1.2.1.1 TSS

28 If the submasks produced from the authorization factors are XORed together to form

the BEV or intermediate key, the TSS section shall identify how this is performed (e.g.,

if there are ordering requirements, checks performed, etc.). The evaluator shall also

confirm that the TSS describes how the length of the output produced is at least the

same as that of the BEV.

2.1.2.1.2 Operational Guidance

29 There are no AGD assurance activities for this SFR.

2.1.2.1.3 KMD

30 The evaluator shall review the KMD to ensure that an approved combination is used

and does not result in the weakening or exposure of key material.

2.1.2.1.4 Test

31 The evaluator shall perform the following test:

32 Test 1 (conditional): If there is more than one authorization factor, ensure that failure

to supply a required authorization factor does not result in access to the encrypted data.

2.2 Identification and Authentication (FIA)

2.2.1 User Authentication (FIA_UAU)

2.2.1.1 FIA_UAU.1 Timing of Authentication

2.2.1.1.1 TSS

33 The evaluator shall examine the TSS to determine that it describes the list of actions

that are performed on behalf of the administrator prior to login of the administrator.

The evaluator shall examine the TSS to determine that it describes the list of actions

that require administrator authentication.

2.2.1.1.2 Operational Guidance

34 The evaluator shall examine the guidance documentation to determine that any

necessary preparatory steps (e.g., establishing credential material such as pre- shared

keys, tunnels, certificates, etc.) to logging in are described. For each supported login

method, the evaluator shall ensure the guidance documentation provides clear

instructions for successfully logging on. If configuration is necessary to ensure the

services provided before login are limited, the evaluator shall determine that the

guidance documentation provides sufficient instruction on limiting the allowed

services.

2.2.1.1.3 KMD

35 There are no KMD evaluation activities for this SFR.

2.2.1.1.4 Test

36 The evaluator shall perform the following tests:

37 Test 1: The evaluator shall verify that the list of actions allowed without administrator

login completes successfully without requiring administrator login and make sure this

list is consistent with the TSS.

38 Test 2: The evaluator shall verify that attempting any other action requires successful

entry of an administrator credential.

39 Test 3: The evaluator shall use the guidance documentation to configure the appropriate

credential supported for the login method.

40 For that credential/login method, the evaluator shall show that providing correct I&A

information results in the ability to access the system, while providing incorrect

information results in denial of access.

41 Test 4: The evaluator shall configure the services allowed (if any) according to the

guidance documentation, and then determine the services available to an external

remote entity. The evaluator shall determine that the list of services available is limited

to those specified in the requirement.

2.2.2 User Identification (FIA_UID)

2.2.2.1 FIA_UID.1 Timing of Identification

2.2.2.1.1 TSS

42 The evaluator shall examine the TSS to determine that it describes the list of actions

that are performed on behalf of the administrator prior to identification of the

administrator.

2.2.2.1.2 Operational Guidance

43 The evaluator shall examine the guidance documentation to determine that any

necessary preparatory steps for creating and configuring administrator accounts are

described.

2.2.2.1.3 KMD

44 There are no KMD evaluation activities for this SFR.

2.2.2.1.4 Test

45 The evaluator shall perform the following tests:

46 Test 1: The evaluator shall verify that the list of actions allowed without administrator

identification completes successfully without requiring the administrative user to be

identified and make sure this list is consistent with the TSS.

47 Test 2: The evaluator shall verify that attempting any other action requires successful

entry of an administrator account name and successful entry of the administrator

account credential.

2.3 Security Management (FMT)

2.3.1 Management of TSF Data (FMT_MTD)

2.3.1.1 FMT_MTD.1 Management of TSF Data

2.3.1.1.1 TSS

48 The evaluator shall examine the TSS to determine that, for each administrative function

identified in the guidance documentation; those that are available to the administrator

are identified. For each of these functions, the evaluator shall also confirm that the TSS

details when changes may be made to the encryption keys and/or intermediate values.

2.3.1.1.2 Operational Guidance

49 The evaluator shall verify that the guidance document describes what operations on the

encryption keys and intermediate values are allowed to the administrator at what times.

2.3.1.1.3 KMD

50 There are no KMD evaluation activities for this SFR.

2.3.1.1.4 Test

51 Test 1: The evaluator shall try to perform at least one of the related actions without

prior authentication as security administrator (either by authentication as a user with no

administrator privileges or without user authentication at all – depending on the

configuration of the TOE). This test should fail.

52 Test 2: The evaluator shall try to perform at least one of the related actions with prior

authentication as security administrator. This test should pass.

53 Test 3: The evaluator shall try to perform at least one of the actions at the times that are

not permitted. This test should fail.

54 Test 4: The evaluator shall try to perform at least one of the actions at the times are

permitted. This test should pass.

2.3.2 Specification of Management Functions (FMT_SMF)

2.3.2.1 FMT_SMF.1/Server Specification of Management Functions
(Management Server)

2.3.2.1.1 TSS

55 The evaluator shall examine the TSS to ensure that it describes which of the selections

are provided by the TOE. Additionally, the TSS shall describe which of the

configurable selections can be disabled on the Enterprise Management Server. The

evaluator shall examine the TSS to ensure that it describes whether the TOE provides

the ability to initiate key generation, escrow, zeroization and/or recovery or whether it

requests the endpoint to perform those functions.

2.3.2.1.2 Operational Guidance

56 The evaluator shall examine the Guidance Documents to ensure that, if supported,

configuration of the following options is described, including any reliance on the

Operational Environment if applicable:

 Register new endpoint

 Revoke registration of an endpoint

 Initiate key generation

 Initiate key escrow

 Initiate key recovery

 Initiate key zeroization

 Set encryption policy (supported algorithms and key sizes)

 Change Administrator passwords

 Change user passwords

 Change Recovery Credentials

 Define Administrators of the TOE

 Enable/Disable the use of recovery credentials (end users)

 Configure the number of failed authentication attempts before issuing a key

sanitization of the DEK

 Configure the number of authentication attempts that can be made in a 24 hour

period

 Configure the number of failed authentication attempts required to begin

blocking subsequent attempts

 The ability to enable/disable one or more functions defined in the base PP

 The ability to authorize whether or not users can perform one or more of the

functions in the base PP.

2.3.2.1.3 KMD

57 There are no KMD evaluation activities for this SFR.

2.3.2.1.4 Test

58 The evaluator shall perform the following tests for each claimed management function:

59 Test 1: The evaluator shall configure the management server and two endpoints

according to the guidance documents. The evaluator shall register the endpoints with

the management server. The evaluator shall verify that the endpoints are identified by

the management server as defined in the guidance documents. This test shall pass.

60 Test 2: The evaluator shall disconnect the second endpoint from the network. The

evaluator shall revoke the registration of the second endpoint in the management server.

The evaluator shall attempt to connect the second endpoint to the network and verify

the endpoint fails to connect or is displayed as revoked in the console.

61 Test 3: For each item that is performed by the TOE, the evaluator shall verify that the

TOE performs the actions (e.g. generate key) and sends the result to the endpoint. The

endpoint shall perform the actions necessary to accept the updated configuration (e.g.

encrypt the data with the new key, update the encryption algorithm key size or mode

and re-encrypt).

62 Test 4: For each item that is initiated by the TOE but performed on the endpoint, the

evaluator shall verify that the TOE requests the endpoint to perform the action (generate

a key and encrypt the data, zeroize a key).

63 Test 5: For each method of changing a credential, the evaluator shall first provision the

initial authorization factor(s) in the Enterprise Server, and then verify all authorization

values supported allow the user access to the encrypted data on configured endpoint.

Then the evaluator shall exercise the management functions to change the authorization

factor values to a new one on the Enterprise Server. Then he or she will verify that the

endpoint denies access to the user’s encrypted data when he or she uses the old or

original authorization factor values to gain access.

64 Test 6: The evaluator shall add two administrators to the administrator group in the

Enterprise Server and provision authorization factor(s) for each administrator. The

evaluator shall verify that both administrators can log into the Enterprise Server using

the provided…the provided authorization factors. The evaluator shall then exercise the

management functions to change the authorization factor values for the first

administrator to a new one on the Enterprise Server. Then he or she will verify that the

Enterprise Server denies the first administrator access to the Management Console

when the first administrator logs in with the old or original authorization factor to gain

access. The evaluator shall also verify that the second administrator is still able to log

in to the Enterprise Server with their original authorization factor.

65 Test 7: The evaluator shall verify that the second administrator from Test 2 can

configure each of the supported authorization attempts configurations and shall verify

that the endpoint denies access to the user’s encrypted data as in described in the test

actions of the AA SD Section 2.1.22 Test 1.

66 Test 8: If the TOE provides the capability to disable management of any capability

allowed in the EM Module, the evaluator shall devise a test that ensures that each

capability which can be disabled has been or can be disabled following guidance

provided by the vendor.

67 Test 9: If the TOE provides the capability to manage capabilities in place of the AA or

EE, where those administrative capabilities are then disabled in the AA or EE, the

evaluator shall devise a test that ensures that each capability which can be disabled in

the AA or EE and can be subsequently managed by the EM is tested as follows:

Disable the administrative capability in the AA/EE and enable it in the EM

Verify that the administration of the capability in the EM is successfully

2.3.3 Security Management Roles (FMT_SMR)

2.3.3.1 FMT_SMR.2 Restrictions on Security Roles

2.3.3.1.1 TSS

68 For distributed TOEs the evaluator shall examine that the TSS details how Security

Administrators are authenticated and identified by all TOE components if not all TOE

components support authentication of Security Administrators according to

FIA_UIA_EXT.1. The evaluator shall examine that authentication and identification

of Security Administrators cannot be compromised for any TOE component in this

case.

2.3.3.1.2 Operational Guidance

69 The evaluator shall review the guidance documentation to ensure that it contains

instructions for administering the TOE both locally and remotely, including any

configuration that needs to be performed on the client for remote administration.

2.3.3.1.3 KMD

70 There are no KMD evaluation activities for this SFR.

2.3.3.1.4 Test

71 In the course of performing the testing activities for the evaluation, the evaluator shall

use all supported interfaces, although it is not necessary to repeat each test involving

an administrative action with each interface. The evaluator shall ensure, however, that

each supported method of administering the TOE that conforms to the requirements of

this cPP be tested; for instance, if the TOE can be administered through a local

hardware interface; SSH; and TLS/HTTPS; then all three methods of administration

must be exercised during the evaluation team’s test activities.

72 For distributed TOEs where not every TOE component implements own user

management and where authentication and identification of security administrators is

not done according to FIA_UIA_EXT.1, the evaluator shall test that at least one

component performs authentication and identification of Security Administrators

according to FIA_UIA_EXT.1. In addition, the evaluator shall test that all TOE

components perform authentication and identification of Security Administrators as

described in the TSS.

2.4 Protection of the TSF (FPT)

2.4.1 Internal TOE TSF Data Transfer (FPT_ITT)

2.4.1.1 FPT_ITT.1 Basic Internal TSF Data Transfer Protection

2.4.1.1.1 TSS

73 The evaluator shall examine the TSS to determine that, for all communications between

components of a distributed TOE, each communications mechanism is identified in

terms of the allowed protocols and intra-TOE configurations for that IT entity. The

evaluator shall also confirm that all protocols listed in the TSS for these inter-

component communications are specified and included in the requirements in the ST.

74 If the TOE is not a distributed TOE then no evaluator action is necessary. For a

distributed TOE the evaluator carries out the activities below.

2.4.1.1.2 Operational Guidance

75 The evaluator shall confirm that the guidance documentation contains instructions for

establishing the relevant allowed communication channels and protocols between each

pair of authorized TOE components, and that it contains recovery instructions should

a connection be unintentionally broken.

2.4.1.1.3 KMD

76 There are no KMD evaluation activities for this SFR.

2.4.1.1.4 Test

77 The evaluator shall perform the following tests:

78 Test 1: The evaluator shall ensure that communications using each supported protocol

between each pair of authorized TOE components is tested during the course of the

evaluation, setting up the connections as described in the guidance documentation and

ensuring that communication is successful.

79 Test 2: The evaluator shall ensure, for each communication channel with an authorized

IT entity, the channel data is not sent in plaintext.

80 Test 3: The evaluator shall, for each protocol associated with each authorized IT entity

tested during Test 1, physically interrupt the connection. The evaluator shall ensure that

when physical connectivity is restored, communications are appropriately protected.

81 Further assurance activities are associated with the specific protocols.

2.4.2 Key and Key Material Protection (FPT_KYP_EXT)

2.4.2.1 FPT_KYP_EXT.2 Storage of Protected Key and Key Material

2.4.2.1.1 TSS

82 The evaluator shall examine the TSS to verify that it describes the storage locations

key material may be stored.

2.4.2.1.2 Operational Guidance

83 The evaluator shall verify that guidance documentation lists any configuration

information associated with key storage. If any configuration changes the storage

location of keys, it must be described.

2.4.2.1.3 KMD

84 The evaluator shall examine the KMD for a description of the methods used to protect

keys stored in non-volatile memory.

85 The evaluator shall verify the KMD describes that all keys have an associated storage

location(s) with them.

2.4.2.1.4 Test

86 There are no test evaluation activities for this SFR.

2.4.2.2 FPT_KYP_EXT.3 Attribution of Protected Key and Key Material

2.4.2.2.1 TSS

87 The evaluator shall examine the TSS to verify that it describes the method by which an

association is maintained and verify it matches the selections.

2.4.2.2.2 Operational Guidance

88 The evaluator shall verify the guidance documentation provides instructions on how to

configure the association, if any configuration is necessary.

2.4.2.2.3 KMD

89 There are no KMD evaluation activities for this SFR.

2.4.2.2.4 Test

90 For each method of association, the evaluator shall change the configuration so that the

associate is broken and verify that enterprise functions do not work.

2.5 Trusted Path/Channels (FTP)

2.5.1 Inter-TSF Trusted Channel (FTP_ITC)

2.5.1.1 FTP_TRP.1 Inter-TSF Trusted Channel

2.5.1.1.1 TSS

91 The evaluator shall examine the TSS to determine that the methods of remote TOE

administration are indicated, along with how those communications are protected. The

evaluator shall also confirm that all protocols listed in the TSS in support of TOE

administration are consistent with those specified in the requirement, and are included

in the requirements in the ST.

2.5.1.1.2 Operational Guidance

92 The evaluator shall confirm that the guidance documentation contains instructions for

establishing the remote administrative sessions for each supported method.

2.5.1.1.3 KMD

93 There are no KMD evaluation activities for this SFR.

2.5.1.1.4 Test

94 The evaluator shall perform the following tests:

95 Test 1: The evaluators shall ensure that communications using each specified (in the

guidance documentation) remote administration method are tested during the course of

the evaluation, setting up the connections as described in the guidance documentation

and ensuring that communication is successful.

96 Test 2: For each protocol that the TOE can initiate as defined in the requirement, the

evaluator shall follow the guidance documentation to ensure that in fact the

communication channel can be initiated from the TOE.

97 Test 3: The evaluator shall ensure, for each communication channel with an authorized

IT entity, the channel data is not sent in plaintext.

98 Test 4: The evaluators shall ensure that, for each protocol associated with each

authorized IT entity tested during test 1, the connection is physically interrupted. The

evaluator shall ensure that when physical connectivity is restored, communications are

appropriately protected.

99 Further assurance activities are associated with the specific protocols.

3 Evaluation Activities for Optional
Requirements

3.1 Cryptographic Support (FCS)

3.1.1 Cryptographic Key Management (FCS_CKM)

3.1.1.1 FCS_CKM.1(a)/Server Cryptographic Key Generation (Asymmetric
Keys) (Server Communications

3.1.1.1.1 TSS

100 The evaluator shall ensure that the TSS identifies the key sizes supported by the TOE.

If the ST specifies more than one scheme, the evaluator shall examine the TSS to verify

that it identifies the usage for each scheme.

3.1.1.1.2 Operational Guidance

101 The evaluator shall verify that the AGD guidance instructs the administrator how to

configure the TOE to use the selected key generation scheme(s) and key size(s) for all

uses specified by the AGD documentation and defined in this cPP.

3.1.1.1.3 KMD

102 If the TOE uses an asymmetric key as part of the key chain, the KMD should detail

how the asymmetric key is used as part of the key chain.

3.1.1.1.4 Test

103 The following tests require the developer to provide access to a test platform that

provides the evaluator with tools that are typically not found on factory products.

104 Key Generation for FIPS PUB 186-4 RSA Schemes

105 The evaluator shall verify the implementation of RSA Key Generation by the TOE

using the Key Generation test. This test verifies the ability of the TSF to correctly

produce values for the key components including the public verification exponent e,

the private prime factors p and q, the public modulus n and the calculation of the private

signature exponent d.

106 Key Pair generation specifies 5 ways (or methods) to generate the primes p and q. These

include:

107 1. Random Primes:

 Provable primes

 Probable primes

108 2. Primes with Conditions:

 Primes p1, p2, q1,q2, p and q shall all be provable primes

 Primes p1, p2, q1, and q2 shall be provable primes and p and q shall be

probable primes

 Primes p1, p2, q1,q2, p and q shall all be probable primes

109 To test the key generation method for the Random Provable primes method and for all

the Primes with Conditions methods, the evaluator must seed the TSF key generation

routine with sufficient data to deterministically generate the RSA key pair. This

includes the random seed(s), the public exponent of the RSA key, and the desired key

length. For each key length supported, the evaluator shall have the TSF generate 25

key pairs. The evaluator shall verify the correctness of the TSF’s implementation by

comparing values generated by the TSF with those generated from a known good

implementation.

110 Key Generation for Elliptic Curve Cryptography (ECC)

111 FIPS 186-4 ECC Key Generation Test
112 For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall

require the implementation under test (IUT) to generate 10 private/public key pairs.

The private key shall be generated using an approved random bit generator (RBG). To

determine correctness, the evaluator shall submit the generated key pairs to the public

key verification (PKV) function of a known good implementation.

113 FIPS 186-4 Public Key Verification (PKV) Test

For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall

generate 10 private/public key pairs using the key generation function of a known good

implementation and modify five of the public key values so that they are incorrect,

leaving five values unchanged (i.e., correct). The evaluator shall obtain in response a

set of 10 PASS/FAIL values.

114 Key Generation for Finite-Field Cryptography (FFC)
115 The evaluator shall verify the implementation of the Parameters Generation and the

Key Generation for FFC by the TOE using the Parameter Generation and Key

Generation test. This test verifies the ability of the TSF to correctly produce values for

the field prime p, the cryptographic prime q (dividing p-1), the cryptographic group

generator g, and the calculation of the private key x and public key y.

116 The Parameter generation specifies 2 ways (or methods) to generate the cryptographic

prime q and the field prime p:

117 Cryptographic and Field Primes:

 Primes q and p shall both be provable primes

 Primes q and field prime p shall both be probable primes

and two ways to generate the cryptographic group generator g:

118 Cryptographic Group Generator:

 Generator g constructed through a verifiable process

 Generator g constructed through an unverifiable process.

119 The Key generation specifies 2 ways to generate the private key x:

120 Private Key:

 len(q) bit output of RBG where 1 <=x <= q-1

 len(q) + 64 bit output of RBG, followed by a mod q-1 operation and +1

operation where 1<= x<=q-1.

121 The security strength of the RBG must be at least that of the security offered by the

FFC parameter set.

122 To test the cryptographic and field prime generation method for the provable primes

method and/or the group generator g for a verifiable process, the evaluator must seed

the TSF parameter generation routine with sufficient data to deterministically generate

the parameter set.

123 For each key length supported, the evaluator shall have the TSF generate 25 parameter

sets and key pairs. The evaluator shall verify the correctness of the TSF’s

implementation by comparing values generated by the TSF with those generated from

a known good implementation. Verification must also confirm

 g != 0,1

 q divides p-1

 g^q mod p = 1

 g^x mod p = y

 for each FFC parameter set and key pair.

3.1.1.2 FCS_CKM.2 Cryptographic Key Distribution

3.1.1.2.1 TSS

124 The evaluator shall ensure that the supported key distribution methods correspond to

the key generation schemes identified in FCS_CKM.1. If the ST specifies more than

one scheme, the evaluator shall examine the TSS to verify that it identifies the usage

for each method.

3.1.1.2.2 Operational Guidance

125 The evaluator shall verify that the AGD guidance instructs the administrator how to

configure the TOE to use the selected key establishment scheme(s).

3.1.1.2.3 KMD

126 There are no KMD activities for this SFR.

3.1.1.2.4 Test

127 The evaluator shall verify the implementation of the key distribution methods

supported by the TOE using the applicable tests below.

128 SP800-56A Key Establishment Schemes

129 The evaluator shall verify a TOE's implementation of SP800-56A key agreement

schemes using the following Function and Validity tests. These validation tests for each

key agreement scheme verify that a TOE has implemented the components of the key

agreement scheme according to the specifications in the Recommendation. These

components include the calculation of the DLC primitives (the shared secret value Z)

and the calculation of the derived keying material (DKM) via the Key Derivation

Function (KDF). If key confirmation is supported, the evaluator shall also verify that

the components of key confirmation have been implemented correctly, using the test

procedures described below. This includes the parsing of the DKM, the generation of

MACdata and the calculation of MACtag.

130 Function Test

131 The Function test verifies the ability of the TOE to implement the key agreement

schemes correctly. To conduct this test the evaluator shall generate or obtain test

vectors from a known good implementation of the TOE supported schemes. For each

supported key agreement scheme-key agreement role combination, KDF type, and, if

supported, key confirmation role- key confirmation type combination, the tester shall

generate 10 sets of test vectors. The data set consists of one set of domain parameter

values (FFC) or the NIST approved curve (ECC) per 10 sets of public keys. These keys

are static, ephemeral or both depending on the scheme being tested.

132 The evaluator shall obtain the DKM, the corresponding TOE’s public keys (static

and/or ephemeral), the MAC tag(s), and any inputs used in the KDF, such as the Other

Information field OI and TOE id fields.

133 If the TOE does not use a KDF defined in SP 800-56A, the evaluator shall obtain only

the public keys and the hashed value of the shared secret.

134 The evaluator shall verify the correctness of the TSF’s implementation of a given

scheme by using a known good implementation to calculate the shared secret value,

derive the keying material DKM, and compare hashes or MAC tags generated from

these values.

135 If key confirmation is supported, the TSF shall perform the above for each implemented

approved MAC algorithm.

136 Validity Test

137 The Validity test verifies the ability of the TOE to recognize another party’s valid and

invalid key agreement results with or without key confirmation. To conduct this test,

the evaluator shall obtain a list of the supporting cryptographic functions included in

the SP800-56A key agreement implementation to determine which errors the TOE

should be able to recognize. The evaluator generates a set of 24 (FFC) or 30 (ECC) test

vectors consisting of data sets including domain parameter values or NIST approved

curves, the evaluator’s public keys, the TOE’s public/private key pairs, MACTag, and

any inputs used in the KDF, such as the other info and TOE id fields.

138 The evaluator shall inject an error in some of the test vectors to test that the TOE

recognizes invalid key agreement results caused by the following fields being incorrect:

the shared secret value Z, the DKM, the other information field OI, the data to be

MACed, or the generated MACTag. If the TOE contains the full or partial (only ECC)

public key validation, the evaluator will also individually inject errors in both parties’

static public keys, both parties’ ephemeral public keys and the TOE’s static private key

to assure the TOE detects errors in the public key validation function and/or the partial

key validation function (in ECC only). At least two of the test vectors shall remain

unmodified and therefore should result in valid key agreement results (they should

pass).

139 The TOE shall use these modified test vectors to emulate the key agreement scheme

using the corresponding parameters. The evaluator shall compare the TOE’s results

with the results using a known good implementation verifying that the TOE detects

these errors.

140 SP800-56B Key Establishment Schemes

141 The evaluator shall verify that the TSS describes whether the TOE acts as a sender, a

recipient, or both for RSA-based key establishment schemes.

142 If the TOE acts as a sender, the following assurance activity shall be performed to

ensure the proper operation of every TOE supported combination of RSA-based key

establishment scheme:

143 To conduct this test the evaluator shall generate or obtain test vectors from a known

good implementation of the TOE supported schemes. For each combination of

supported key establishment scheme and its options (with or without key confirmation

if supported, for each supported key confirmation MAC function if key confirmation

is supported, and for each supported mask generation function if KTS- OAEP is

supported), the tester shall generate 10 sets of test vectors. Each test vector shall include

the RSA public key, the plaintext keying material, any additional input parameters if

applicable, the MacKey and MacTag if key confirmation is incorporated, and the

outputted ciphertext. For each test vector, the evaluator shall perform a key

establishment encryption operation on the TOE with the same inputs (in cases where

key confirmation is incorporated, the test shall use the MacKey from the test vector

instead of the randomly generated MacKey used in normal operation) and ensure that

the outputted ciphertext is equivalent to the ciphertext in the test vector.

144 If the TOE acts as a receiver, the following assurance activities shall be performed to

ensure the proper operation of every TOE supported combination of RSA-based key

establishment scheme:

145 To conduct this test the evaluator shall generate or obtain test vectors from a known

good implementation of the TOE supported schemes. For each combination of

supported key establishment scheme and its options (with our without key confirmation

if supported, for each supported key confirmation MAC function if key confirmation

is supported, and for each supported mask generation function if KTS- OAEP is

supported), the tester shall generate 10 sets of test vectors. Each test vector shall include

the RSA private key, the plaintext keying material (KeyData), any additional input

parameters if applicable, the MacTag in cases where key confirmation is incorporated,

and the outputted ciphertext. For each test vector, the evaluator shall perform the key

establishment decryption operation on the TOE and ensure that the outputted plaintext

keying material (KeyData) is equivalent to the plaintext keying material in the test

vector. In cases where key confirmation is incorporated, the evaluator shall perform the

key confirmation steps and ensure that the outputted MacTag is equivalent to the

MacTag in the test vector.

146 The evaluator shall ensure that the TSS describes how the TOE handles decryption

errors. In accordance with NIST Special Publication 800-56B, the TOE must not reveal

the particular error that occurred, either through the contents of any outputted or logged

error message or through timing variations. If KTS-OAEP is supported, the evaluator

shall create separate contrived ciphertext values that trigger each of the three decryption

error checks described in NIST Special Publication 800-56B section 7.2.2.3, ensure

that each decryption attempt results in an error, and ensure that any outputted or logged

error message is identical for each. If KTS-KEM- KWS is supported, the evaluator

shall create separate contrived ciphertext values that trigger each of the three decryption

error checks described in NIST Special Publication 800-56B section 7.2.3.3, ensure

that each decryption attempt results in an error, and ensure that any outputted or logged

error message is identical for each.

3.1.1.3 FCS_CKM.2/Server Cryptographic Key Establishment (Server
Communications)

3.1.1.3.1 TSS

147 The evaluator shall ensure that the supported key establishment schemes correspond to

the key generation schemes identified in FCS_CKM.1/Server. If the ST specifies more

than one scheme, the evaluator shall examine the TSS to verify that it identifies the

usage for each scheme. If Diffie-Hellman group 14 is selected from

FCS_CKM.2.1/Server, the TSS shall describe how the implementation meets RFC

3526 Section 3.

3.1.1.3.2 Operational Guidance

148 The evaluator shall verify that the AGD guidance instructs the administrator how to

configure the TOE to use the selected key establishment scheme(s).

3.1.1.3.3 KMD

149 There are no KMD activities for this SFR.

3.1.1.3.4 Test

150 The evaluator shall verify the implementation of the key establishment schemes

supported by the TOE using the applicable tests below.

151 SP800-56A Key Establishment Schemes

152 The evaluator shall verify a TOE's implementation of SP800-56A key agreement

schemes using the following Function and Validity tests. These validation tests for each

key agreement scheme verify that a TOE has implemented the components of the key

agreement scheme according to the specifications in the Recommendation. These

components include the calculation of the DLC primitives (the shared secret value Z)

and the calculation of the derived keying material (DKM) via the Key Derivation

Function (KDF). If key confirmation is supported, the evaluator shall also verify that

the components of key confirmation have been implemented correctly, using the test

procedures described below. This includes the parsing of the DKM, the generation of

MACdata and the calculation of MACtag.

153 Function Test

154 The Function test verifies the ability of the TOE to implement the key agreement

schemes correctly. To conduct this test the evaluator shall generate or obtain test

vectors from a known good implementation of the TOE supported schemes. For each

supported key agreement scheme-key agreement role combination, KDF type, and, if

supported, key confirmation role- key confirmation type combination, the tester shall

generate 10 sets of test vectors. The data set consists of one set of domain parameter

values (FFC) or the NIST approved curve (ECC) per 10 sets of public keys. These keys

are static, ephemeral or both depending on the scheme being tested.

155 The evaluator shall obtain the DKM, the corresponding TOE’s public keys (static

and/or ephemeral), the MAC tag(s), and any inputs used in the KDF, such as the Other

Information field OI and TOE id fields.

156 If the TOE does not use a KDF defined in SP 800-56A, the evaluator shall obtain only

the public keys and the hashed value of the shared secret.

157 The evaluator shall verify the correctness of the TSF’s implementation of a given

scheme by using a known good implementation to calculate the shared secret value,

derive the keying material DKM, and compare hashes or MAC tags generated from

these values.

158 If key confirmation is supported, the TSF shall perform the above for each implemented

approved MAC algorithm.

159 Validity Test

160 The Validity test verifies the ability of the TOE to recognize another party’s valid and

invalid key agreement results with or without key confirmation. To conduct this test,

the evaluator shall obtain a list of the supporting cryptographic functions included in

the SP800-56A key agreement implementation to determine which errors the TOE

should be able to recognize. The evaluator generates a set of 24 (FFC) or 30 (ECC) test

vectors consisting of data sets including domain parameter values or NIST approved

curves, the evaluator’s public keys, the TOE’s public/private key pairs, MACTag, and

any inputs used in the KDF, such as the other info and TOE id fields.

161 The evaluator shall inject an error in some of the test vectors to test that the TOE

recognizes invalid key agreement results caused by the following fields being incorrect:

the shared secret value Z, the DKM, the other information field OI, the data to be

MACed, or the generated MACTag. If the TOE contains the full or partial (only ECC)

public key validation, the evaluator will also individually inject errors in both parties’

static public keys, both parties’ ephemeral public keys and the TOE’s static private key

to assure the TOE detects errors in the public key validation function and/or the partial

key validation function (in ECC only). At least two of the test vectors shall remain

unmodified and therefore should result in valid key agreement results (they should

pass).

162 The TOE shall use these modified test vectors to emulate the key agreement scheme

using the corresponding parameters. The evaluator shall compare the TOE’s results

with the results using a known good implementation verifying that the TOE detects

these errors.

163 SP800-56B Key Establishment Schemes

164 The evaluator shall verify that the TSS describes whether the TOE acts as a sender, a

recipient, or both for RSA-based key establishment schemes.

165 If the TOE acts as a sender, the following assurance activity shall be performed to

ensure the proper operation of every TOE supported combination of RSA-based key

establishment scheme:

166 To conduct this test the evaluator shall generate or obtain test vectors from a known

good implementation of the TOE supported schemes. For each combination of

supported key establishment scheme and its options (with or without key confirmation

if supported, for each supported key confirmation MAC function if key confirmation

is supported, and for each supported mask generation function if KTS- OAEP is

supported), the tester shall generate 10 sets of test vectors. Each test vector shall include

the RSA public key, the plaintext keying material, any additional input parameters if

applicable, the MacKey and MacTag if key confirmation is incorporated, and the

outputted ciphertext. For each test vector, the evaluator shall perform a key

establishment encryption operation on the TOE with the same inputs (in cases where

key confirmation is incorporated, the test shall use the MacKey from the test vector

instead of the randomly generated MacKey used in normal operation) and ensure that

the outputted ciphertext is equivalent to the ciphertext in the test vector.

167 If the TOE acts as a receiver, the following assurance activities shall be performed to

ensure the proper operation of every TOE supported combination of RSA-based key

establishment scheme:

168 To conduct this test the evaluator shall generate or obtain test vectors from a known

good implementation of the TOE supported schemes. For each combination of

supported key establishment scheme and its options (with our without key confirmation

if supported, for each supported key confirmation MAC function if key confirmation

is supported, and for each supported mask generation function if KTS- OAEP is

supported), the tester shall generate 10 sets of test vectors. Each test vector shall include

the RSA private key, the plaintext keying material (KeyData), any additional input

parameters if applicable, the MacTag in cases where key confirmation is incorporated,

and the outputted ciphertext. For each test vector, the evaluator shall perform the key

establishment decryption operation on the TOE and ensure that the outputted plaintext

keying material (KeyData) is equivalent to the plaintext keying material in the test

vector. In cases where key confirmation is incorporated, the evaluator shall perform the

key confirmation steps and ensure that the outputted MacTag is equivalent to the

MacTag in the test vector.

169 The evaluator shall ensure that the TSS describes how the TOE handles decryption

errors. In accordance with NIST Special Publication 800-56B, the TOE must not reveal

the particular error that occurred, either through the contents of any outputted or logged

error message or through timing variations. If KTS-OAEP is supported, the evaluator

shall create separate contrived ciphertext values that trigger each of the three decryption

error checks described in NIST Special Publication 800-56B section 7.2.2.3, ensure

that each decryption attempt results in an error, and ensure that any outputted or logged

error message is identical for each. If KTS-KEM- KWS is supported, the evaluator

shall create separate contrived ciphertext values that trigger each of the three decryption

error checks described in NIST Special Publication 800-56B section 7.2.3.3, ensure

that each decryption attempt results in an error, and ensure that any outputted or logged

error message is identical for each.

170 Diffie-Hellman Group 14

171 The evaluator shall verify the correctness of the TSF’s implementation of Diffie-

Hellman group 14 by using a known good implementation for each protocol selected

in FTP_ITT.1 and FTP_TRP.1 that uses Diffie-Hellman group 14.

3.1.1.4 FCS_CKM.4(a)/Server Cryptographic Key Destruction (Server
Communications)

3.1.1.4.1 TSS

172 (Key Management Description may be used if necessary details describe proprietary

information)

173 The evaluator shall check to ensure the TSS (KMD) lists each type of key material, its

origin, possible temporary locations (e.g. memory), and storage location (e.g. SQL

database).

174 The evaluator examines the TSS to ensure it describes how the keys are managed in

volatile memory. This description includes details of how each identified key is

introduced into volatile memory (e.g. by derivation from user input, or by unwrapping

a wrapped key stored in non-volatile memory) and how they are overwritten.

175 The evaluator shall check to ensure the TSS lists each type of key that is stored in non-

volatile memory, and identifies how the TOE interacts with the underlying platform to

manage keys (e.g., store, retrieve, destroy). The description includes details on the

method of how the TOE interacts with the platform, including an identification and

description of the interfaces it uses to manage keys (e.g., file system APIs, platform

key store APIs, API’s between EM and AA to transfer key material).

176 The evaluator examines the interface description for each different media type to ensure

that the interface supports the selection(s) and description in the TSS.

177 The evaluator shall check that the TSS identifies any configurations or circumstances

that may not strictly conform to the key destruction requirement. If the ST makes use

of the open assignment and fills in the type of pattern that is used, the evaluator

examines the TSS to ensure it describes how that pattern is obtained and used. The

evaluator shall verify that the pattern does not contain any CSPs.

3.1.1.4.2 Operational Guidance

178 There are a variety of concerns that may prevent or delay key destruction in some cases.

The evaluator shall check that the guidance documentation identifies configurations or

circumstances that may not strictly conform to the key destruction requirement, and

that this description is consistent with the relevant parts of the TSS and any other

relevant Required Supplementary Information. The evaluator shall check that the

guidance documentation provides guidance on situations where key destruction may

be delayed at the physical layer.

179 For example, when the TOE does not have full access to the physical memory, it is

possible that the storage may be implementing wear-levelling and garbage collection.

This may create additional copies of the key that are logically inaccessible but persist

physically. In this case, it is assumed the drive supports the TRIM command and

implements garbage collection to destroy these persistent copies when not actively

engaged in other tasks.

180 Drive vendors implement garbage collection in a variety of different ways, as such

there is a variable amount of time until data is truly removed from these solutions.

There is a risk that data may persist for a longer amount of time if it is contained in a

block with other data not ready for erasure. It is assumed the operating system and file

system of the OE support TRIM, instructing the non-volatile memory to erase copies

via garbage collection upon their deletion.

181 It is assumed that if a RAID array is being used, only set-ups that support TRIM are

utilized. It is assumed if the drive is connected via PCI-Express, the operating system

supports TRIM over that channel. It is assumed the drive is healthy and contains

minimal corrupted data and will be end of life before a significant amount of damage

to drive health occurs, it is assumed there is a risk small amounts of potentially

recoverable data may remain in damaged areas of the drive.

182 Finally, it is assumed the keys are not stored using a method that would be inaccessible

to TRIM, such as being contained in a file less than 982 bytes which would be

completely contained in the master file table.

3.1.1.4.3 KMD

183 There are no requirements for a KMD, however, vendors may provide any information

required by the TSS which they deem proprietary as part of a KMD.

3.1.1.4.4 Test

184 Test 1: Applied to each key encrypting key or BEV held as plaintext in volatile memory

and subject to destruction by overwrite by the TOE (whether or not the plaintext value

is subsequently encrypted for storage in volatile or non-volatile memory). The

evaluator shall:

 Record the value of the key in the TOE subject to clearing.

 Cause the TOE to perform a normal cryptographic processing with the key

from Step #1.

 Cause the TOE to clear the key.

 Cause the TOE to stop the execution but not exit.

 Cause the TOE to dump the entire memory of the TOE into a binary file.

 Search the content of the binary file created in Step #5 for instances of the

known key value from Step #1.

 Break the key value from Step #1 into 3 similar sized pieces and perform a

search using each piece.

 Ensure that the complete key does not exist anywhere in volatile memory. If a

copy is found, then the test fails.

 Ensure that partial key fragments do not remain in memory. If a fragment is

found, there is a miniscule chance that it is not within the context of a key (e.g.,

some random bits that happen to match). If this is the case the test should be

repeated with a different key in Step #1. If a fragment is found the test fails.

185 The following tests apply only to selection a), since the TOE in this instance has more

visibility into what is happening within the underlying platform (e.g., a logical view of

the media). In selection b), the TOE has no visibility into the inner workings and

completely relies on the underlying platform, so there is no reason to test the TOE

beyond test 1.

186 For selection a), the following tests are used to determine the TOE is able to request

the platform to overwrite the key with a TOE supplied pattern.

187 Test 2: Applied to each key held in non-volatile memory and subject to destruction by

overwrite by the TOE. The evaluator shall use a tool that provides a logical view of the

media (e.g., MBR file system):

 Record the value of the key in the TOE subject to clearing.

 Cause the TOE to perform a normal cryptographic processing with the key

from the first step.

 Cause the TOE to clear the key.

 Search the logical view that the key was stored in for instances of the known

key value from Step #1. If a copy is found, then the test fails.

 Break the key value from the first step into 3 similar sized pieces and perform

a search using each piece. If a fragment is found then the test is repeated (as

described for Use Case 1 test 1 above), and if a fragment is found in the

repeated test then the test fails.

188 Test 3: Applied to each key held in non-volatile memory and subject to destruction by

overwrite by the TOE. The evaluator shall use a tool that provides a logical view of the

media (e.g. MBR file system):

 Record the logical (e.g. LBA) storage location of the key in the TOE subject

to clearing.

 Cause the TOE to perform a normal cryptographic processing with the key

from the previous step.

 Cause the TOE to clear the key.

 Read the logical storage location in Step #1 of non-volatile memory to ensure

the appropriate pattern is utilized.

3.1.2 Cryptographic Operation (FCS_COP)

3.1.2.1 FCS_COP.1(a)/Server Cryptographic Operation (Signature Generation
and Verification) (Server Communications)

3.1.2.1.1 TSS

189 The evaluator shall verify the TSS includes a description of the cryptographic

algorithms and corresponding parameters (key size, etc.) used to generate signatures.

The evaluator should ensure that the specified algorithms are listed in SFRs and

described properly in TSS.

3.1.2.1.2 Operational Guidance

190 There are no AGD evaluation activities for this SFR.

3.1.2.1.3 KMD

191 There are no KMD evaluation activities for this SFR.

3.1.2.1.4 Test

192 The evaluator shall perform the following tests, depending on the selections made by

the ST author:

ECDSA Algorithm Tests

193 ECDSA FIPS 186-4 Signature Generation Test

194 For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair,

the evaluator shall generate 10 1024-bit long messages and obtain for each message a

public key and the resulting signature values R and S. To determine correctness, the

evaluator shall use the signature verification function of a known good implementation.

195 ECDSA FIPS 186-4 Signature Verification Test

196 For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair,

the evaluator shall generate a set of 10 1024-bit message, public key and signature

tuples and modify one of the values (message, public key or signature) in five of the 10

tuples. The evaluator shall obtain in response a set of 10 PASS/FAIL values.

197 RSA Signature Algorithm Tests

198 Signature Generation Test

199 The evaluator shall verify the implementation of RSA Signature Generation by the

TOE using the Signature Generation Test. To conduct this test the evaluator must

generate or obtain 10 messages from a trusted reference implementation for each

modulus size/SHA combination supported by the TSF. The evaluator shall have the

TOE use their private key and modulus value to sign these messages.

200 The evaluator shall verify the correctness of the TSF’s signature using a known good

implementation and the associated public keys to verify the signatures.

201 Signature Verification Test

202 The evaluator shall perform the Signature Verification test to verify the ability of the

TOE to recognize another party’s valid and invalid signatures. The evaluator shall

inject errors into the test vectors produced during the Signature Verification Test by

introducing errors in some of the public keys, messages, IR format, and/or signatures.

The TOE attempts to verify the signatures and returns success or failure.

203 The evaluator shall use these test vectors to emulate the signature verification test using

the corresponding parameters and verify that the TOE detects these errors.

3.1.2.2 FCS_COP.1(b)/Server Cryptographic Operation (Hash Algorithm)
(Server Communications)

3.1.2.2.1 TSS

204 The evaluator shall check that the association of the hash function with other TSF

cryptographic functions (for example, the digital signature verification function) is

documented in the TSS.

3.1.2.2.2 Operational Guidance

205 The evaluator checks the operational guidance documents to determine that any system

configuration necessary to enable required hash size functionality is provided.

3.1.2.2.3 KMD

206 There are no KMD evaluation activities for this SFR.

3.1.2.2.4 Test

207 The TSF hashing functions can be implemented in one of two modes. The first mode

is the byteoriented mode. In this mode the TSF only hashes messages that are an

integral number of bytes in length; i.e., the length (in bits) of the message to be hashed

is divisible by 8. The second mode is the bitoriented mode. In this mode the TSF

hashes messages of arbitrary length. As there are different tests for each mode, an

indication is given in the following sections for the bitoriented vs. the byteoriented

test mode.

208 The evaluator shall perform all of the following tests for each hash algorithm

implemented by the TSF and used to satisfy the requirements of this cPP.

209 Short Messages Test Bitoriented Mode

210 The evaluators devise an input set consisting of m+1 messages, where m is the block

length of the hash algorithm. The length of the messages range sequentially from 0 to

m bits. The message text shall be pseudorandomly generated. The evaluators compute

the message digest for each of the messages and ensure that the correct result is

produced when the messages are provided to the TSF.

211 Short Messages Test Byteoriented Mode

212 The evaluators devise an input set consisting of m/8+1 messages, where m is the block

length of the hash algorithm. The length of the messages range sequentially from 0 to

m/8 bytes, with each message being an integral number of bytes. The message text shall

be pseudorandomly generated. The evaluators compute the message digest for each of

the messages and ensure that the correct result is produced when the messages are

provided to the TSF.

213 Selected Long Messages Test Bitoriented Mode

214 The evaluators devise an input set consisting of m messages, where m is the block

length of the hash algorithm. For SHA-256, the length of the i-th message is 512 +

8*99*i, where 1 ≤ i ≤ m/8. For SHA-512, the length of the i-th message is 1024 +

8*99*i, where 1 ≤ i ≤ m/8. The message text shall be pseudorandomly generated. The

evaluators compute the message digest for each of the messages and ensure that the

correct result is produced when the messages are provided to the TSF.

215 Selected Long Messages Test Byteoriented Mode

216 The evaluators devise an input set consisting of m/8 messages, where m is the block

length of the hash algorithm. For SHA-256, the length of the i-th message is 512 +

99*i, where 1 ≤ i ≤ m. For SHA-512, the length of the i-th message is 1024 + 99*i,

where 1 ≤ i ≤ m. The message text shall be pseudorandomly generated. The evaluators

compute the message digest for each of the messages and ensure that the correct result

is produced when the messages are provided to the TSF.

217 Pseudorandomly Generated Messages Test

218 This test is for byteoriented implementations only. The evaluators randomly generate

a seed that is n bits long, where n is the length of the message digest produced by the

hash function to be tested. The evaluators then formulate a set of 100 messages and

associated digests by following the algorithm provided in Figure 1 of [SHAVS]. The

evaluators then ensure that the correct result is produced when the messages are

provided to the TSF.

3.1.2.3 FCS_COP.1(c)/Server Cryptographic Operation (Keyed Hash
Algorithm) (Server Communications)

3.1.2.3.1 TSS

219 The evaluator shall examine the TSS to ensure that it specifies the following values

used by the HMAC function: key length, hash function used, block size, and output

MAC length used.

3.1.2.3.2 Operational Guidance

220 There are no AGD evaluation activities for this SFR.

3.1.2.3.3 KMD

221 There are no KMD evaluation activities for this SFR.

3.1.2.3.4 Test

222 For each of the supported parameter sets, the evaluator shall compose 15 sets of test

data. Each set shall consist of a key and message data. The evaluator shall have the TSF

generate HMAC tags for these sets of test data. The resulting MAC tags shall be

compared to the result of generating HMAC tags with the same key using a known

good implementation.

3.1.2.4 FCS_COP.1(d)/Server Cryptographic Operation (Key Wrapping)
(Server Communications)

3.1.2.4.1 TSS

223 The evaluator shall verify the TSS includes a description of the key wrap function(s)

and shall verify the key wrap uses an approved key wrap algorithm according to the

appropriate specification.

3.1.2.4.2 Operational Guidance

224 There are no AGD evaluation activities for this SFR.

3.1.2.4.3 KMD

225 The evaluator shall review the KMD to ensure that all keys are wrapped using the

approved method and a description of when the key wrapping occurs.

3.1.2.4.4 Test

226 There are no test evaluation activities for this SFR.

3.1.2.5 FCS_COP.1(e)/Server Cryptographic Operation (Key Transport)
(Server Communications)

3.1.2.5.1 TSS

227 The evaluator shall verify the TSS provides a high level description of the RSA scheme

and the cryptographic key size that is being used, and that the asymmetric algorithm

being used for key transport is RSA. If more than one scheme/key size are allowed,

then the evaluator shall make sure and test all combinations of scheme and key size.

There may be more than one key size to specify – an RSA modulus size (and/or

encryption exponent size), an AES key size, hash sizes, MAC key/MAC tag size.

228 If the KTS-OAEP scheme was selected, the evaluator shall verify that the TSS

identifies the hash function, the mask generating function, the random bit generator,

the encryption primitive and decryption primitive.

229 If the KTS-KEM-KWS scheme was selected, the evaluator shall verify that the TSS

identifies the key derivation method, the AES-based key wrapping method, the secret

value encapsulation technique, and the random number generator.

3.1.2.5.2 Operational Guidance

230 There are no AGD evaluation activities for this SFR.

3.1.2.5.3 KMD

231 There are no KMD evaluation activities for this SFR.

3.1.2.5.4 Test

232 For each supported key transport schema, the evaluator shall initiate at least 25 sessions

that require key transport with an independently developed remote instance of a key

transport entity, using known RSA key-pairs. The evaluator shall observe traffic passed

from the sender-side and to the receiver-side of the TOE, and shall perform the

following tests, specific to which key transport scheme was employed.

233 If the KTS-OAEP scheme was selected, the evaluator shall perform the following tests:

1. The evaluator shall inspect each cipher text, C, produced by the RSA-OAEP

encryption operation of the TOE and make sure it is the correct length, either 256

or 384 bytes depending on RSA key size. The evaluator shall also feed into the

TOE’s RSA-OEAP decryption operation some cipher texts that are the wrong

length and verify that the erroneous input is detected and that the decryption

operation exits with an error code.

2. The evaluator shall convert each cipher text, C, produced by the RSA-OAEP

encryption operation of the TOE to the correct cipher text integer, c, and use the

decryption primitive to compute em = RSADP((n,d),c) and convert em to the

encoded message EM. The evaluator shall then check that the first byte of EM is

0x00. The evaluator shall also feed into the TOE’s RSA-OEAP decryption

operation some cipher texts where the first byte of EM was set to a value other

than 0x00, and verify that the erroneous input is detected and that the decryption

operation exits with an error code.

3. The evaluator shall decrypt each cipher text, C, produced by the RSA-OAEP

encryption operation of the TOE using RSADP, and perform the OAEP decoding

operation (described in NIST SP 800-56B section 7.2.2.4) to recover HA’ || X. For

each HA’, the evaluator shall take the corresponding A and the specified hash

algorithm and verify that HA' = Hash(A). The evaluator should[shall?] also force

the TOE to perform some RSA-OAEP decryptions where the A value is passed

incorrectly, and the evaluator should[shall?] verify that an error is detected.

4. The evaluator shall check the format of the ‘X’ string recovered in OAEP.Test.3

to ensure that the format is of the form PS || 01 || K, where PS consists of zero or

more consecutive 0x00 bytes and K is the transported keying material. The

evaluator should[shall?] also feed into the TOE’s RSA-OEAP decryption

operation some cipher texts for which the resulting ‘X’ strings do not have the

correct format (i.e., the leftmost non-zero byte is not 0x01). These incorrectly

formatted ‘X’ variables should[shall?] be detected by the RSA-OEAP decrypt

function.

5. The evaluator shall trigger all detectable decryption errors and validate that the

returned error codes are the same and that no information is given back to the

sender on which type of error occurred. The evaluator shall also validate that no

intermediate results from the TOE’s receiver-side operations are revealed to the

sender.

234 If the KTS-KEM-KWS scheme was selected, the evaluator shall perform the following

tests:

6. The evaluator shall inspect each cipher text, C, produced by RSA-KEM-KWS

encryption operation of the TOE and make sure the length (in bytes) of the cipher

text, cLen, is greater than nLen (the length, in bytes, of the modulus of the RSA

public key) and that cLen - nLen is consistent with the byte lengths supported by

the key wrapping algorithm. The evaluator shall feed into the RSA-KEM-KWS

decryption operation a cipher text of unsupported length and verify that an error

is detected and that the decryption process stops.

7. The evaluator shall separate the cipher text, C, produced by the sender-side of the

TOE into its C0 and C1 components and use the RSA decryption primitive to

recover the secret value, Z, from C0. The evaluator shall check that the unsigned

integer represented by Z is greater than 1 and less than n-1, where n is the modulus

of the RSA public key. The evaluator shall construct examples where the cipher

text is created with a secret value Z = 1 and make sure the RSA-KEM-KWS

decryption process detects the error. Similarly, the evaluator shall construct

examples where the cipher text is created with a secret value Z = n – 1 and make

sure the RSA-KEM-KWS decryption process detects the error.

8. The evaluator shall attempt to successfully recover the secret value Z, derive the

key wrapping key, KWK, and unwrap the KWA-cipher text following the RSA-

KEM-KWS decryption process given in NISP SP 800-56B section 7.2.3.4. If the

key-wrapping algorithm is AES-CCM, the evaluator shall verify that the value of

any (unwrapped) associated data, A, that was passed with the wrapped keying

material is correct The evaluator shall feed into the TOE’s RSA-KEM-KWS

decryption operation examples of incorrect cipher text and verify that a decryption

error is detected. If the key-wrapping algorithm is AES-CCM, the evaluator shall

attempt at least one decryption where the wrong value of A is given to the RSA-

KEM-KWS decryption operation and verify that a decryption error is detected.

Similarly, if the key-wrapping algorithm is AES-CCM, the evaluator shall attempt

at least one decryption where the wrong nonce is given to the RSA-KEM-KWS

decryption operation and verify that a decryption error is detected.

9. The evaluator shall trigger all detectable decryption errors and validate that the

resulting error codes are the same and that no information is given back to the

sender on which type of error occurred. The evaluator shall also validate that no

intermediate results from the TOE’s receiver-side operations (in particular, no Z

values) are revealed to the sender.

3.1.2.6 FCS_COP.1(f)/Server Cryptographic Operation (AES Data
Encryption/Decryption) (Server Communications)

3.1.2.6.1 TSS

235 The evaluator shall verify the TSS includes a description of the key size used for

encryption and the mode used for encryption.

3.1.2.6.2 Operational Guidance

236 If multiple encryption modes are supported, the evaluator examines the guidance

documentation to determine that the method of choosing a specific mode/key size by

the end user is described.

3.1.2.6.3 KMD

237 There are no KMD evaluation activities for this SFR.

3.1.2.6.4 Test

238 The following tests are conditional based upon the selections made in the SFR.

239 AES-CBC Tests

240 For the AES-CBC tests described below, the plaintext, ciphertext, and IV values shall

consist of 128-bit blocks. To determine correctness, the evaluator shall compare the

resulting values to those obtained by submitting the same inputs to a known-good

implementation.

241 These tests are intended to be equivalent to those described in NIST’s AES Algorithm

Validation Suite (AESAVS)

(http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf). Known answer

values tailored to exercise the AES-CBC implementation can be obtained using NIST’s

CAVS Algorithm Validation Tool or from NIST’s ACPV service for automated

algorithm tests (acvp.nist.gov), when available. It is not recommended that evaluators

use values obtained from static sources such as the example NIST’s AES Known

Answer Test Values from the AESAVS document, or use values not generated

expressly to exercise the AES-CBC implementation.

242 AES-CBC Known Answer Tests

243 KAT-1 (GFSBox):

244 To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of five

different plaintext values for each selected key size and obtain the ciphertext value that

results from AES-CBC encryption of the given plaintext using a key value of all zeros

and an IV of all zeros.

245 To test the decrypt functionality of AES-CBC, the evaluator shall supply a set of five

different ciphertext values for each selected key size and obtain the plaintext value that

results from AES-CBC decryption of the given ciphertext using a key value of all zeros

and an IV of all zeros.

246 KAT-2 (KeySBox):

247 To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of five

different key values for each selected key size and obtain the ciphertext value that

results from AES-CBC encryption of an all-zeros plaintext using the given key value

and an IV of all zeros.

248 To test the decrypt functionality of AES-CBC, the evaluator shall supply a set of five

different key values for each selected key size and obtain the plaintext that results from

AES-CBC decryption of an all-zeros ciphertext using the given key and an IV of all

zeros.

249 KAT-3 (Variable Key):

250 To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of keys

for each selected key size (as described below) and obtain the ciphertext value that

results from AES encryption of an all-zeros plaintext using each key and an IV of all

zeros.

251 Key i in each set shall have the leftmost i bits set to ones and the remaining bits to

zeros, for values of i from 1 to the key size. The keys and corresponding ciphertext are

listed in AESAVS, Appendix E.

252 To test the decrypt functionality of AES-CBC, the evaluator shall use the same keys as

above to decrypt the ciphertext results from above. Each decryption should result in an

all-zeros plaintext.

253 KAT-4 (Variable Text):

254 To test the encrypt functionality of AES-CBC, for each selected key size, the evaluator

shall supply a set of 128-bit plaintext values (as described below) and obtain the

ciphertext values that result from AES-CBC encryption of each plaintext value using a

key of each size and IV consisting of all zeros.

255 Plaintext value i shall have the leftmost i bits set to ones and the remaining bits set to

zeros, for values of i from 1 to 128. The plaintext values are listed in AESAVS,

Appendix D.

256 To test the decrypt functionality of AES-CBC, for each selected key size, use the

plaintext values from above as ciphertext input, and AES-CBC decrypt each ciphertext

value using key of each size consisting of all zeros and an IV of all zeros.

257 AES-CBC Multi-Block Message Test

258 The evaluator shall test the encrypt functionality by encrypting nine i-block messages

for each selected key size, for 2 ≤ i ≤ 10. For each test, the evaluator shall supply a key,

an IV, and a plaintext message of length i blocks, and encrypt the message using AES-

CBC. The resulting ciphertext values shall be compared to the results of encrypting the

plaintext messages using a known good implementation.

259 The evaluator shall test the decrypt functionality by decrypting nine i-block messages

for each selected key size, for 2 ≤ i ≤ 10. For each test, the evaluator shall supply a key,

an IV, and a ciphertext message of length i blocks, and decrypt the message using AES-

CBC. The resulting plaintext values shall be compared to the results of decrypting the

ciphertext messages using a known good implementation.

260 AES-CBC Monte Carlo Tests

261 The evaluator shall test the encrypt functionality for each selected key size using 100

3-tuples of pseudo-random values for plaintext, IVs, and keys.

262 The evaluator shall supply a single 3-tuple of pseudo-random values for each selected

key size. This 3-tuple of plaintext, IV, and key is provided as input to the below

algorithm to generate the remaining 99 3-tuples, and to run each 3-tuple through 1000

iterations of AES-CBC encryption.

Input: PT, IV, Key

Key[0] = Key

IV[0] = IV

PT[0] = PT

for i = 1 to 100 {

Output Key[i], IV[i], PT[0]

for j = 1 to 1000 {

if j == 1 {

CT[1] = AES-CBC-Encrypt(Key[i], IV[i], PT[1])

PT[2] = IV[i]

 } else {

CT[j] = AES-CBC-Encrypt(Key[i], PT[j])

PT[j+1] = CT[j-1]

 }

 }

Output CT[1000]

If KeySize == 128 { Key[i+1] = Key[i] xor CT[1000] }

If KeySize == 256 { Key[i+1] = Key[i] xor ((CT[999] << 128) | CT[1000]) }

IV[i+1] = CT[1000]

PT[0] = CT[999]

 }

263 The ciphertext computed in the 1000th iteration (CT[1000]) is the result for each of the

100 3-tuples for each selected key size. This result shall be compared to the result of

running 1000 iterations with the same values using a known good implementation.

264 The evaluator shall test the decrypt functionality using the same test as above,

exchanging CT and PT, and replacing AES-CBC-Encrypt with AES-CBC-Decrypt.

265 AES-GCM Test

266 The evaluator shall test the authenticated encrypt functionality of AES-GCM for each

combination of the following input parameter lengths:

267 128 bit and 256 bit keys

268 Two plaintext lengths. One of the plaintext lengths shall be a non-zero integer multiple

of 128 bits, if supported. The other plaintext length shall not be an integer multiple of

128 bits, if supported.

269 Three AAD lengths. One AAD length shall be 0, if supported. One AAD length shall

be a non-zero integer multiple of 128 bits, if supported. One AAD length shall not be

an integer multiple of 128 bits, if supported.

270 Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV lengths

tested.

271 The evaluator shall test the encrypt functionality using a set of 10 key, plaintext, AAD,

and IV tuples for each combination of parameter lengths above and obtain the

ciphertext value and tag that results from AES-GCM authenticated encrypt. Each

supported tag length shall be tested at least once per set of 10. The IV value may be

supplied by the evaluator or the implementation being tested, as long as it is known.

272 The evaluator shall test the decrypt functionality using a set of 10 key, ciphertext, tag,

AAD, and IV 5-tuples for each combination of parameter lengths above and obtain a

Pass/Fail result on authentication and the decrypted plaintext if Pass. The set shall

include five tuples that Pass and five that Fail.

273 The results from each test may either be obtained by the evaluator directly or by

supplying the inputs to the implementer and receiving the results in response. To

determine correctness, the evaluator shall compare the resulting values to those

obtained by submitting the same inputs to a known good implementation.

274 XTS-AES Test

275 The evaluator shall test the encrypt functionality of XTS-AES for each combination of

the following input parameter lengths:

276 256 bit (for AES-128) and 512 bit (for AES-256) keys

277 Three data unit (i.e., plaintext) lengths. One of the data unit lengths shall be a non-zero

integer multiple of 128 bits, if supported. One of the data unit lengths shall be an integer

multiple of 128 bits, if supported. The third data unit length shall be either the longest

supported data unit length or 216 bits, whichever is smaller.

278 Using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples, obtain the

ciphertext that results from XTS-AES encrypt.

279 The evaluator may supply a data unit sequence number instead of the tweak value if

the implementation supports it. The data unit sequence number is a base-10 number

ranging between 0 and 255 that implementations convert to a tweak value internally.

280 The evaluator shall test the decrypt functionality of XTS-AES using the same test as

for encrypt, replacing plaintext values with ciphertext values and XTS-AES encrypt

with XTS-AES decrypt.

3.1.2.7 FCS_COP.1(g)/Server Cryptographic Operation (Key Encryption)
(Server Communications)

3.1.2.7.1 TSS

281 The evaluator shall verify the TSS includes a description of the key size used for

encryption and the mode used for the key encryption.

3.1.2.7.2 Operational Guidance

282 If multiple key encryption modes are supported, the evaluator examines the guidance

documentation to determine that the method of choosing a specific mode/key size by

the end user is described.

3.1.2.7.3 KMD

283 The evaluator shall examine the vendor’s KMD to verify that it includes a description

of how key encryption will be used as part of the key chain.

3.1.2.7.4 Test

284 The AES test should be followed in FCS_COP.1(f)/Server Cryptographic Operation

(AES Data Encryption/Decryption) (Server Communications).

3.1.3 Random Bit Generation (FCS_RBG_EXT)

3.1.3.1 FCS_RBG_EXT.1/Server Random Bit Generation (Server
Communications)

3.1.3.1.1 TSS

285 For any RBG services provided by a third party, the evaluator shall ensure the TSS

includes a statement about the expected amount of entropy received from such a source,

and a full description of the processing of the output of the third-party source. The

evaluator shall verify that this statement is consistent with the selection made in

FCS_RBG_EXT.1.2 for the seeding of the DRBG. If the ST specifies more than one

DRBG, the evaluator shall examine the TSS to verify that it identifies the usage of each

DRBG mechanism.

3.1.3.1.2 Operational Guidance

286 The evaluator shall verify that the AGD guidance instructs the administrator how to

configure the TOE to use the selected DRBG mechanism(s), if necessary, and provides

information regarding how to instantiate/call the DRBG for RBG services needed in

this cPP.

3.1.3.1.3 KMD

287 There are no KMD evaluation activities for this SFR.

3.1.3.1.4 Test

288 The following tests require the developer to provide access to a test platform that

provides the evaluator with tools that are typically not found on factory products. The

evaluator shall perform 15 trials for the RNG implementation. If the RNG is

configurable by the TOE, the evaluator shall perform 15 trials for each configuration.

The evaluator shall verify that the instructions in the operational guidance for

configuration of the RNG are valid.

289 If the RNG has prediction resistance enabled, each trial consists of (1) instantiate

DRBG, (2) generate the first block of random bits (3) generate a second block of

random bits (4) uninstantiate. The evaluator verifies that the second block of random

bits is the expected value. The evaluator shall generate eight input values for each trial.

The first is a count (0 – 14). The next three are entropy input, nonce, and personalization

string for the instantiate operation. The next two are additional input and entropy input

for the first call to generate. The final two are additional input and entropy input for the

second call to generate. These values are randomly generated. “generate one block of

random bits” means to generate random bits with number of returned bits equal to the

Output Block Length (as defined in NIST SP800-90A).

290 If the RNG does not have prediction resistance, each trial consists of (1) instantiate

DRBG, (2) generate the first block of random bits (3) reseed, (4) generate a second

block of random bits (5) uninstantiate. The evaluator verifies that the second block of

random bits is the expected value. The evaluator shall generate eight input values for

each trial. The first is a count (0 – 14). The next three are entropy input, nonce, and

personalization string for the instantiate operation. The fifth value is additional input to

the first call to generate. The sixth and seventh are additional input and entropy input

to the call to reseed. The final value is additional input to the second generate call.

291 The following paragraphs contain more information on some of the input values to be

generated/selected by the evaluator.

292 Entropy input: the length of the entropy input value must equal the seed length.

293 Nonce: If a nonce is supported (CTR_DRBG with no Derivation Function does not use

a nonce), the nonce bit length is one-half the seed length.

294 Personalization string: The length of the personalization string must be <= seed length.

If the implementation only supports one personalization string length, then the same

length can be used for both values. If more than one string length is support, the

evaluator shall use personalization strings of two different lengths. If the

implementation does not use a personalization string, no value needs to be supplied.

295 Additional input: the additional input bit lengths have the same defaults and restrictions

as the personalization string lengths.

3.1.4 Salt, Nonce, and Initialization Vector Generation (FCS_SNI_EXT)

3.1.4.1 FCS_SNI_EXT.1/Server Cryptographic Operation (Salt, Nonce, and
Initialization Vector Generation) (Server Communications)

3.1.4.1.1 TSS

296 The evaluator shall ensure the TSS describes how salts are generated. The evaluator

shall confirm that the salt is generating using an RBG described in

FCS_RBG_EXT.1/Server or by the Operational Environment. If external function is

used for this purpose, the TSS should include the specific API that is called with inputs.

297 The evaluator shall ensure the TSS describes how nonces are created uniquely and how

IVs and tweaks are handled (based on the AES mode). The evaluator shall confirm that

the nonces are unique and the IVs and tweaks meet the stated requirements.

3.1.4.1.2 Operational Guidance

298 There are no AGD evaluation activities for this SFR.

3.1.4.1.3 KMD

299 There are no KMD evaluation activities for this SFR.

3.1.4.1.4 Test

300 There are no ATE evaluation activities for this SFR.

3.2 Identification and Authentication (FIA)

3.2.1 Authentication Using X.509 Certificates

3.2.1.1 FIA_X509_EXT.1/Server X.509 Certificate Validation (Server
Communications)

3.2.1.1.1 TSS

301 The evaluator shall ensure the TSS describes where the check of validity of the

certificates takes place. The evaluator ensures the TSS also provides a description of

the certificate path validation algorithm.

3.2.1.1.2 Operational Guidance

302 There are no AGD evaluation activities for this SFR.

3.2.1.1.3 KMD

303 There are no KMD evaluation activities for this SFR.

3.2.1.1.4 Test

304 The evaluator shall perform the following tests:

305 Test 1: The evaluator shall demonstrate that validating a certificate without a valid

certification path results in the function failing. The evaluator shall then load a

certificate or certificates as trusted CAs needed to validate the certificate to be used in

the function, and demonstrate that the function succeeds. The evaluator shall then

delete one of the certificates, and show that the function fails.

306 Test 2: The evaluator shall demonstrate that validating an expired certificate results in

the function failing.

307 Test 3: The evaluator shall test that the TOE can properly handle revoked certificates-

–conditional on whether CRL or OCSP is selected; if both are selected, then a test shall

be performed for each method. The evaluator shall test revocation of the TOE

certificate and revocation of the TOE intermediate CA certificate i.e. the intermediate

CA certificate should be revoked by the root CA. The evaluator shall ensure that a valid

certificate is used, and that the validation function succeeds. The evaluator then

attempts the test with a certificate that has been revoked (for each method chosen in

the selection) to ensure when the certificate is no longer valid that the validation

function fails.

308 Test 4: If OCSP is selected, the evaluator shall configure the OCSP server or use a man-

in-the-middle tool to present a certificate that does not have the OCSP signing purpose

and verify that validation of the OCSP response fails. If CRL is selected, the evaluator

shall configure the CA to sign a CRL with a certificate that does not have the CRLsign

key usage bit set, and verify that validation of the CRL fails.

309 Test 5: The evaluator shall modify any byte in the first eight bytes of the certificate and

demonstrate that the certificate fails to validate. (The certificate will fail to parse

correctly.)

310 Test 6: The evaluator shall modify any bit in the last byte of the certificate and

demonstrate that the certificate fails to validate. (The signature on the certificate will

not validate.)

311 Test 7: The evaluator shall modify any byte in the public key of the certificate and

demonstrate that the certificate fails to validate. (The hash of the certificate will not

validate.)

312 The evaluator shall perform the following tests for FIA_X509_EXT.1.2/Server. The

tests described must be performed in conjunction with the other certificate services

assurance activities, including the functions in FIA_X509_EXT.2.1/Server. The tests

for the extendedKeyUsage rules are performed in conjunction with the uses that require

those rules.

313 The evaluator shall create a chain of at least three certificates: the node certificate to be

tested, one intermediate CAs, and the self-signed Root CA.

314 Test 1: The evaluator shall construct a certificate path, such that the certificate of the

CA issuing the TOE’s certificate does not contain the basicConstraints extension.

Verify the validation of the certificate path fails.

315 Test 2: The evaluator shall construct a certificate path, such that the certificate of the

CA issuing the TOE’s certificate has the cA flag in the basicConstraints extension set

to FALSE. Verify the validation of the certificate path fails.

316 Test 3: The evaluator shall construct a certificate path, such that the certificate of the

CA issuing the TOE’s certificate has the cA flag in the basicConstraints extension set

to TRUE. The validation of the certificate path succeeds.

3.2.1.2 FIA_X509_EXT.2/Server X.509 Certificate Authentication (Server
Communications)

3.2.1.2.1 TSS

317 The evaluator shall check the TSS to ensure that it describes how the TOE chooses

which certificates to use.

318 The evaluator shall examine the TSS to confirm that it describes the behavior of the

TOE when a connection cannot be established during the validity check of a certificate

used in establishing a trusted channel. The evaluator shall verify that any distinctions

between trusted channels are described.

3.2.1.2.2 Operational Guidance

319 The evaluator shall verify the instructions in the AGD describe how to configure the

operating environment so that the TOE can use the certificates. If the requirement that

the administrator is able to specify the default action, then the evaluator shall ensure

that the guidance documentation contains instructions on how this configuration action

is performed.

3.2.1.2.3 KMD

320 There are no KMD evaluation activities for this SFR.

3.2.1.2.4 Test

321 The evaluator shall run the following test for each trusted channel:

322 The evaluator shall demonstrate that using a valid certificate requires certificate

validation checking to be performed in at least some part by communicating with a

non-TOE IT entity. The evaluator shall then manipulate the environment so that the

TOE is unable to verify the validity of the certificate, and observe that the action

selected in FIA_X509_EXT.2.2/Server is performed. If the selected action is

administrator-configurable, then the evaluator shall follow the guidance documentation

to determine that all supported administrator-configurable options behave in their

documented manner.

3.2.1.3 FIA_X509_EXT.3/Server X.509 Certificate Requests (Server
Communications)

3.2.1.3.1 TSS

323 If the ST author selects "device-specific information", the evaluator shall verify that

the TSS contains a description of the device-specific fields used in certificate requests

3.2.1.3.2 Operational Guidance

324 The evaluator shall check to ensure that the guidance documentation contains

instructions on requesting certificates from a CA, including generation of a Certificate

Request Message. If the ST author selects "Common Name", "Organization",

"Organizational Unit", or "Country", the evaluator shall ensure that this guidance

includes instructions for establishing these fields before creating the certificate request

message.

3.2.1.3.3 KMD

325 There are no KMD evaluation activities for this SFR.

3.2.1.3.4 Test

326 The evaluator shall perform the following tests:

327 Test 1: The evaluator shall use the guidance documentation to cause the TOE to

generate a certificate request message. The evaluator shall capture the generated

message and ensure that it conforms to the format specified. The evaluator shall

confirm that the certificate request provides the public key and other required

information, including any necessary user-input information.

328 Test 2: The evaluator shall demonstrate that validating a certificate response message

without a valid certification path results in the function failing. The evaluator shall then

load the Trusted Root CA certificate and certificates of all intermediate CAs

comprising the validation path for the certificate received in the response message, and

demonstrate that the function succeeds. The evaluator shall then delete or invalidate

one of loaded the certificates, and show that the function fails.

3.3 Security Management (FMT)

3.3.1 Management of Functions in TSF (FMT_MOF)

3.3.1.1 FMT_MOF.1/Server Management of Functions Behavior (Management
Server)

3.3.1.1.1 TSS

329 If support for configuring the encryption algorithms and/or key sizes are claimed in the

ST, the evaluator shall ensure the TSS describes how these are configured and shall

ensure that TSS describes how only privileged users (administrators) are allowed to

manage the states.

3.3.1.1.2 Operational Guidance

330 The evaluator to check if guidance documentation describes which authorization

factors are required to change encryption algorithms and/or key sizes.

3.3.1.1.3 KMD

331 There are no KMD evaluation activities for this SFR.

3.3.1.1.4 Test

332 The evaluator shall perform the following tests:

333 Test 1: The evaluator presents a privileged authorization credential to the TSF and

validates that changes to encryption algorithm or key sizes are allowed.

334 Test 2: The evaluator presents a non-privileged authorization credential to the TSF and

validates that changes to encryption algorithms are not allowed.

4 Evaluation Activities for Selection-Based
Requirements

4.1 Cryptographic Support (FCS)

4.1.1 Cryptographic Key Management (FCS_CKM)

4.1.1.1 FCS_CKM.1(b)/Server Cryptographic Key Generation (Symmetric
Keys) (Server Communications)

4.1.1.1.1 TSS

335 The evaluator shall review the TSS to determine that a symmetric key is supported by

the product, that the TSS includes a description of the protection provided by the

product for this key. The evaluator shall ensure that the TSS identifies the key sizes

supported by the TOE.

4.1.1.1.2 Operational Guidance

336 The evaluator shall verify that the AGD guidance instructs the administrator how to

configure the TOE to use the selected key size(s) for all uses specified by the AGD

documentation and defined in this PP-Module.

4.1.1.1.3 KMD

337 If the TOE uses a symmetric key as part of the key chain, the KMD should detail how

the symmetric key is used as part of the key chain.

4.1.1.1.4 Test

338 There are no test evaluation activities for this SFR.

4.1.2 HTTPS Protocol (FCS_HTTPS_EXT)

4.1.2.1 FCS_HTTPS_EXT.1 HTTPS Protocol

4.1.2.1.1 TSS

339 There are no TSS evaluation activities for this SFR.

4.1.2.1.2 Operational Guidance

340 There are no AGD evaluation activities for this SFR.

4.1.2.1.3 KMD

341 There are no KMD evaluation activities for this SFR.

4.1.2.1.4 Test

342 The evaluator shall perform the following tests:

343 Test 1: The evaluator shall attempt to establish an HTTPS connection with the EM

server, observe the traffic with a packet analyzer, and verify that the connection

succeeds and that the traffic is identified as TLS or HTTPS.

344 Other tests are performed in conjunction with the evaluation activities performed for

FCS_TLSC_EXT.1.

345 Validity of the server certificate shall be tested in accordance with testing performed

for FIA_X509_EXT.1/Server.

4.1.3 IPsec Protocol (FCS_IPSEC_EXT)

4.1.3.1 FCS_IPSEC_EXT.1 IPsec Protocol

4.1.3.1.1 TSS

346 FCS_IPSEC_EXT.1.1

347 The evaluator shall examine the TSS and determine that it describes what takes place

when a packet is processed by the TOE, e.g., the algorithm used to process the packet.

The TSS describes how the SPD is implemented and the rules for processing both

inbound and outbound packets in terms of the IPsec policy. The TSS describes the rules

that are available and the resulting actions available after matching a rule. The TSS

describes how those rules and actions form the SPD in terms of the BYPASS (e.g., no

encryption), DISCARD (e.g., drop the packet), and PROTECT (e.g., encrypt the

packet) actions defined in RFC 4301.

348 As noted in section 4.4.1 of RFC 4301, the processing of entries in the SPD is non-

trivial and the evaluator shall determine that the description in the TSS is sufficient to

determine which rules will be applied given the rule structure implemented by the TOE.

For example, if the TOE allows specification of ranges, conditional rules, etc., the

evaluator shall determine that the description of rule processing (for both inbound and

outbound packets) is sufficient to determine the action that will be applied, especially

in the case where two different rules may apply. This description shall cover both the

initial packets (that is, no SA is established on the interface or for that particular packet)

as well as packets that are part of an established SA.

349 FCS_IPSEC_EXT.1.3

350 The evaluator checks the TSS to ensure it states that the VPN can be established to

operate in transport mode and/or tunnel mode (as identified in FCS_IPSEC_EXT.1.3).

351 FCS_IPSEC_EXT.1.4

352 The evaluator shall examine the TSS to verify that the algorithms AES-CBC-128 and

AES-CBC-256 are implemented. If the ST author has selected either AES-GCM-128

or AES-GCM-256 in the requirement, then the evaluator verifies the TSS describes

these as well. In addition, the evaluator ensures that the SHA-based HMAC algorithm

conforms to the algorithms specified in FCS_COP.1(c) Cryptographic Operations (for

keyed-hash message authentication).

353 FCS_IPSEC_EXT.1.5

354 The evaluator shall examine the TSS to verify that IKEv1 and/or IKEv2 are

implemented.

355 For IKEv1 implementations, the evaluator shall examine the TSS to ensure that, in the

description of the IPsec protocol, it states that aggressive mode is not used for IKEv1

Phase 1 exchanges, and that only main mode is used. It may be that this is a

configurable option.

356 FCS_IPSEC_EXT.1.6

357 The evaluator shall ensure the TSS identifies the algorithms used for encrypting the

IKEv1 and/or IKEv2 payload, and that the algorithms AESCBC- 128, AES-CBC-256

are specified, and if others are chosen in the selection of the requirement, those are

included in the TSS discussion.

358 FCS_IPSEC_EXT.1.7

359 The evaluator shall ensure the TSS identifies the lifetime configuration method used

for limiting the IKEv1 Phase 1 SA lifetime and/or the IKEv2 SA lifetime. The evaluator

shall verify that the selection made here corresponds to the selection in

FCS_IPSEC_EXT.1.5.

360 FCS_IPSEC_EXT.1.8

361 The evaluator shall ensure the TSS identifies the lifetime configuration method used

for limiting the IKEv1 Phase 2 SA lifetime and/or the IKEv2 Child SA lifetime. The

evaluator shall verify that the selection made here corresponds to the selection in

FCS_IPSEC_EXT.1.5.

362 FCS_IPSEC_EXT.1.9

363 The evaluator shall check to ensure that, for each DH group supported, the TSS

describes the process for generating "x". The evaluator shall verify that the TSS

indicates that the random number generated that meets the requirements in this PP is

used, and that the length of "x" meets the stipulations in the requirement.

364 FCS_IPSEC_EXT.1.11

365 The evaluator shall check to ensure that the DH groups specified in the requirement are

listed as being supported in the TSS. If there is more than one DH group supported, the

evaluator checks to ensure the TSS describes how a particular DH group is

specified/negotiated with a peer.

366 FCS_IPSEC_EXT.1.12

367 The evaluator shall check that the TSS describes the potential strengths (in terms of the

number of bits in the symmetric key) of the algorithms that are allowed for the IKE and

ESP exchanges. The TSS shall also describe the checks that are done when negotiating

IKEv1 Phase 2 and/or IKEv2 CHILD_SA suites to ensure that the strength (in terms of

the number of bits of key in the symmetric algorithm) of the negotiated algorithm is

less than or equal to that of the IKE SA this is protecting the negotiation.

368 FCS_IPSEC_EXT.1.13

369 The evaluator ensures that the TSS identifies RSA and/or ECDSA as being used to

perform peer authentication. The description must be consistent with the algorithms as

specified in FCS_COP.1(a) Cryptographic Operations (for cryptographic signature).

370 If pre-shared keys are chosen in the selection, the evaluator shall check to ensure that

the TSS describes how pre-shared keys are established and used in authentication of

IPsec connections. The description in the TSS shall also indicate how pre-shared key

establishment is accomplished for TOEs that can generate a pre-shared key as well as

TOEs that simply use a pre-shared key.

371 FCS_IPSEC_EXT.1.14

372 The evaluator shall verify that the TSS describes how the DN in the certificate is

compared to the expected DN.

4.1.3.1.2 Operational Guidance

373 FCS_IPSEC_EXT.1.1

374 The evaluator shall examine the guidance documentation to verify it instructs the

Administrator how to construct entries into the SPD that specify a rule for processing

a packet. The description includes all three cases – a rule that ensures packets are

encrypted/decrypted, dropped, and flow through the TOE without being encrypted. The

evaluator shall determine that the description in the guidance documentation is

consistent with the description in the TSS, and that the level of detail in the guidance

documentation is sufficient to allow the administrator to set up the SPD in an

unambiguous fashion. This includes a discussion of how ordering of rules impacts the

processing of an IP packet.

375 FCS_IPSEC_EXT.1.3

376 The evaluator shall confirm that the guidance documentation contains instructions on

how to configure the connection in each mode selected.

377 FCS_IPSEC_EXT.1.4

378 The evaluator checks the guidance documentation to ensure it provides instructions on

how to configure the TOE to use the algorithms, and if either AES-GCM-128 or AES-

GCM-256 have been selected the guidance instructs how to use these as well.

379 FCS_IPSEC_EXT.1.5

380 The evaluator shall check the guidance documentation to ensure it instructs the

administrator how to configure the TOE to use IKEv1 and/or IKEv2 (as selected), and

uses the guidance to configure the TOE to perform NAT traversal for the following test

(if selected).

381 If the IKEv1 Phase 1 mode requires configuration of the TOE prior to its operation, the

evaluator shall check the guidance documentation to ensure that instructions for this

configuration are contained within that guidance.

382 FCS_IPSEC_EXT.1.6

383 The evaluator ensures that the guidance documentation describes the configuration of

the mandated algorithms, as well as any additional algorithms selected in the

requirement. The guidance is then used to configure the TOE to perform the following

test for each ciphersuite selected.

384 FCS_IPSEC_EXT.1.7

385 The evaluator shall verify that the values for SA lifetimes can be configured and that

the instructions for doing so are located in the guidance documentation. If time-based

limits are supported, the evaluator ensures that the Administrator is able to configure

Phase 1 SA values for 24 hours.

386 Currently there are no values mandated for the number of bytes, the evaluator just

ensures that this can be configured if selected in the requirement.

387 FCS_IPSEC_EXT.1.8

388 The evaluator shall verify that the values for SA lifetimes can be configured and that

the instructions for doing so are located in the guidance documentation. If time-based

limits are supported, the evaluator ensures that the Administrator is able to configure

Phase 2 SA values for 8 hours.

389 Currently there are no values mandated for the number of bytes, the evaluator just

ensures that this can be configured if selected in the requirement.

390 FCS_IPSEC_EXT.1.11

391 The evaluator ensures that the guidance documentation describes the configuration of

the mandated algorithms, as well as any additional algorithms selected in the

requirement. The guidance is then used to configure the TOE to perform the following

test for each ciphersuite selected.

392 FCS_IPSEC_EXT.1.13

393 The evaluator ensures the guidance documentation describes how to set up the TOE to

use certificates with RSA and/or ECDSA signatures and public keys.

394 The evaluator shall check that the guidance documentation describes how pre-shared

keys are to be generated and established. The description in the guidance

documentation shall also indicate how pre-shared key establishment is accomplished

for TOEs that can generate a pre-shared key as well as TOEs that simply use a pre-

shared key.

395 In order to construct the environment and configure the TOE for the following tests,

the evaluator will ensure that the guidance documentation describes how to configure

the TOE to connect to a trusted CA, and ensure a valid certificate for that CA is loaded

into the TOE and marked “trusted”.

396 FCS_IPSEC_EXT.1.14

397 The evaluator shall ensure that the guidance documentation includes configuration of

the expected DN for the connection.

4.1.3.1.3 KMD

398 There are no KMD evaluation activities for this SFR.

4.1.3.1.4 Test

399 FCS_IPSEC_EXT.1.1

400 The evaluator uses the guidance documentation to configure the TOE to carry out the

following tests:

Test 1: The evaluator shall configure the SPD such that there is a rule for dropping a

packet, encrypting a packet, and allowing a packet to flow in plaintext. The selectors

used in the construction of the rule shall be different such that the evaluator can

generate a packet and send packets to the gateway with the appropriate fields (fields

that are used by the rule - e.g., the IP addresses, TCP/UDP ports) in the packet header.

The evaluator performs both positive and negative test cases for each type of rule (e.g.

a packet that matches the rule and another that does not match the rule). The evaluator

observes via the audit trail, and packet captures that the TOE exhibited the expected

behavior: appropriate packets were dropped, allowed to flow without modification,

encrypted by the IPsec implementation.

401 Test 2: The evaluator shall devise several tests that cover a variety of scenarios for

packet processing. As with Test 1, the evaluator ensures both positive and negative test

cases are constructed. These scenarios must exercise the range of possibilities for SPD

entries and processing modes as outlined in the TSS and guidance documentation.

Potential areas to cover include rules with overlapping ranges and conflicting entries,

inbound and outbound packets, and packets that establish SAs as well as packets that

belong to established SAs. The evaluator shall verify, via the audit trail and packet

captures, for each scenario that the expected behavior is exhibited, and is consistent

with both the TSS and the guidance documentation.

402 FCS_IPSEC_EXT.1.2

403 The assurance activity for this element is performed in conjunction with the activities

for FCS_IPSEC_EXT.1.1.

404 The evaluator uses the guidance documentation to configure the TOE to carry out the

following tests:

405 Test 1 The evaluator shall configure the SPD such that there is a rule for dropping a

packet, encrypting a packet, and allowing a packet to flow in plaintext. The evaluator

may use the SPD that was created for verification of FCS_IPSEC_EXT.1.1. The

evaluator shall construct a network packet that matches the rule to allow the packet to

flow in plaintext and send that packet. The evaluator should observe that the network

packet is passed to the proper destination interface with no modification. The evaluator

shall then modify a field in the packet header; such that it no longer matches the

evaluator created entries (there may be a “TOE created” final entry that discards

packets that do not match any previous entries). The evaluator sends the packet, and

observes that the packet was dropped.

406 FCS_IPSEC_EXT.1.3

407 The evaluator shall perform the following test(s) based on the selections chosen:

408 Test 1 (conditional): If tunnel mode is selected, the evaluator uses the guidance

documentation to configure the TOE to operate in tunnel mode and also configures a

VPN peer to operate in tunnel mode. The evaluator configures the TOE and the VPN

peer to use any of the allowable cryptographic algorithms, authentication methods, etc.

to ensure an allowable SA can be negotiated. The evaluator shall then initiate a

connection from the TOE to connect to the VPN peer. The evaluator observes (for

example, in the audit trail and the captured packets) that a successful connection was

established using the tunnel mode.

409 Test 2: The evaluator uses the guidance documentation to configure the TOE to operate

in transport mode and also configures a VPN peer to operate in transport mode. The

evaluator configures the TOE and the VPN peer to use any of the allowed cryptographic

algorithms, authentication methods, etc. to ensure an allowable SA can be negotiated.

The evaluator then initiates a connection from the TOE to connect to the VPN peer.

The evaluator observes (for example, in the audit trail and the captured packets) that a

successful connection was established using the transport mode.

410 FCS_IPSEC_EXT.1.4

411 The evaluator shall configure the TOE as indicated in the guidance documentation

configuring the TOE to use each of the supported algorithms, attempt to establish a

connection using ESP, and verify that the attempt succeeds.

412 FCS_IPSEC_EXT.1.5

413 Tests are performed in conjunction with the other IPsec evaluation activities.

414 Test 1 (conditional): The evaluator shall configure the TOE as indicated in the guidance

documentation, and attempt to establish a connection using an IKEv1 Phase 1

connection in aggressive mode. This attempt should fail. The evaluator should then

show that main mode exchanges are supported.

415 Test 2 (conditional): The evaluator shall configure the TOE so that it will perform NAT

traversal processing as described in the TSS and RFC 5996, section 2.23. The evaluator

shall initiate an IPsec connection and determine that the NAT is successfully traversed.

416 FCS_IPSEC_EXT.1.6

417 The evaluator shall configure the TOE to use the ciphersuite under test to encrypt the

IKEv1 and/or IKEv2 payload and establish a connection with a peer device, which is

configured to only accept the payload encrypted using the indicated ciphersuite. The

evaluator will confirm the algorithm was that used in the negotiation.

418 FCS_IPSEC_EXT.1.7

419 When testing this functionality, the evaluator needs to ensure that both sides are

configured appropriately. From the RFC “A difference between IKEv1 and IKEv2 is

that in IKEv1 SA lifetimes were negotiated. In IKEv2, each end of the SA is responsible

for enforcing its own lifetime policy on the SA and rekeying the SA when necessary.

If the two ends have different lifetime policies, the end with the shorter lifetime will

end up always being the one to request the rekeying. If the two ends have the same

lifetime policies, it is possible that both will initiate a rekeying at the same time (which

will result in redundant SAs). To reduce the probability of this happening, the timing

of rekeying requests SHOULD be jittered.”

420 Each of the following tests shall be performed for each version of IKE selected in the

FCS_IPSEC_EXT.1.5 protocol selection:

421 Test 1 (Conditional): The evaluator shall configure a maximum lifetime in terms of the

number of bytes allowed following the guidance documentation. The evaluator shall

configure a test peer with a byte lifetime that exceeds the lifetime of the TOE. The

evaluator shall establish an SA between the TOE and the test peer, and determine that

once the allowed number of bytes through this SA is exceeded, a new SA is negotiated.

The evaluator shall verify that the TOE initiates a Phase 1 negotiation.

422 Test 2 (Conditional): The evaluator shall configure a maximum lifetime of 24 hours for

the Phase 1 SA following the guidance documentation. The evaluator shall configure a

test peer with a lifetime that exceeds the lifetime of the TOE. The evaluator shall

establish an SA between the TOE and the test peer, maintain the Phase 1 SA for 24

hours, and determine that once 24 hours has elapsed, a new Phase 1 SA is negotiated.

The evaluator shall verify that the TOE initiates a Phase 1 negotiation.

423 FCS_IPSEC_EXT.1.8

424 When testing this functionality, the evaluator needs to ensure that both sides are

configured appropriately. From the RFC “A difference between IKEv1 and IKEv2 is

that in IKEv1 SA lifetimes were negotiated. In IKEv2, each end of the SA is responsible

for enforcing its own lifetime policy on the SA and rekeying the SA when necessary.

If the two ends have different lifetime policies, the end with the shorter lifetime will

end up always being the one to request the rekeying. If the two ends have the same

lifetime policies, it is possible that both will initiate a rekeying at the same time (which

will result in redundant SAs). To reduce the probability of this happening, the timing

of rekeying requests SHOULD be jittered.”

425 Each of the following tests shall be performed for each version of IKE selected in the

FCS_IPSEC_EXT.1.5 protocol selection:

426 Test 1 (Conditional): The evaluator shall configure a maximum lifetime in terms of the

number of bytes allowed following the guidance documentation. The evaluator shall

configure a test peer with a byte lifetime that exceeds the lifetime of the TOE. The

evaluator shall establish an SA between the TOE and the test peer, and determine that

once the allowed number of bytes through this SA is exceeded, a new SA is negotiated.

The evaluator shall verify that the TOE initiates a Phase 2 negotiation.

427 Test 2 (Conditional): The evaluator shall configure a maximum lifetime of 8 hours for

the Phase 2 SA following the guidance documentation. The evaluator shall configure a

test peer with a lifetime that exceeds the lifetime of the TOE. The evaluator shall

establish an SA between the TOE and the test peer, maintain the Phase 1 SA for 8

hours, and determine that once 8 hours has elapsed, a new Phase 2 SA is negotiated.

The evaluator shall verify that the TOE initiates a Phase 2 negotiation.

428 FCS_IPSEC_EXT.1.10

429 Test 1 (conditional): If the first selection is chosen, the evaluator shall check to ensure

that, for each DH group supported, the TSS describes the process for generating each

nonce. The evaluator shall verify that the TSS indicates that the random number

generated that meets the requirements in this PP is used, and that the length of the

nonces meet the stipulations in the requirement.

430 Test 2 (conditional): If the second selection is chosen, the evaluator shall check to

ensure that, for each PRF hash supported, the TSS describes the process for generating

each nonce. The evaluator shall verify that the TSS indicates that the random number

generated that meets the requirements in this PP is used, and that the length of the

nonces meet the stipulations in the requirement.

431 FCS_IPSEC_EXT.1.11

432 For each supported DH group, the evaluator shall test to ensure that all supported IKE

protocols can be successfully completed using that particular DH group.

433 FCS_IPSEC_EXT.1.12

434 The evaluator simply follows the guidance to configure the TOE to perform the

following tests:

435 Test 1: This test shall be performed for each version of IKE supported. The evaluator

shall successfully negotiate an IPsec connection using each of the supported algorithms

and hash functions identified in the requirements.

436 Test 2: This test shall be performed for each version of IKE supported. The evaluator

shall attempt to establish an SA for ESP that selects an encryption algorithm with more

strength than that being used for the IKE SA (i.e., symmetric algorithm with a key size

larger than that being used for the IKE SA). Such attempts should fail.

437 Test 3: This test shall be performed for each version of IKE supported. The evaluator

shall attempt to establish an IKE SA using an algorithm that is not one of the supported

algorithms and hash functions identified in the requirements. Such an attempt should

fail.

438 Test 4: This test shall be performed for each version of IKE supported. The evaluator

shall attempt to establish an SA for ESP (assumes the proper parameters where used to

establish the IKE SA) that selects an encryption algorithm that is not identified in

FCS_IPSEC_EXT.1.4. Such an attempt should fail.

439 FCS_IPSEC_EXT.1.13

440 For efficiency sake, the testing that is performed may be combined with the testing for

FIA_X509_EXT.1, FIA_X509_EXT.2 (for IPsec connections), and

FCS_IPSEC_EXT.1.1. The following tests shall be repeated for each peer

authentication selected in the FCS_IPSEC_EXT.1.1 selection above:

441 Test 1: The evaluator shall configure the TOE to use a private key and associated

certificate signed by a trusted CA and shall establish an IPsec connection with the peer.

442 Test 2 (conditional): The evaluator shall generate a pre-shared key off-TOE and use it,

as indicated in the guidance documentation, to establish an IPsec connection with the

peer.

443 FCS_IPSEC_EXT.1.14

444 The evaluator shall, if necessary, configure the expected DN according to the guidance

documentation. The evaluator shall send a peer certificate signed by a trusted CA with

a DN that does not match an expected DN and verify that the TOE denies the

connection.

4.1.4 Cryptographic Key Derivation (FCS_KDF_EXT)

4.1.4.1 FCS_KDF_EXT.1/Server Cryptographic Key Derivation (Management
Server)

4.1.4.1.1 TSS

445 The evaluator shall verify the TSS includes a description of the key derivation function

and shall verify the key derivation uses an approved derivation mode and key expansion

algorithm according to SP 800-108 and SP 800-132.

4.1.4.1.2 Operational Guidance

446 There are no AGD evaluation activities for this SFR.

4.1.4.1.3 KMD

447 The evaluator shall examine the vendor’s KMD to ensure that all keys used are derived

using an approved method and a description of how and when the keys are derived.

4.1.4.1.4 Test

448 There are no test evaluation activities for this SFR.

4.1.5 Cryptographic Construct and Conditioning (FCS_PCC_EXT)

4.1.5.1 FCS_PCC_EXT.1/Server Cryptographic Password Construct and
Conditioning (Management Server)

4.1.5.1.1 TSS

449 The evaluator shall ensure the TSS describes the manner in which the TOE enforces

the construction of passwords, including the length, and requirements on characters

(number and type). The evaluator also verifies that the TSS provides a description of

how the password is conditioned and the evaluator ensures it satisfies the requirement.

4.1.5.1.2 Operational Guidance

450 There are no AGD evaluation activities for this SFR.

4.1.5.1.3 KMD

451 The evaluator shall examine the KMD to ensure that the formation of the BEV and

intermediary keys is described and that the key sizes match that selected by the ST

author.

452 The evaluator shall check that the KMD describes the method by which the

password/passphrase is first encoded and then fed to the SHA algorithm. The settings

for the algorithm (padding, blocking, etc.) shall be described, and the evaluator shall

verify that these are supported by the selections in this component as well as the

selections concerning the hash function itself. The evaluator shall verify that the KMD

contains a description of how the output of the hash function is used to form the

submask that will be input into the function and is the same length as the BEV as

specified above.

4.1.5.1.4 Test

453 The evaluator shall perform the following tests:

454 Test 1: Ensure that the TOE supports passwords/passphrases of a minimum length of

64 characters.

455 Test 2: If the TOE supports a password/passphrase length up to a maximum number of

characters, n (which would be greater than 64), then ensure that the TOE will not accept

more than n characters.

456 Test 3: Ensure that the TOE supports passwords consisting of all characters assigned

and supported by the ST author.

4.1.6 SSH Client Protocol (FCS_SSHC_EXT)

4.1.6.1 FCS_SSHC_EXT.1 SSH Client Protocol

4.1.6.1.1 TSS

457 FCS_SSHC_EXT.1.2

458 The evaluator shall check to ensure that the TSS contains a description of the public

key algorithms that are acceptable for use for authentication, that this list conforms to

FCS_SSHC_EXT.1.5, and ensure that password-based authentication methods are also

allowed.

459 FCS_SSHC_EXT.1.3

460 The evaluator shall check that the TSS describes how “large packets” in terms of RFC

4253 are detected and handled.

461 FCS_SSHC_EXT.1.4

462 The evaluator shall check the description of the implementation of this protocol in the

TSS to ensure that optional characteristics are specified, and the encryption algorithms

supported are specified as well. The evaluator shall check the TSS to ensure that the

encryption algorithms specified are identical to those listed for this component

463 FCS_SSHC_EXT.1.5

464 The evaluator shall check the description of the implementation of this protocol in the

TSS to ensure that optional characteristics are specified, and the public key algorithms

supported are specified as well. The evaluator shall check the TSS to ensure that the

public key algorithms specified are identical to those listed for this component.

465 FCS_SSHC_EXT.1.6

466 The evaluator shall check the TSS to ensure that it lists the supported data integrity

algorithms, and that that list corresponds to the list in this component.

467 FCS_SSHC_EXT.1.7

468 The evaluator shall check the TSS to ensure that it lists the supported key exchange

algorithms, and that that list corresponds to the list in this component.

4.1.6.1.2 Operational Guidance

469 FCS_SSHC_EXT.1.4

470 The evaluator shall also check the guidance documentation to ensure that it contains

instructions on configuring the TOE so that SSH conforms to the description in the TSS

(for instance, the set of algorithms advertised by the TOE may have to be restricted to

meet the requirements).

471 FCS_SSHC_EXT.1.5

472 The evaluator shall also check the guidance documentation to ensure that it contains

instructions on configuring the TOE so that SSH conforms to the description in the TSS

(for instance, the set of algorithms advertised by the TOE may have to be restricted to

meet the requirements).

473 FCS_SSHC_EXT.1.6

474 The evaluator shall also check the guidance documentation to ensure that it contains

instructions to the administrator on how to ensure that only the allowed data integrity

algorithms are used in SSH connections with the TOE (specifically, that the “none”

MAC algorithm is not allowed).

475 FCS_SSHC_EXT.1.7

476 The evaluator shall also check the guidance documentation to ensure that it contains

instructions to the administrator on how to ensure that only the allowed key exchange

algorithms are used in SSH connections with the TOE.

4.1.6.1.3 KMD

477 There are no KMD evaluation activities for this SFR.

4.1.6.1.4 Test

478 FCS_SSHC_EXT.1.2

479 Test 1: The evaluator shall, for each public key algorithm supported, show that the TOE

supports the use of that public key algorithm to authenticate a user connection to an

SSH server. Any configuration activities required to support this test shall be performed

according to instructions in the guidance documentation.

480 Test 2: Using the guidance documentation, the evaluator shall configure the TOE to

perform password-based authentication to an SSH server, and demonstrate that a user

can be successfully authenticated by the TOE to an SSH server using a password as an

authenticator.

481 FCS_SSHC_EXT.1.3

482 The evaluator shall demonstrate that if the TOE receives a packet larger than that

specified in this component, that packet is dropped.

483 FCS_SSHC_EXT.1.4

484 Test 1: The evaluator shall establish a SSH connection using each of the encryption

algorithms specified by the requirement. It is sufficient to observe (on the wire) the

successful negotiation of the algorithm to satisfy the intent of the test.

485 Test 2: The evaluator shall configure an SSH server to only allow the 3descbc

encryption algorithm and no other encryption algorithms. The evaluator shall attempt

to establish an SSH connection from the TOE to the SSH server and observe that the

connection is rejected.

486 FCS_SSHC_EXT.1.5

487 Test 1: The evaluator shall establish a SSH connection using each of the public key

algorithms specified by the requirement to authenticate an SSH server to the TOE. It is

sufficient to observe (on the wire) the successful negotiation of the algorithm to satisfy

the intent of the test.

488 Test 2: The evaluator shall configure an SSH server to only allow the ssh-dsa public

key algorithm and no other public key algorithms. The evaluator shall attempt to

establish an SSH connection from the TOE to the SSH server and observe that the

connection is rejected.

489 FCS_SSHC_EXT.1.6

490 Test 1: The evaluator shall establish a SSH connection using each of the integrity

algorithms specified by the requirement. It is sufficient to observe (on the wire) the

successful negotiation of the algorithm to satisfy the intent of the test.

491 Test 2: The evaluator shall configure an SSH server to only allow the “none” MAC

algorithm. The evaluator shall attempt to connect from the TOE to the SSH server and

observe that the attempt fails.

492 Test 3: The evaluator shall configure an SSH server to only allow the hmacmd5 MAC

algorithm. The evaluator shall attempt to connect from the TOE to the SSH server and

observe that the attempt fails.

493 FCS_SSHC_EXT.1.7

494 Test 1: The evaluator shall configure an SSH server to permit all allowed key exchange

methods. The evaluator shall attempt to connect from the TOE to the SSH server using

each allowed key exchange method, and observe that each attempt succeeds.

495 FCS_SSHC_EXT.1.8

496 The evaluator shall configure the TOE to create a log entry when a rekey occurs. The

evaluator shall connect to the TOE with an SSH client and cause 2^28 packets to be

transmitted from the client to the TOE, and subsequently review the audit log to ensure

that a rekey occurred.

497 FCS_SSHC_EXT.1.9

498 Test 1: The evaluator shall delete all entries in the TOE’s list of recognized SSH server

host keys and, if selected, all entries in the TOE’s list of trusted certification authorities.

The evaluator shall initiate a connection from the TOE to an SSH server. The evaluator

shall ensure that the TOE either rejects the connection or displays the SSH server’s

public key (either the key bytes themselves or a hash of the key using any allowed hash

algorithm) and prompts the user to accept or deny the key before continuing the

connection.

499 Test 2: The evaluator shall add an entry associating a host name with a public key into

the TOE’s local database. The evaluator shall replace, on the corresponding SSH

server, the server’s host key with a different host key. The evaluator shall initiate a

connection from the TOE to the SSH server using password-based authentication, shall

ensure that the TOE rejects the connection, and shall ensure that the password was not

transmitted to the SSH server (for example, by instrumenting the SSH server with a

debugging capability to output received passwords).

4.1.7 SSH Server Protocol (FCS_SSHS_EXT)

4.1.7.1 FCS_SSHS_EXT.1 SSH Server Protocol

4.1.7.1.1 TSS

500 FCS_SSHS_EXT.1.2

501 The evaluator shall check to ensure that the TSS contains a description of the public

key algorithms that are acceptable for use for authentication, that this list conforms to

FCS_SSHS_EXT.1.5, and ensure that password-based authentication methods are also

allowed.

502 FCS_SSHS_EXT.1.3

503 The evaluator shall check that the TSS describes how “large packets” in terms of RFC

4253 are detected and handled.

504 FCS_SSHS_EXT.1.4

505 The evaluator shall check the description of the implementation of this protocol in the

TSS to ensure that optional characteristics are specified, and the encryption algorithms

supported are specified as well. The evaluator shall check the TSS to ensure that the

encryption algorithms specified are identical to those listed for this component.

506 FCS_SSHS_EXT.1.5

507 The evaluator shall check the description of the implementation of this protocol in the

TSS to ensure that optional characteristics are specified, and the public key algorithms

supported are specified as well. The evaluator shall check the TSS to ensure that the

public key algorithms specified are identical to those listed for this component.

508 FCS_SSHS_EXT.1.6

509 The evaluator shall check the TSS to ensure that it lists the supported data integrity

algorithms, and that that list corresponds to the list in this component.

510 FCS_SSHS_EXT.1.7

511 The evaluator shall check the TSS to ensure that it lists the supported key exchange

algorithms, and that that list corresponds to the list in this component.

4.1.7.1.2 Operational Guidance

512 FCS_SSHS_EXT.1.4

513 The evaluator shall also check the guidance documentation to ensure that it contains

instructions on configuring the TOE so that SSH conforms to the description in the TSS

(for instance, the set of algorithms advertised by the TOE may have to be restricted to

meet the requirements).

514 FCS_SSHS_EXT.1.5

515 The evaluator shall also check the guidance documentation to ensure that it contains

instructions on configuring the TOE so that SSH conforms to the description in the TSS

(for instance, the set of algorithms advertised by the TOE may have to be restricted to

meet the requirements).

516 FCS_SSHS_EXT.1.6

517 The evaluator shall also check the guidance documentation to ensure that it contains

instructions to the administrator on how to ensure that only the allowed data integrity

algorithms are used in SSH connections with the TOE (specifically, that the “none”

MAC algorithm is not allowed).

518 FCS_SSHS_EXT.1.7

519 The evaluator shall also check the guidance documentation to ensure that it contains

instructions to the administrator on how to ensure that only the allowed key exchange

algorithms are used in SSH connections with the TOE.

4.1.7.1.3 KMD

520 There are no KMD evaluation activities for this SFR.

4.1.7.1.4 Test

521 FCS_SSHS_EXT.1.2

522 Test 1: The evaluator shall, for each public key algorithm supported, show that the TOE

supports the use of that public key algorithm to authenticate a user connection. Any

configuration activities required to support this test shall be performed according to

instructions in the guidance documentation.

523 Test 2: The evaluator shall choose one public key algorithm supported by the TOE.

The evaluator shall generate a new key pair for that algorithm without configuring the

TOE to recognize the public key for authentication. The evaluator shall use an SSH

client to attempt to connect to the TOE with the new key pair and demonstrate that

authentication fails.

524 Test 3: Using the guidance documentation, the evaluator shall configure the TOE to

accept password-based authentication, and demonstrate that a user can be successfully

authenticated to the TOE over SSH using a password as an authenticator.

525 Test 4: The evaluator shall use an SSH client, enter an incorrect password to attempt to

authenticate to the TOE, and demonstrate that the authentication fails.

526 FCS_SSHS_EXT.1.3

527 The evaluator shall demonstrate that if the TOE receives a packet larger than that

specified in this component, that packet is dropped.

528 FCS_SSHS_EXT.1.4

529 Test 1: The evaluator shall establish a SSH connection using each of the encryption

algorithms specified by the requirement. It is sufficient to observe (on the wire) the

successful negotiation of the algorithm to satisfy the intent of the test.

530 Test 2: The evaluator shall configure an SSH client to only allow the 3descbc

encryption algorithm and no other encryption algorithms. The evaluator shall attempt

to establish an SSH connection from the SSH client to the TOE and observe that the

connection is rejected.

531 FCS_SSHS_EXT.1.5

532 Test 1: The evaluator shall establish a SSH connection using each of the public key

algorithms specified by the requirement to authenticate the TOE to an SSH client. It is

sufficient to observe (on the wire) the successful negotiation of the algorithm to satisfy

the intent of the test.

533 Test 2: The evaluator shall configure an SSH client to only allow the ssh-dsa public

key algorithm and no other public key algorithms. The evaluator shall attempt to

establish an SSH connection from the SSH client to the TOE and observe that the

connection is rejected.

534 FCS_SSHS_EXT.1.6

535 Test 1: The evaluator shall establish a SSH connection using each of the integrity

algorithms specified by the requirement. It is sufficient to observe (on the wire) the

successful negotiation of the algorithm to satisfy the intent of the test.

536 Test 2: The evaluator shall configure an SSH client to only allow the “none” MAC

algorithm. The evaluator shall attempt to connect from the SSH client to the TOE and

observe that the attempt fails.

537 Test 3: The evaluator shall configure an SSH client to only allow the hmacmd5 MAC

algorithm. The evaluator shall attempt to connect from the SSH client to the TOE and

observe that the attempt fails.

538 FCS_SSHS_EXT.1.7

539 Test 1: The evaluator shall configure an SSH client to only allow the diffiehellman-

group1-sha1 key exchange. The evaluator shall attempt to connect from the SSH client

to the TOE and observe that the attempt fails.

540 Test 2: For each allowed key exchange method, the evaluator shall configure an SSH

client to only allow that method for key exchange, attempt to connect from the client

to the TOE, and observe that the attempt succeeds.

541 FCS_SSHS_EXT.1.8

542 The evaluator shall configure the TOE to create a log entry when a rekey occurs. The

evaluator shall connect to the TOE with an SSH client and cause 2^28 packets to be

transmitted from the client to the TOE, and subsequently review the audit log to ensure

that a rekey occurred.

4.1.8 TLS Client Protocol (FCS_TLSC_EXT)

4.1.8.1 FCS_TLSC_EXT.1 TLS Client Protocol

4.1.8.1.1 TSS

543 FCS_TLSC_EXT.1.1

544 The evaluator shall check the description of the implementation of this protocol in the

TSS to ensure that the ciphersuites supported are specified. The evaluator shall check

the TSS to ensure that the ciphersuites specified include those listed for this component.

545 FCS_TLSC_EXT.1.2

546 The evaluator shall ensure that the TSS describes the client’s method of establishing

all reference identifiers from the administrator/application configured reference

identifier, including which types of reference identifiers are supported (e.g. Common

Name, DNS Name, URI Name, Service Name, or other application-specific Subject

Alternative Names) and whether IP addresses and wildcards are supported. The

evaluator shall ensure that this description identifies whether and the manner in which

certificate pinning is supported or used by the TOE. The TLS shall indicate if TLS_PSK

is used with the PSK-identity as a reference identifier.

547 FCS_TLSC_EXT.1.4

548 The evaluator shall verify that TSS describes the Supported Elliptic Curves Extension

and whether the required behaviour is performed by default or may be configured.

4.1.8.1.2 Operational Guidance

549 FCS_TLSC_EXT.1.1

550 The evaluator shall also check the guidance documentation to ensure that it contains

instructions on configuring the TOE so that TLS conforms to the description in the

TSS.

551 FCS_TLSC_EXT.1.2

552 The evaluator shall verify that the AGD guidance includes instructions for setting the

reference identifier to be used for the purposes of certificate validation in TLS.

553 FCS_TLSC_EXT.1.4

554 If the TSS indicates that the Supported Elliptic Curves Extension must be configured

to meet the requirement, the evaluator shall verify that AGD guidance includes

configuration of the Supported Elliptic Curves Extension.

4.1.8.1.3 KMD

555 There are no KMD evaluation activities for this SFR.

4.1.8.1.4 Test

556 Note that if the TSF includes FCS_TLSC_EXT.3, some tests here may not be

applicable based on selections made in that SFR. The evaluator shall reference

FCS_TLSC_EXT.3 in order to determine the TLS tests that are relevant to the TOE

based on the claims made.

557 FCS_TLSC_EXT.1.1

558 Test 1: The evaluator shall establish a TLS connection using each of the ciphersuites

specified by the requirement. This connection may be established as part of the

establishment of a higher-level protocol, e.g., as part of an HTTPS session. It is

sufficient to observe the successful negotiation of a ciphersuite to satisfy the intent of

the test; it is not necessary to examine the characteristics of the encrypted traffic in an

attempt to discern the ciphersuite being used (for example, that the cryptographic

algorithm is 128-bit AES and not 256-bit AES).

559 Test 2: The evaluator shall attempt to establish the connection using a server with a

server certificate that contains the Server Authentication purpose in the

extendedKeyUsage field and verify that a connection is established. The evaluator will

then verify that the client rejects an otherwise valid server certificate that lacks the

Server Authentication purpose in the extendedKeyUsage field and a connection is not

established. Ideally, the two certificates should be identical except for the

extendedKeyUsage field. The test is not applicable if TLS_PSK is selected.

560 Test 3: The evaluator shall send a server certificate in the TLS connection that does not

match the server-selected ciphersuite (for example, send a ECDSA certificate while

using the TLS_RSA_WITH_AES_128_CBC_SHA256 ciphersuite). The evaluator

shall verify that the TOE disconnects after receiving the server’s Certificate handshake

message. The test is not applicable if TLS_PSK is selected.

561 Test 4: The evaluator shall configure the server to select the

TLS_NULL_WITH_NULL_NULL ciphersuite and verify that the client denies the

connection. Test 2 in FCS_TLSS_EXT.1.1 or FCS_TLSS_EXT.2.1 can be used as a

substitute for this test.

562 Test 5: The evaluator performs the following modifications to the traffic:

563 a) Change the TLS version selected by the server in the Server Hello to a non-supported

TLS version (for example 1.3 represented by the two bytes 03 04) and verify that the

client rejects the connection.

564 b) Modify at least one byte in the server’s nonce in the Server Hello handshake

message, and verify that the client rejects the Server Key Exchange handshake message

(if using a DHE or ECDHE ciphersuite) or that the server denies the client’s Finished

handshake message.

565 c) Modify the server’s selected ciphersuite in the Server Hello handshake message to

be a ciphersuite not presented in the Client Hello handshake message. The evaluator

shall verify that the client rejects the connection after receiving the Server Hello.

566 d) Modify the signature block in the Server’s Key Exchange handshake message, and

verify that the client rejects the connection after receiving the Server Key Exchange

message.

567 e) Modify a byte in the Server Finished handshake message, and verify that the client

sends a fatal alert upon receipt and does not send any application data.

568 f) Send a garbled message from the Server after the Server has issued the

ChangeCipherSpec message and verify that the client denies the connection.

569 FCS_TLSC_EXT.1.2

570 The evaluator shall configure the reference identifier according to the AGD guidance

and perform the following tests during a TLS connection (the tests are not applicable

if TLS_PSK is selected):

571 Test 1: The evaluator shall present a server certificate that does not contain an identifier

in either the Subject Alternative Name (SAN) or Common Name (CN) that matches

the reference identifier. The evaluator shall verify that the connection fails.

572 Test 2: The evaluator shall present a server certificate that contains a CN that matches

the reference identifier, contains the SAN extension, but does not contain an identifier

in the SAN that matches the reference identifier. The evaluator shall verify that the

connection fails. The evaluator shall repeat this test for each supported SAN type.

573 Test 3: The evaluator shall present a server certificate that contains a CN that matches

the reference identifier and does not contain the SAN extension. The evaluator shall

verify that the connection succeeds.

574 Test 4: The evaluator shall present a server certificate that contains a CN that does not

match the reference identifier but does contain an identifier in the SAN that matches.

The evaluator shall verify that the connection succeeds.

575 Test 5: The evaluator shall perform the following wildcard tests with each supported

type of reference identifier:

576 a) The evaluator shall present a server certificate containing a wildcard that is not in

the left-most label of the presented identifier (e.g. foo.*.example.com) and verify that

the connection fails.

577 b) The evaluator shall present a server certificate containing a wildcard in the left-most

label (e.g. *.example.com). The evaluator shall configure the reference identifier with

a single left-most label (e.g. foo.example.com) and verify that the connection succeeds.

The evaluator shall configure the reference identifier without a left-most label as in the

certificate (e.g. example.com) and verify that the connection fails. The evaluator shall

configure the reference identifier with two left-most labels (e.g. bar.foo.example.come)

and verify that the connection fails.

578 Test 6 (conditional): If URI or Service name reference identifiers are supported, the

evaluator shall configure the DNS name and the service identifier. The evaluator shall

present a server certificate containing the correct DNS name and service identifier in

the URIName or SRVName fields of the SAN and verify that the connection succeeds.

The evaluator shall repeat this test with the wrong service identifier (but correct DNS

name) and verify that the connection fails.

579 Test 7 (conditional): If pinned certificates are supported the evaluator shall present a

certificate that does not match the pinned certificate and verify that the connection fails.

580 FCS_TLSC_EXT.1.3

581 Test 1: The evaluator shall demonstrate that using a certificate without a valid

certification path results in the function failing. Using the administrative guidance, the

evaluator shall then load a certificate or certificates needed to validate the certificate to

be used in the function, and demonstrate that the function succeeds. If the certificate is

validated and a trusted channel is established, the test passes. The evaluator then shall

delete one of the certificates, and show that the certificate is not validated and the

trusted channel is not established. The test is not applicable if TLS_PSK is selected.

582 FCS_TLSC_EXT.1.4

583 Test 1: The evaluator shall configure the server to perform an ECDHE key exchange

in the TLS connection using a non-supported curve (for example P-192) and shall

verify that the TOE disconnects after receiving the server’s Key Exchange handshake

message.

4.1.8.2 FCS_TLSC_EXT.3 TLS Client Handshake Message Exchange

4.1.8.2.1 TSS

584 The evaluator shall verify that when the reduced handshake is selected with TLS-PSK,

the TSS describes the difference against the full handshake and demonstrates the

security of communication is not lowered. The evaluator shall verify that the reduced

handshake is used within FPT_ITT.1 only.

4.1.8.2.2 Operational Guidance

585 There are no AGD evaluation activities for this SFR.

4.1.8.2.3 KMD

586 There are no KMD evaluation activities for this SFR.

4.1.8.2.4 Test

587 If the reduced TLS handshake message exchange is selected then the following tests in

FCS_TLSC_EXT.1 are not applicable:

588 FCS_TLSC_EXT.1.1 Test 5: tests d) and f).

4.1.9 TLS Server Protocol (FCS_TLSS_EXT)

4.1.9.1 FCS_TLSS_EXT.1 TLS Server Protocol

4.1.9.1.1 TSS

589 FCS_TLSS_EXT.1.1

590 The evaluator shall check the description of the implementation of this protocol in the

TSS to ensure that the ciphersuites supported are specified. The evaluator shall check

the TSS to ensure that the ciphersuites specified are identical to those listed for this

component.

591 FCS_TLSS_EXT.1.2

592 The evaluator shall verify that the TSS contains a description of the denial of old SSL

and TLS versions.

593 FCS_TLSS_EXT.1.3

594 The evaluator shall verify that the TSS describes the key agreement parameters of the

server key exchange message.

4.1.9.1.2 Operational Guidance

595 FCS_TLSS_EXT.1.1

596 The evaluator shall also check the guidance documentation to ensure that it contains

instructions on configuring the TOE so that TLS conforms to the description in the TSS

(for instance, the set of ciphersuites advertised by the TOE may have to be restricted to

meet the requirements).

597 FCS_TLSS_EXT.1.2

598 The evaluator shall verify that any configuration necessary to meet the requirement

must be contained in the AGD guidance.

599 FCS_TLSS_EXT.1.3

600 The evaluator shall verify that any configuration necessary to meet the requirement

must be contained in the AGD guidance.

4.1.9.1.3 KMD

601 There are no KMD evaluation activities for this SFR.

4.1.9.1.4 Test

602 Note that if the TSF includes FCS_TLSC_EXT.3, some tests here may not be

applicable based on selections made in that SFR. The evaluator shall reference

FCS_TLSC_EXT.3 in order to determine the TLS tests that are relevant to the TOE

based on the claims made.

603 FCS_TLSS_EXT.1.1

604 Test 1: The evaluator shall establish a TLS connection using each of the ciphersuites

specified by the requirement. This connection may be established as part of the

establishment of a higher-level protocol, e.g., as part of an HTTPS session. It is

sufficient to observe the successful negotiation of a ciphersuite to satisfy the intent of

the test; it is not necessary to examine the characteristics of the encrypted traffic in an

attempt to discern the ciphersuite being used (for example, that the cryptographic

algorithm is 128-bit AES and not 256-bit AES).

605 Test 2: The evaluator shall send a Client Hello to the server with a list of ciphersuites

that does not contain any of the ciphersuites in the server’s ST and verify that the server

denies the connection. Additionally, the evaluator shall send a Client Hello to the server

containing only the

606 TLS_NULL_WITH_NULL_NULL ciphersuite and verify that the server denies the

connection.

607 Test 3: The evaluator shall use a client to send a key exchange message in the TLS

connection that the does not match the server-selected ciphersuite (for example, send

an ECDHE key exchange while using the

TLS_RSA_WITH_AES_128_CBC_SHA256 ciphersuite or send a RSA key exchange

while using one of the ECDSA ciphersuites.) The evaluator shall verify that the TOE

disconnects after the receiving the key exchange message.

608 Test 4: The evaluator shall perform the following modifications to the traffic:

609 a) Modify at a byte in the client’s nonce in the Client Hello handshake message, and

verify that the server rejects the client’s Certificate Verify handshake message (if using

mutual authentication) or that the server denies the client’s Finished handshake

message.

610 b) Modify the signature block in the Client’s Key Exchange handshake message, and

verify that the server rejects the client’s Certificate Verify handshake message (if using

mutual authentication) or that the server denies the client’s Finished handshake

message.

611 c) Modify a byte in the Client Finished handshake message, and verify that the server

rejects the connection and does not send any application data.

612 d) After generating a fatal alert by sending a Finished message from the client before

the client sends a ChangeCipherSpec message, send a Client Hello with the session

identifier from the previous test, and verify that the server denies the connection.

613 e) Send a garbled message from the client after the client has issued the

ChangeCipherSpec message and verify that the Server denies the connection.

614 FCS_TLSS_EXT.1.2

615 The evaluator shall send a Client Hello requesting a connection with version SSL 1.0

and verify that the server denies the connection. The evaluator shall repeat this test with

SSL 2.0, SSL 3.0, TLS 1.0, and any selected TLS versions.

616 FCS_TLSS_EXT.1.3

617 The evaluator shall attempt a connection using an ECDHE ciphersuite and a configured

curve and, using a packet analyzer, verify that the key agreement parameters in the Key

Exchange message are the ones configured. (Determining that the size matches the

expected size for the configured curve is sufficient.) The evaluator shall repeat this test

for each supported NIST Elliptic Curve and each supported Diffie-Hellman key size.

4.1.9.2 FCS_TLSS_EXT.3 TLS Server Handshake Message Exchange

4.1.9.2.1 TSS

618 The evaluator shall verify that when the reduced handshake is selected with TLS-PSK,

the TSS describes the difference against the full handshake and demonstrates that the

security of communication is not lowered. The evaluator shall verify that the reduced

handshake is used within FPT_ITT.1 only.

4.1.9.2.2 Operational Guidance

619 There are no AGD evaluation activities for this SFR.

4.1.9.2.3 KMD

620 There are no KMD evaluation activities for this SFR.

4.1.9.2.4 Test

621 If the reduced TLS handshake message exchange is selected then the following tests

are not applicable:

622 FCS_TLSC_EXT.1.1 Test 4: tests b), d), and e);

623 FCS_TLSS_EXT.1.3

4.1.10 Validation of Cryptographic Elements (FCS_VAL_EXT)

4.1.10.1 FCS_VAL_EXT.2 User Validation

4.1.10.1.1 TSS

624 The evaluator shall examine the TSS to determine which component of the Operational

Environment is used to assert the User’s identity. The evaluator shall examine the TSS

to determine how the TOE responds to an assertion by the Operational Environment.

The evaluator shall examine the TSS to verify that it describes how validation is

performed. The evaluator shall verify the TSS ensures that the validation process does

not expose any material that might compromise key material.

4.1.10.1.2 Operational Guidance

625 The evaluator shall examine the operational guidance to ensure it describes how to

configure the TOE and Operating Environment to enable the OE to provide User

identity assertions to the TOE.

626 (conditional) If the number of User authentication attempts is configurable in the TOE,

the examiner shall examine the operational guidance to ensure it describes how to

configure the TOE.

4.1.10.1.3 KMD

627 The evaluator shall examine the KMD to verify that it describes the methods the TOE

employs to limit the number of consecutively failed authorization attempts.

4.1.10.1.4 Test

628 The evaluator shall perform the following tests:

629 Test 1: The evaluator shall determine the limit on the average rate of the number of

consecutive failed authorization attempts. The evaluator will test the TOE by entering

that number of incorrect authorization factors in consecutive attempts to access the

protected data. If the limit mechanism includes any “lockout” period, the time period

tested should include at least one such period. Then the evaluator will verify that the

TOE behaves as described in the TSS.

630 Test 2: For each validated authorization factor, ensure that when the user provides an

incorrect authorization factor, the TOE prevents the BEV from being forwarded outside

the TOE (e.g., to the EE).

4.2 Identification and Authentication (FIA)

4.2.1 Challenge/Response Recovery Credential (FIA_CHR_EXT)

4.2.1.1 FIA_CHR_EXT.1 Challenge/Response Recovery Credential

4.2.1.1.1 TSS

631 The evaluator shall examine the TSS to determine that the methods requesting a

Recovery credential are specified. The TSS shall also describe the methods used to

verify user or both user and device requesting the Recovery credential. The evaluator

shall also verify that the TSS contains the estimation of the strength of the ephemeral

response and that it has at least as many potential values as a corresponding password

or PIN.

4.2.1.1.2 Operational Guidance

632 The evaluator shall confirm that the guidance documentation contains instructions for

enforcing verification of the user or both user and device for which the Recovery is

requested. The guidance shall also describe configuring of the limit for consecutive

failed validation attempts if this value is configurable.

4.2.1.1.3 KMD

633 There are no KMD evaluation activities for this SFR.

4.2.1.1.4 Test

634 The evaluator shall ensure that a response is only generated if the user or both the user

and device for which recovery is requested are verified as specified in TSS. The

evaluator shall also ensure that the response is applicable only on behalf of the

requesting user and on the device where the challenge was generated with the

constraints specified for consecutive failed authentication attempts.

635 The term “managed” below is used to refer a user or device which is registered on the

server, i.e. their identity can be successfully verified by either administrator or TSF.

The “unmanaged” presumes that the user/device cannot be successfully verified.

636 The evaluator shall perform the following tests:

637 Test 1: The evaluator shall configure the Challenge/Response recovery to validate the

user and device. The evaluator shall then issue a challenge on behalf of a managed user

for a managed device and ensure that TSF successfully generates the response.

638 Test 2: The evaluator shall configure the Challenge/Response recovery to validate the

user. The evaluator shall then issue a challenge on behalf of managed User A and

attempt to use it as an unmanaged User B to obtain a response. This should fail.

639 Test 3: The evaluator shall configure the Challenge/Response recovery to validate the

device. The evaluator shall then issue a challenge on behalf of managed User A for an

unmanaged device or a managed device that User A has no access to and then attempt

to use it to obtain a response. This should fail.

640 Test 4: The evaluator shall issue a challenge on behalf of a managed user from a specific

device and ensure that the response received successfully will log the user in on that

device.

641 Test 5: The evaluator shall attempt to reuse the response of User A with User B on the

same system and it should fail.

642 Test 6: The evaluator shall issue a challenge on behalf of a managed user from a specific

device, and then attempt to reuse the response on a different device. This should fail.

643 Test 7: The evaluator shall issue a challenge on behalf of a managed user from a

managed system, reboot the system [system terminates the session] and enter the

response. This should fail.

644 Test 8: The evaluator shall issue a challenge on behalf of a managed user from a

managed system and attempt to enter an incorrect response on the system the number

of times described in the Guidance Documents. The observed behavior shall conform

to the assignments/selections in FIA_CHR_EXT.1.5 and FIA_CHR_EXT.1.6.

4.2.2 PIN Recovery Credential (FIA_PIN_EXT)

4.2.2.1 FIA_PIN_EXT.1 PIN Recovery Credential

4.2.2.1.1 TSS

645 The evaluator shall examine the TSS to determine that the methods using a PIN

Recovery Credential are specified.

4.2.2.1.2 Operational Guidance

646 The evaluator shall confirm that the guidance documentation contains instructions for

establishing Recovery PIN credential for each hard drive or set of drives on the

Management Server.

4.2.2.1.3 KMD

647 There are no KMD evaluation activities for this SFR.

4.2.2.1.4 Test

648 Test 1: The evaluator shall populate the Management Server with a Recovery PIN and

then try to retrieve it. The test shall pass. The evaluation shall remove the Recovery

PIN and try to retrieve it. This test shall fail.

649 Test 2: The evaluator shall use the retrieved Recovery PIN to authenticate to the system

where the drive or set of the drives protected by the Recovery PIN is installed. This test

shall pass. The evaluator shall then try to use the Recovery PIN on a device with

different drive(s). This test shall fail.

650 Test 3: After successful authentication with the Recovery PIN the evaluator shall restart

the system and try to authenticate again with the same PIN. This should fail.

4.2.3 Support for Recovery Credentials (FIA_REC_EXT)

4.2.3.1 FIA_REC_EXT.1 Support for Recovery Credentials

4.2.3.1.1 TSS

651 The evaluator shall examine the TSS to determine that types of supported recovery

credential are specified.

4.2.3.1.2 Operational Guidance

652 The evaluator shall confirm that the guidance documentation contains instructions for

turning off the ability of the server to return a recovery credential is specified.

4.2.3.1.3 KMD

653 There are no KMD evaluation activities for this SFR.

4.2.3.1.4 Test

654 The evaluator shall disable the ability of a server to return a recovery credential. The

evaluator should then attempt to obtain the recovery credential and this should fail.

5 Evaluation Activities for SARs

655 The sections below specify EAs for the Security Assurance Requirements (SARs)

included in the related cPPs. The EAs in Section 2 (Evaluation Activities for SFRs),

Section 3 (Evaluation Activities for Optional Requirements), and Section 4 (Evaluation

Activities for Selection-Based Requirements) are an interpretation of the more general

CEM assurance requirements as they apply to the specific technology area of the TOE.

656 In this section, each SAR that is contained in the cPP is listed, and the EAs that are not

associated with an SFR are captured here, or a reference is made to the CEM, and the

evaluator is expected to perform the CEM work units.

5.1 ASE: Security Target Evaluation

657 An evaluation activity is defined here for evaluation of Exact Conformance claims

against a cPP in a Security Target. Other aspects of ASE remain as defined in [CEM,

10].

5.1.1 Conformance Claims (ASE_CCL.1)

658 The table below indicates the actions to be taken for particular ASE_CCL.1 elements

in order to determine exact conformance with a cPP.

Table 1: ASE_CCL.1 Exact Conformance Actions

ASE_CCL.1 element Evaluator Action

ASE_CCL.1.8C The evaluator shall check that the statements of security

problem definition in the PP and ST are identical.

ASE_CCL.1.9C The evaluator shall check that the statements of security

objectives in the PP and ST are identical.

ASE_CCL.1.10C The evaluator shall check that the statements of security

requirements in the ST include all the mandatory SFRs in

the cPP, and all of the selection-based SFRs that are entailed

by selections made in other SFRs (including any SFR

iterations added in the ST). The evaluator shall check that

if any other SFRs are present in the ST (apart from

iterations of SFRs in the cPP) then these are taken only

from the list of optional SFRs specified in the cPP (the cPP

will not necessarily include optional SFRs, but may do

so). If optional SFRs from the cPP are included in the ST

then the evaluator shall check that any selection-based

SFRs entailed by the optional SFRs adopted are also

included in the ST.

5.2 Development (ADV)

5.2.1 Basic Functional Specification (ADV_FSP.1)

659 The EAs for this assurance component focus on understanding the interfaces (e.g.,

application programing interfaces, command line interfaces, graphical user interfaces,

network interfaces) described in the AGD documentation, and possibly identified in

the TOE Summary Specification (TSS) in response to the SFRs. Specific evaluator

actions to be performed against this documentation are identified (where relevant) for

each SFR in Sections 2 through 4, and in EAs for AGD, ATE and AVA SARs in other

parts of Section 5.

660 The EAs presented in this section address the CEM work units ADV_FSP.1-1,

ADV_FSP.1-2, ADV_FSP.1-3, and ADV_FSP.1-5.

661 The EAs are reworded for clarity and interpret the CEM work units such that they will

result in more objective and repeatable actions by the evaluator. The EAs in this SD

are intended to ensure the evaluators are consistently performing equivalent actions.

662 The documents to be examined for this assurance component in an evaluation are

therefore the Security Target, AGD documentation, and any required supplementary

information required by the cPP: no additional “functional specification”

documentation is necessary to satisfy the EAs. The interfaces that need to be evaluated

are also identified by reference to the EAs listed for each SFR, and are expected to be

identified in the context of the Security Target, AGD documentation, and any required

supplementary information defined in the cPP rather than as a separate list specifically

for the purposes of CC evaluation. The direct identification of documentation

requirements and their assessment as part of the EAs for each SFR also means that the

tracing required in ADV_FSP.1.2D (work units ADV_FSP.1-4, ADV_FSP.1-6 and

ADV_FSP.1-7 is treated as implicit and no separate mapping information is required

for this element.

Table 2: Mapping of ADV_FSP.1 CEM Work Units to Evaluation Activities

CEM ADV_FSP.1 Work Units Evaluation Activities

ADV_FSP.1-1 The evaluator shall

examine the functional specification

to determine that it states the purpose

of each SFR-supporting and SFR-

enforcing TSFI.

Evaluation Activity: The evaluator shall

examine the interface documentation to

ensure it describes the purpose and method

of use for each TSFI that is identified as

being security relevant.

ADV_FSP.1-2 The evaluator shall

examine the functional specification

to determine that the method of use

for each SFR-supporting and SFR-

enforcing TSFI is given.

Evaluation Activity: The evaluator shall

examine the interface documentation to

ensure it describes the purpose and method

of use for each TSFI that is identified as

being security relevant.

ADV_FSP.1-3 The evaluator shall

examine the presentation of the TSFI

to determine that it identifies all

parameters associated with each

SFR-enforcing and SFR supporting

TSFI.

Evaluation Activity: The evaluator shall

check the interface documentation to ensure

it identifies and describes the parameters for

each TSFI that is identified as being security

relevant.

ADV_FSP.1-4 The evaluator shall

examine the rationale provided by

the developer for the implicit

categorisation of interfaces as SFR-

non-interfering to determine that it is

accurate.

Paragraph 561 from the CEM: “In the case

where the developer has provided adequate

documentation to perform the analysis

called for by the rest of the work units for

this component without explicitly

identifying SFR-enforcing and SFR-

supporting interfaces, this work unit should

be considered satisfied.”

Since the rest of the ADV_FSP.1 work units

will have been satisfied upon completion of

the EAs, it follows that this work unit is

satisfied as well.

ADV_FSP.1-5 The evaluator shall

check that the tracing links the SFRs

to the corresponding TSFIs.

Evaluation Activity: The evaluator shall

examine the interface documentation to

develop a mapping of the interfaces to SFRs.

ADV_FSP.1-6 The evaluator shall

examine the functional specification

to determine that it is a complete

instantiation of the SFRs.

EAs that are associated with the SFRs in

Section 2, and, if applicable, Sections 3 and

4, are performed to ensure that all the SFRs

where the security functionality is externally

visible (i.e., at the TSFI) are covered.

Therefore, the intent of this work unit is

covered.

ADV_FSP.1-7 The evaluator shall

examine the functional specification

to determine that it is an accurate

instantiation of the SFRs.

EAs that are associated with the SFRs in

Section 2, and, if applicable, Sections 3 and

4, are performed to ensure that all the SFRs

where the security functionality is externally

visible (i.e., at the TSFI) are addressed, and

that the description of the interfaces is

accurate with respect to the specification

captured in the SFRs. Therefore, the intent

of this work unit is covered.

5.2.1.1 Evaluation Activity

663 The evaluator shall examine the interface documentation to ensure it describes the

purpose and method of use for each TSFI that is identified as being security relevant.

664 In this context, TSFI are deemed security relevant if they are used by the administrator

to configure the TOE, or to perform other administrative functions (e.g., audit review

or performing updates). Additionally, those interfaces that are identified in the ST, or

guidance documentation, as adhering to the security policies (as presented in the SFRs),

are also considered security relevant. The intent, is that these interfaces will be

adequately tested, and having an understanding of how these interfaces are used in the

TOE is necessary to ensure proper test coverage is applied.

665 The set of TSFI that are provided as evaluation evidence are contained in the

Administrative Guidance and User Guidance.

5.2.1.2 Evaluation Activity

666 The evaluator shall examine the interface documentation to develop a mapping of the

interfaces to SFRs.

667 The evaluator uses the provided documentation and first identifies, and then examines

a representative set of interfaces to perform the EAs presented in Sections 2 through 4,

including the EAs associated with testing of the interfaces.

668 It should be noted that there may be some SFRs that do not have an interface that is

explicitly “mapped” to invoke the desired functionality. For example, generating a

random bit string, destroying a cryptographic key that is no longer needed, or the TSF

failing to a secure state, are capabilities that may be specified in SFRs, but are not

invoked by an interface.

669 However, if the evaluator is unable to perform some other required EA because there

is insufficient design and interface information, then the evaluator is entitled to

conclude that an adequate functional specification has not been provided, and hence

that the verdict for the ADV_FSP.1 assurance component is a ‘fail’.

5.3 Guidance Documents (AGD)

670 It is not necessary for a TOE to provide separate documentation to meet the individual

requirements of AGD_OPE and AGD_PRE. Although the Evaluation Activities in this

section are described under the traditionally separate AGD families, the mapping

between real TOE documents and AGD_OPE and AGD_PRE requirements may be

many-to-many, as long as all requirements are met in documentation that is delivered

to administrators and users (as appropriate) as part of the TOE.

5.3.1 Operational User Guidance (AGD_OPE.1)

671 Specific requirements and checks on the user guidance documentation are identified

(where relevant) in the individual Evaluation Activities for each SFR, and for some

other SARs (e.g. ALC_CMC.1).

5.3.1.1 Evaluation Activity

672 The evaluator shall check the requirements below are met by the operational guidance.

It should be noted that operational guidance may take the form of an “integrator’s

guide”, where the TOE developer provides a description of the interface (e.g.,

commands that the Host Platform may invoke to configure a SED).

673 Operational guidance documentation shall be distributed to administrators and users

(as appropriate) as part of the TOE, so that there is a reasonable guarantee that

administrators and users are aware of the existence and role of the documentation in

establishing and maintaining the evaluated configuration.

674 Operational guidance must be provided for every Operational Environment that the

TOE supports as claimed in the Security Target and must adequately address all

platforms claimed for the TOE in the Security Target. This may be contained all in one

document.

675 The contents of the operational guidance will be verified by the Evaluation Activities

defined below and as appropriate for each individual SFR in Sections 2 through 4.

676 In addition to SFR-related Evaluation Activities, the following information is also

required.

 The operational guidance shall contain instructions for configuring any

cryptographic engine associated with the evaluated configuration of the TOE.

It shall provide a warning to the administrator that use of other cryptographic

engines was not evaluated nor tested during the CC evaluation of the TOE.

 The operational guidance shall describe how to configure the IT environments

that are supported to shut down after an administratively defined period of

inactivity.

 The operational guidance shall identify system “sleeping” states for all

supported operating environments and for each environment, provide

administrative guidance on how to disable the sleep state. As stated above, the

TOE developer may be providing an integrator’s guide and “power states” may

be an abstraction that SEDs provide at various levels – e.g., may simply

provide a command that the Host Platform issues to manage the state of the

device, and the Host Platform is responsible for providing a more sophisticated

power management scheme.

 The TOE will likely contain security functionality that does not fall in the scope

of evaluation under this cPP. The operational guidance shall make it clear to

an administrator which security functionality is covered by the Evaluation

Activities.

5.3.2 Preparative Procedures (AGD_PRE.1)

677 As for the operational guidance, specific requirements and checks on the preparative

procedures are identified (where relevant) in the individual Evaluation Activities for

each SFR.

5.3.2.1 Evaluation Activity

678 The evaluator shall check the requirements below are met by the preparative

procedures.

679 The contents of the preparative procedures will be verified by the Evaluation Activities

defined below and as appropriate for each individual SFR in Sections 2 through 4.

680 Preparative procedures shall be distributed to administrators and users (as appropriate)

as part of the TOE, so that there is a reasonable guarantee that administrators and users

are aware of the existence and role of the documentation in establishing and

maintaining the evaluated configuration.

681 The contents of the preparative procedures will be verified by the Evaluation Activities

defined below and as appropriate for each individual SFR in Sections 2 through 4.

682 In addition to SFR-related Evaluation Activities, the following information is also

required.

683 Preparative procedures must include a description of how the administrator verifies that

the operational environment can fulfil its role to support the security functionality

(including the requirements of the Security Objectives for the Operational Environment

specified in the Security Target). The documentation should be in an informal style and

should be written with sufficient detail and explanation that they can be understood and

used by the target audience (which will typically include IT staff who have general IT

experience but not necessarily experience with the TOE itself).

684 Preparative procedures must be provided for every Operational Environment that the

TOE supports as claimed in the Security Target and must adequately address all

platforms claimed for the TOE in the Security Target. . This may be contained all in

one document.

685 The preparative procedures must include

 instructions to successfully install the TSF in each Operational Environment;

and

 instructions to manage the security of the TSF as a product and as a component

of the larger operational environment; and

 instructions to provide a protected administrative capability.

5.4 Life-cycle Support (ALC)

5.4.1 Labelling of the TOE (ALC_CMC.1)

686 When evaluating that the TOE has been provided and is labelled with a unique

reference, the evaluator performs the work units as presented in the CEM.

5.4.2 TOE CM coverage (ALC_CMS.1)

687 When evaluating the developer’s coverage of the TOE in their CM system, the

evaluator performs the work units as presented in the CEM.

5.5 Tests (ATE)

5.5.1 Independent Testing – Conformance (ATE_IND.1)

688 The focus of the testing is to confirm that the requirements specified in the SFRs are

being met. Additionally, testing is performed to confirm the functionality described in

the TSS, as well as the dependencies on the Operational guidance documentation is

accurate.

689 The evaluator performs the CEM work units associated with the ATE_IND.1 SAR.

Specific testing requirements and EAs are captured for each SFR in Sections 2 through

4.

5.6 Vulnerability Assessment (AVA)

5.6.1 Vulnerability Survey (AVA_VAN.1)

690 While vulnerability analysis is inherently a subjective activity, a minimum level of

analysis can be defined and some measure of objectivity and repeatability (or at least

comparability) can be imposed on the vulnerability analysis process. In order to achieve

such objectivity and repeatability it is important that the evaluator follows a set of well-

defined activities, and documents their findings so others can follow their arguments

and come to the same conclusions as the evaluator. While this does not guarantee that

different evaluation facilities will identify exactly the same type of vulnerabilities or

come to exactly the same conclusions, the approach defines the minimum level of

analysis and the scope of that analysis, and provides Certification Bodies a measure of

assurance that the minimum level of analysis is being performed by the evaluation

facilities.

691 In order to meet these goals some refinement of the AVA_VAN.1 CEM work units is

needed. The following table indicates, for each work unit in AVA_VAN.1, whether the

CEM work unit is to be performed as written, or if it has been clarified by an Evaluation

Activity. If clarification has been provided, a reference to this clarification is provided

in the table.

Table 3: Mapping of AVA_VAN.1 CEM Work Units to Evaluation Activities

CEM AVA_VAN.1 Work Units Evaluation Activities

AVA_VAN.1-1 The evaluator shall

examine the TOE to determine that the

test configuration is consistent with the

configuration under evaluation as

specified in the ST.

The evaluator shall perform the CEM activity

as specified.

If the iTC specifies any tools to be used in

performing this analysis in section A.3.4, the

following text is also included in this cell: “The

calibration of test resources specified in

paragraph 1418 of the CEM applies to the

tools listed in Appendix A, Section A.1.4.”

AVA_VAN.1-2 The evaluator shall

examine the TOE to determine that it

has been installed properly and is in a

known state

The evaluator shall perform the CEM activity

as specified.

AVA_VAN.1-3 The evaluator shall

examine sources of information

publicly available to identify potential

vulnerabilities in the TOE.

Replace CEM work unit with activities

outlined in Appendix A, Section A.1.

AVA_VAN.1-4 The evaluator shall

record in the ETR the identified

potential vulnerabilities that are

candidates for testing and applicable to

the TOE in its operational

environment.

Replace the CEM work unit with the analysis

activities on the list of potential vulnerabilities

in Appendix A, section A.1, and

documentation as specified in Appendix A,

Section A.3.

AVA_VAN.1-5 The evaluator shall

devise penetration tests, based on the

independent search for potential

vulnerabilities.

Replace the CEM work unit with the activities

specified in Appendix A, section A.2.

AVA_VAN.1-6 The evaluator shall

produce penetration test

documentation for the tests based on

the list of potential vulnerabilities in

sufficient detail to enable the tests to

be repeatable. The test documentation

shall include:

a) identification of the potential

vulnerability the TOE is being tested

for;

b) instructions to connect and setup all

required test equipment as required to

conduct the penetration test;

c) instructions to establish all

penetration test prerequisite initial

conditions;

The CEM work unit is captured in Appendix

A, Section A.3; there are no substantive

differences.

d) instructions to stimulate the TSF;

e) instructions for observing the

behaviour of the TSF;

f) descriptions of all expected results

and the necessary analysis to be

performed on the observed behaviour

for comparison against

expected results;

g) instructions to conclude the test and

establish the necessary post-test state

for the TOE.

AVA_VAN.1-7 The evaluator shall

conduct penetration testing.

The evaluator shall perform the CEM activity

as specified. See Appendix A, Section A.3 for

guidance related to attack potential for

confirmed flaws.

AVA_VAN.1-8 The evaluator shall

record the actual results of the

penetration tests.

The evaluator shall perform the CEM activity

as specified.

AVA_VAN.1-9 The evaluator shall

report in the ETR the evaluator

penetration testing effort, outlining the

testing approach, configuration, depth

and results.

Replace the CEM work unit with the reporting

called for in Appendix A, Section A.3.

AVA_VAN.1-10 The evaluator shall

examine the results of all penetration

testing to determine that the TOE, in

its operational environment, is resistant

to an attacker possessing a Basic attack

potential.

This work unit is not applicable for Type 1 and

Type 2 flaws (as defined in Appendix A,

Section A.1), as inclusion in this Supporting

Document by the iTC makes any confirmed

vulnerabilities stemming from these flaws

subject to an attacker possessing a Basic attack

potential. This work unit is replaced for Type 3

and Type 4 flaws by the activities defined in

Appendix A, Section A.3.

AVA_VAN.1-11 The evaluator shall

report in the ETR all exploitable

vulnerabilities and residual

vulnerabilities, detailing for each:

a) its source (e.g. CEM activity being

undertaken when it was conceived,

known to the evaluator, read in a

publication);

b) the SFR(s) not met;

c) a description;

d) whether it is exploitable in its

operational environment or not (i.e.

exploitable or residual).

e) the amount of time, level of

expertise, level of knowledge of the

Replace the CEM work unit with the reporting

called for in Appendix A, Section A.3.

TOE, level of opportunity and the

equipment required to perform the

identified vulnerabilities, and the

corresponding values using the tables 3

and 4 of Annex B.4.

6 Required Supplementary Information

692 This Supporting Document refers in various places to the possibility that

‘supplementary information’ may need to be supplied as part of the deliverables for an

evaluation. This term is intended to describe information that is not necessarily

included in the Security Target or operational guidance, and that may not necessarily

be public. Examples of such information could be entropy analysis, or description of a

cryptographic key management architecture used in (or in support of) the TOE. The

requirement for any such supplementary information will be identified in the relevant

cPP.

693 The FDE cPP for Encryption Engine requires a key management description and an

entropy analysis if the TOE is providing the RNG. The EAs the evaluator is to perform

with those documents are captured under the appropriate SFRs in section 2.

7 References

[CC1] Common Criteria for Information Technology Security

Evaluation, Part 1: Introduction and General Model

CCMB-2017-04-001, Version 3.1 Revision 5, April 2017

[CC2] Common Criteria for Information Technology Security

Evaluation,

Part 2: Security Functional Components,

CCMB-2017-04-002, Version 3.1 Revision 5, April 2017

[CC3] Common Criteria for Information Technology Security

Evaluation,

Part 3: Security Assurance Components,

CCMB-2017-04-003, Version 3.1 Revision 5, April 2017

[CEM] Common Methodology for Information Technology Security

Evaluation, CCMB-2017-04-004, Version 3.1 Revision 5,

April 2017

[FDE-AA] collaborative Protection Profile for Full Disk Encryption –

Authorization Acquisition, Version 2.0, 04 January 2018

[FDE-EE] collaborative Protection Profile for Full Disk Encryption –

Encryption Engine, Version 2.0, 04 January 2018

[FDE-EM] collaborative Protection Profile Module for Full Drive

Encryption – Enterprise Management, Version 2.0, 04 January

2018

Appendixes

A. Vulnerability Analysis

A.1 Sources of Vulnerability Information

694 While vulnerability analysis is inherently a subjective activity, a minimum level of

analysis can be defined and some measure of objectivity and repeatability (or at least

comparability) can be imposed on the vulnerability analysis process. In order to achieve

such objectivity and repeatability it is important that the evaluator follows a set of well-

defined activities, and documents their findings so others can follow their arguments

and come to the same conclusions as the evaluator. While this does not guarantee that

different evaluation facilities will identify exactly the same type of vulnerabilities or

come to exactly the same conclusions, the approach defines the minimum level of

analysis and the scope of that analysis, and provides Certification Bodies a measure of

assurance that the minimum level of analysis is being performed by the evaluation

facilities.

695 In order to meet these goals some refinement of the AVA_VAN.1 CEM work units is

needed. The following table indicates, for each work unit in AVA_VAN.1, whether the

CEM work unit is to be performed as written, or if it has been clarified by an Evaluation

Activity. If clarification has been provided, a reference to this clarification is provided

in the table.

696 CEM Work Unit AVA_VAN.1-3 has been supplemented in this Supporting Document

to provide a better-defined set of flaws to investigate and procedures to follow based

on this particular technology. Terminology used is based on the flaw hypothesis

methodology, where the evaluation team hypothesizes flaws and then either proves or

disproves those flaws (a flaw is equivalent to a “potential vulnerability” as used in the

CEM). Flaws are categorized into four “types” depending on how they are formulated:

1. A list of flaw hypotheses applicable to the technology described by the cPP

derived from public sources as documented in Section A.1.1—this fixed set has

been agreed to by the iTC. Additionally, this will be supplemented with entries

for a set of public sources (as indicated below) that are directly applicable to the

TOE or its identified components (as defined by the process in Section A.1.1

below); this is to ensure that the evaluators include in their assessment applicable

entries that have been discovered since the cPP was published;

2. A list of flaw hypotheses contained in this document that are derived from lessons

learned specific to that technology and other iTC input (that might be derived

from other open sources and vulnerability databases, for example) as documented

in Section A.1.2;

3. A list of flaw hypotheses derived from information available to the evaluators;

this includes the baseline evidence provided by the vendor described in this

Supporting Document (documentation associated with EAs, documentation

described in Section 5.6.1), as well as other information (public and/or based on

evaluator experience) as documented in Section A.1.3; and

4. A list of flaw hypotheses that are generated through the use of iTC-defined tools

(e.g., nmap, protocol testers) and their application is specified in section A.1.4.

A.1.1 Type 1 Hypotheses—Public-Vulnerability-based

697 The following list of public sources of vulnerability information was selected by the

iTC:

a. Search Common Vulnerabilities and Exposures: http://cve.mitre.org/cve/

http://cve.mitre.org/cve/

b. Search the National Vulnerability Database: https://nvd.nist.gov/

c. Search US-CERT http://www.kb.cert.org/vuls/html/search

698 The list of sources above was searched with the following search terms:

o General (for all)

 Product name

 underlying components (e.g., OS, software libraries (crypto libraries),

chipsets, databases, hypervisors, cloud environments)

 drive encryption, disk encryption, data at rest (DAR)

 key destruction/sanitization

o AA:

 Underlying components (e.g., smart card libraries)

 Opal management software, SED management software

 Password caching

o EE:

 Underlying components (e.g., chipsets, firmware)

o For SEDs (for EE):

 Self Encrypting Drive (SED), OPAL

o For Software FDE (AA or EE):

 Key caching

o For Enterprise Management Server:

 Enterprise Management

 Key Recovery

 Remote Management

 Remote Recovery

 Encryption Management

 SQL Server

 Active Directory

 Data at Rest (DAR) Management

699 In order to successfully complete this activity, the evaluator will use the developer

provided list of all of 3rd party library information that is used as part of their product,

along with the version and any other identifying information (this is required in the cPP

as part of the ASE_TSS.1.1C requirement). This applies to hardware (including

chipsets, etc.) that a vendor utilizes as part of their TOE. This TOE-unique information

will be used in the search terms the evaluator uses in addition to those listed above.

700 The evaluator will also consider the requirements that are chosen and the appropriate

guidance that is tied to each requirement. For example, with FCS_AFA_EXT.1, if the

Smartcard selection is chosen, then the evaluator will use the appropriate search terms

for smart cards.

701 In order to supplement this list, the evaluators shall also perform a search on the sources

listed above to determine a list of potential flaw hypotheses that are more recent that

the publication date of the cPP, and those that are specific to the TOE and its

components as specified by the additional documentation mentioned above. Any

duplicates – either in a specific entry, or in the flaw hypothesis that is generated from

an entry from the same or a different source – can be noted and removed from

consideration by the evaluation team.

702 As part of type 1 flaw hypothesis generation for the specific components of the TOE,

the evaluator shall also search the component manufacturer’s websites to determine if

flaw hypotheses can be generated on this basis (for instance, if security patches have

been released for the version of the component being evaluated, the subject of those

patches may form the basis for a flaw hypothesis).

A.1.2 Type 2 Hypotheses—iTC-Sourced

703 The following list of flaw hypothesis generated by the iTC for this technology must be

considered by the evaluation team as flaw hypotheses in performing the vulnerability

assessment:

704 General:

705 AA:

 In order to validate the AA is properly encrypting keying material (e.g., BEV,

KEK, authorization submasks) in the readable part of the disk (e.g., shadow MBR),

the evaluator should examine the disk using a tool to view the drive (e.g. WinHex)

to look for material that exposes a key value.

 When an authentication or recovery credential is changed, it is critical that the AA

does not leave old keys/key chains/key material around. This process should also

be monitored using a tool to view the drive.

706 AA (for ISV’s)

 It is possible that preboot authentication appears to function normally and it’s

possible that the SED could forget to lock the global range, which results in the

preboot being locked, but the rest of the drive is unencrypted. This could be tested

using a tool (e.g. WinHex) by writing a known pattern, locking the drive and

looking for the pattern.

707 EE:

 Software FDE:

o During the software encryption installation process, it is possible that that

encryption is interrupted (e.g., power is removed, etc.). The evaluator

should verify that when the software encryption resumes and completes,

that all of the user data is encrypted.

708 EM:

 Leaving key material around – it’s possible that a user can be removed/deactivated

in the Enterprise Management Server, but the server might not clean up all key

material associated with that user, thus allowing a user to access their encrypted

data. The evaluator should verify this by first creating a user and configuring the

product to allow them to access it. Have the user perform a key recovery and then

remove or deactivate that user and verify they cannot access the data.

709 If the evaluators discover a Type 3 or Type 4 flaw that they believe should be

considered as a Type 2 flaw in future versions of this cPP, they should work with their

Certification Body to determine the appropriate means of submitting the flaw for

consideration by the iTC.

A.1.3 Type 3 Hypotheses—Evaluation-Team-Generated

710 The iTC has leveraged the expertise of the developers and the evaluation labs to

diligently develop the appropriate search terms and vulnerability databases. They have

also thoughtfully considered the iTC-sourced hypotheses the evaluators should use

based upon the applicable use case and the threats to be mitigated by the SFRs.

Therefore, it is the intent of the iTC, for the evaluation to focus all effort on the Type

1 and Type 2 Hypotheses and has decided that Type 3 Hypotheses are not warranted.

A.1.4 Type 4 Hypotheses—Tool-Generated

711 The iTC has called out several tools that should be used during the Type 2 hypotheses

process. Therefore, the use of any tools is covered within the Type 2 construct and the

iTC does not see any additional tools that are necessary. The use case for Version 2 is

rather straightforward – the device is found in a powered down state and has not been

subjected to revisit/evil maid attacks. Since that is the use case, the iTC has also

assumed there is a trusted channel between the AA and EE. Since the use case is so

narrow, and is not a typical model for penetration or fuzzing testing, the normal types

of testing do not apply. Therefore, the relevant types of tools are referenced in Type 2.

A.2 Process for Evaluator Vulnerability Analysis

712 As flaw hypotheses are generated from the activities described above, the evaluation

team will disposition them; that is, attempt to prove, disprove, or determine the non-

applicability of the hypotheses. This process is as follows.

713 The evaluator will refine each flaw hypothesis for the TOE and attempt to disprove it

using the information provided by the developer or through penetration testing. During

this process, the evaluator is free to interact directly with the developer to determine if

the flaw exists, including requests to the developer for additional evidence (e.g.,

detailed design information, consultation with engineering staff); however, the CB

should be included in these discussions. Should the developer object to the information

being requested as being not compatible with the overall level of the evaluation

activity/cPP and cannot provide evidence otherwise that the flaw is disproved, the

evaluator prepares an appropriate set of materials as follows:

 the source documents used in formulating the hypothesis, and why it represents

a potential compromise against a specific TOE function;

 an argument why the flaw hypothesis could not be proven or disproved by the

evidence provided so far; and

 the type of information required to investigate the flaw hypothesis further.

714 The Certification Body (CB) will then either approve or disapprove the request for

additional information. If approved, the developer provides the requested evidence to

disprove the flaw hypothesis (or, of course, acknowledge the flaw).

715 For each hypothesis, the evaluator will note whether the flaw hypothesis has been

successfully disproved, successfully proven to have identified a flaw, or requires

further investigation. It is important to have the results documented as outlined in

Section A.3 below.

716 If the evaluator finds a flaw, the evaluator must report these flaws to the developer. All

reported flaws must be addressed as follows:

717 If the developer confirms that the flaw exists and that it is exploitable at Basic Attack

Potential, then a change is made by the developer, and the resulting resolution is agreed

by the evaluator and noted as part of the evaluation report.

718 If the developer, the evaluator, and the CB agree that the flaw is exploitable only above

Basic Attack Potential and does not require resolution for any other reason, then no

change is made and the flaw is noted as a residual vulnerability in the CB-internal report

(ETR).

719 If the developer and evaluator agree that the flaw is exploitable only above Basic Attack

Potential, but it is deemed critical to fix because of technology-specific or cPP-specific

aspects such as typical use cases or operational environments, then a change is made

by the developer, and the resulting resolution is agreed by the evaluator and noted as

part of the evaluation report.

720 Disagreements between evaluator and vendor regarding questions of the existence of a

flaw, its attack potential, or whether it should be deemed critical to fix are resolved by

the CB.

721 Any testing performed by the evaluator shall be documented in the test report as

outlined in Section A.3 below.

722 As indicated in Section A.3, Reporting, the public statement with respect to

vulnerability analysis that is performed on TOEs conformant to the cPP is constrained

to coverage of flaws associated with Types 1 and 2 (defined in Section A.1) flaw

hypotheses only. The fact that the iTC generates these candidate hypotheses indicates

these must be addressed.

A.3 Reporting

723 The evaluators shall produce two reports on the testing effort; one that is public-facing

(that is, included in the non-proprietary evaluation report, which is a subset of the

Evaluation Technical Report (ETR)), and the complete ETR that is delivered to the

overseeing CB.

724 The public-facing report contains:

725 * The flaw identifiers returned when the procedures for searching public sources were

followed according to instructions in the Supporting Document per Section A.1.1;

726 * A statement that the evaluators have examined the Type 1 flaw hypotheses specified

in this Supporting Document in section A.1.1 (i.e. the flaws listed in the previous bullet)

and the Type 2 flaw hypotheses specified in this Supporting Document by the iTC in

Section A.1.2.

727 No other information is provided in the public-facing report.

728 The internal CB report contains, in addition to the information in the public-facing

report:

 a list of all of the flaw hypotheses generated (cf. AVA_VAN.1-4);

 the evaluator penetration testing effort, outlining the testing approach,

configuration, depth and results (cf. AVA_VAN.1-9);

 all documentation used to generate the flaw hypotheses (in identifying the

documentation used in coming up with the flaw hypotheses, the evaluation team

must characterize the documentation so that a reader can determine whether it is

strictly required by this Supporting Document, and the nature of the

documentation (design information, developer engineering notebooks, etc.));

 the evaluator shall report all exploitable vulnerabilities and residual

vulnerabilities, detailing for each:

b) its source (e.g. CEM activity being undertaken when it was conceived,

known to the evaluator, read in a publication);

c) the SFR(s) not met;

d) a description;

e) whether it is exploitable in its operational environment or not (i.e. exploitable

or residual).

f) the amount of time, level of expertise, level of knowledge of the TOE, level

of opportunity and the equipment required to perform the identified

vulnerabilities (cf. AVA_VAN.1-11);

g) how each flaw hypothesis was resolved (this includes whether the original

flaw hypothesis was confirmed or disproved, and any analysis relating to

whether a residual vulnerability is exploitable by an attacker with Basic

Attack Potential) (cf. AVA_VAN1-10); and

h) in the case that actual testing was performed in the investigation (either as

part of flaw hypothesis generation using tools specified by the iTC in

Section A.1.4, or in proving/disproving a particular flaw) the steps

followed in setting up the TOE (and any required test equipment);

executing the test; post-test procedures; and the actual results (to a level of

detail that allow repetition of the test, including the following:

 identification of the potential vulnerability the TOE is being tested

for;

 instructions to connect and setup all required test equipment as

required to conduct the penetration test;

 instructions to establish all penetration test prerequisite initial

conditions;

 instructions to stimulate the TSF;

 instructions for observing the behaviour of the TSF;

 descriptions of all expected results and the necessary analysis to be

performed on the observed behaviour for comparison against

expected results;

 instructions to conclude the test and establish the necessary post-test

state for the TOE. (cf. AVA_VAN.1-6, AVA_VAN.1-8).

B. FDE Equivalency Considerations

729 Introduction

730 This appendix provides a foundation for evaluators to determine whether a vendor’s

request for equivalency of products for different OSs/platforms wishing to claim

conformance to the FDE collaborative Protection Profiles.

731 For the purpose of this evaluation, equivalency can be broken into two categories:

 Variations in models: Separate TOE models/variations may include

differences that could necessitate separate testing across each model. If there

are no variations in any of the categories listed below, the models may be

considered equivalent.

 Variations in OS/platform the product is tested (e.g., the testing
environment): The method a TOE provides functionality (or the functionality

itself) may vary depending upon the OS on which it is installed. If there are no

difference in the TOE provided functionality or in the manner in which the

TOE provides the functionality, the models may be considered equivalent.

732 Determination of equivalency for each of the above specified categories can result in

several different testing outcomes.

733 If a set of TOE are determined to be equivalent, testing may be performed on a single

variation of the TOE. However, if the TOE variations have security relevant functional

differences, each of the TOE models that exhibits either functional or structural

differences must be separately tested. Generally speaking, only the difference between

each variation of TOE must be separately tested. Other equivalent functionality, may

be tested on a representative model and not across multiple platforms.

734 If it is determined that a TOE operates the same regardless of the platform/OS it is

installed within, testing may be performed on a single OS/platform combination for all

equivalent configurations. However, if the TOE is determined to provide environment

specific functionality, testing must take place in each environment for which a

difference in functionality exists. Similar to the above scenario, only the functionality

affected by environment differences must be retested.

735 If a vendor disagrees with the evaluator’s assessment of equivalency, the validator

arbitrates between the two parties whether equivalency exists.

736 Evaluator guidance for determining equivalence

737 The following table provides a description of how an evaluator should consider each

of the factors that affect equivalency between TOE model variations and across

operating environments. Additionally, the table also identifies scenarios that will result

in additional separate testing across models/platforms.

Factor Same/Not

Same

Evaluator Guidance

Platform/Hardware

Dependencies

Independent If there are no identified platform/hardware dependencies,

the evaluator shall consider testing on multiple hardware

platforms to be equivalent.

Factor Same/Not

Same

Evaluator Guidance

Dependencies If there are specified differences between

platforms/hardware, the evaluator must identify if the

differences affect the cPP specified security functionality

or if they apply to non-PP specified functionality. If

functionality specified in the cPP is dependent upon

platform/hardware provided services, the TOE must be

tested on each of the different platform to be considered

validated on that particular hardware combination. In

these cases, the evaluator has the option of only re-testing

the functionality dependent upon the platform/hardware

provided functionality. If the differences only affect non-

PP specified functionality, the variations may still be

considered equivalent. For each difference the evaluator

must provide an explanation of why the difference does or

does not affect cPP specified functionality.

Software/OS

Dependencies

Independent If there are no identified software/OS dependencies, the

evaluator shall consider testing on multiple OSs to be

equivalent.

Dependencies If there are specified differences between OSs, the

evaluator must identify if the differences affect the cPP

specified security functionality or if they apply to non-PP

specified functionality. If functionality specified in the cPP

is dependent upon OS provided services, the TOE must be

tested on each of the different OSs. In these cases, the

evaluator has the option of only re-testing the functionality

dependent upon the OS provided functionality. If the

differences only affect non-PP specified functionality, the

model variations may still be considered equivalent. For

each difference the evaluator must provide an explanation

of why the difference does or does not affect cPP specified

functionality.

Differences in TOE

Software Binaries

Identical If the model binaries are identical, the model variations

shall be considered equivalent.

Different If there are differences between model software binaries, a

determination must be made if the differences affect cPP-

specified security functionality. If cPP-specified

functionality is affected, the models are not considered

equivalent and must be tested separately. The evaluator has

the option of only retesting the functionality that was

affected by the software differences. If the differences only

affect non-PP specified functionality, the models may still

be considered equivalent. For each difference the evaluator

must provide an explanation of why the difference does or

does not affect cPP specified functionality.

Different in

Libraries Used to

Same If there are no differences between the libraries used in

various TOE models, the model variations shall be

considered equivalent.

Factor Same/Not

Same

Evaluator Guidance

Provide TOE

Functionality

Different If the separate libraries are used between model variations,

a determination if the functionality provided by the library

affects cPP-specified functionality must be made. If cPP-

specified functionality is affected, the models are not

considered equivalent and must be tested separately. The

evaluator has the option of only retesting the functionality

that was affected by the differences in the included

libraries. If the different libraries only affect non-PP

specified functionality, the models may still be considered

equivalent. For each different library, the evaluator must

provide an explanation of why the different libraries do or

do not affect cPP specified functionality.

TOE Management

Interface

Differences

Consistent If there are no differences in the management interfaces

between various TOE models, the models variations shall

be considered equivalent.

Differences If the TOE provides separate interfaces based on either the

OS it is installed on or the model variation, a determination

must be made if cPP-specified functionality can be

configured by the different interfaces. If the interface

differences affect cPP-specified functionality, the

variations/OS installations are not considered equivalent

and must be separately tested. The evaluator has the option

of only retesting the functionality that can be configured by

the different interfaces (and the configuration of said

functionality). If the different management interfaces only

affect non-PP specified functionality, the models may still

be considered equivalent. For each management interface

difference, the evaluator must provide an explanation of

why the different management interfaces do or do not affect

cPP specified functionality.

TOE Functional

Differences

Identical If the functionality provided by different TOE model

variation is identical, the models variations shall be

considered equivalent.

Different If the functionality provided by different TOE model

variations differ, a determination must be made if the

functional differences affect cPP-specified functionality. If

cPP-specific functionality differs between models, the

models are not considered equivalent and must be tested

separately. In these cases, the evaluator has the option of

only retesting the functionality that differs model-to-

model. If the functional differences only affect non-cPP

specified functionality, the model variations may still be

considered equivalent. For each difference the evaluator

must provide an explanation of why the difference does or

does not affect cPP specified functionality.

738 Strategy

739 When performing the equivalency analysis, the evaluator should consider each factor

independently. Each analysis of an individual factor will result in one of two outcomes,

 For the particular factor, all variations of the TOE on all supported platforms

are equivalent. In this case, testing may be performed on a single model in a

single test environment and cover all supported models and environments.

 For the particular factor, a subset of the TOE has been identified to require

separate testing to ensure that it operates identically to all other equivalent

TOE. The analysis would identify the specific combinations of models/testing

environments that needed to be tested.

740 Complete CC testing of the TOE would encompass the totality of each individual

analysis performed for each of the identified factors.

741 Test presentation/Truth in advertising

742 In addition to determining what to test, the evaluation results and resulting validation

report, must identify the actual module and testing environment combinations that have

been tested. The analysis used to determine the testing subset may be considered

proprietary and will only optionally be publicly included.

