- 1 Protection Profile for a Road Works Warning Gateway
- 2 3 Common Criteria
- 4
- 5 RWWG-PP
- 6 Version 1.1
- 7 Certification-ID: BSI-CC-PP-0106

- 8 Bundesministerium für Verkehr und Digitale Infrastruktur
- 9 Referat StB 12
- 10 TRDir Konstantin Sauer
- 11 Robert-Schuman-Pl. 1
- 12 53175 Bonn
- 13 Internet: http://www.bmvi.de

Table of content

15				
16	1	PP inti	oduction	6
17		1.1	Introduction	6
18		1.2	PP Reference	6
19		1.3	Specific terms	6
20		1.4	TOE Overview	8
21		1.4.1	Introduction	8
22		1.4.2	TOE type	8
23		1.4.3	System Overview	8
24		1.4.4	Services of the TOE	9
25		1.4.5	TOE physical scope	9
26		1.4.6	TOE logical scope	10
27		1.4.7	The logical interfaces of the TOE	10
28		1.5	Secure Element (not part of the TOE)	11
29		1.6	Life cycle	11
30	2	Confo	mance Claims	13
31		2.1	Conformance statement	13
32		2.2	CC Conformance Claims	13
33		2.3	PP Claim	13
34		2.4	Conformance claim rationale	13
35		2.5	Package Claim	13
36	3	Securi	ty Problem Definition	14
37		3.1	External entities	
38		3.2	Assets	15
39		3.3	Assumptions	16
40		3.4	Threats	
41		3.4.1	Threat agents (attackers)	17
42		3.4.2	Threats	17
43		3.5	Organizational Security Policies (OSPs)	18
44	4	Securi	ty Objectives	
45		4.1	Security Objectives for the TOE	
46		4.2	Security objectives for the operational environment	21
47		4.3	Security Objectives rationale	
48		4.3.1	Overview	22
49		4.3.2	Countering the threats	22
50		4.3.3	Coverage of organisational security policies	24
51		4.3.4	Coverage of assumptions	
52	5	Securi	ty Requirements	26
53		5.1	Overview	26
54		5.3.1	FCS COP.1/SIGVER Cryptographic operation for signature verification	28

55	5.3.2	FCS COP.1/Hash Cryptographic operation for hash value generation	28		
56	5.3.3	FCS COP.1/TLS Cryptographic operation (TLS encryption/decryption)			
57	5.3.4	FCS CKM.1/TLS Cryptographic key generation for TLS	28		
58	5.3.5	FCS CKM.2/TLS Cryptographic key distribution for TLS			
59	5.3.6	FCS_CKM.4 Cryptographic key destruction	29		
60	5.3.7	TLS – cryptographic requirements at a glance			
61	5.3.8	Firmware update at a glance	30		
62	5.4.1	FDP_ACC.1 Subset access control	31		
63	5.4.2	FDP_ACF.1 Security attribute based access control	31		
64	5.4.3	FDP IFC.2 Complete information flow control	32		
65	5.4.4	FDP_IFF.1 Simple security attributes	32		
66	5.5.1	FIA_ATD.1 User attribute definition	33		
67	5.5.2	FIA_UAU.2 User authentication before any action	34		
68	5.5.3	FIA_UAU.5 Multiple authentication mechanisms	34		
69	5.5.4	FIA_UID.2 User identification before any action	34		
70	5.6.1				
71	5.6.2	FMT_SMF.1 Specification of Management Functions	35		
72	5.6.3	FMT_SMR.1 Security roles	35		
73	5.7.1	FPT_FLS.1 Failure with preservation of secure state	35		
74	5.7.2	FPT_STM.1 Reliable time stamps	35		
75	5.10 Secu	urity Requirements rationale	37		
76	5.10.1	O.ReceiveAuthenticatedData	39		
77	5.10.2	O.SendAuthenticatedData	39		
78	5.10.3	O.SecureChannel			
79	5.10.4	O.Authentication	39		
80	5.10.5	O.Access	40		
81	5.10.6	O.SecureFirmwareUpdate	40		
82	5.10.7	O.Protect	40		
83	5.10.8	O.Management	40		
84	5.10.9	O.Crypt	40		
85	5.10.10	Fulfilment of the dependencies	41		
86	5.10.11	Security Assurance Requirements rationale	44		
87	6 Appendix		45		
88		ssary			
89 00	6.2 Refe	erences	45		
90					

List of Tables

91	Table 1: Specific terms	
92	Table 2: Mandatory TOE external interfaces	11
93	Table 3: External Entities	14
94	Table 4: Assets	15
95	Table 5: Assumptions	17
96	Table 6: Threats	18
97	Table 7: Organizational security policies	18
98	Table 8: Security Objectives for the TOE	21
99	Table 9: Security Objectives for the Environment	21
100	Table 10: Rationale for Security Objectives	22
101	Table 11: List of Security Functional Requirements	27
102	Table 12: Cryptographic Key Exchange	
103	Table 13: Assurance Requirements	37
104	Table 14: Security Requiremtens Rationale	39
105	Table 15: SFR dependencies	43
106		

List of Figures

107	Figure 1: TOE and its environment	8
108		

109 **1 PP introduction**

110 **1.1 Introduction**

111 This Protection Profile defines the Security Functional Requirements and the Security Assurance 112 Requirements for a Road Works Warning Unit.

- 113 The Road Works Warning Unit is an electronic device that warns approaching traffic about road works.
- 114 It is the electronic pendant of a physical sign that would warn the drivers against approaching traffic.

115 **1.2 PP Reference**

Title:	Protection Profile for a Road Works Warning Gateway
Version:	1.1
Authors:	Dr. Brian Niehöfer (TÜViT), <u>b.niehoefer@tuvit.demailto:</u> Markus Wagner(TÜViT), <u>m.wagner@tuvit.de</u> Sandro Berndt (BASt), <u>berndt@bast.de</u>
Certification-ID:	BSI-CC-PP-0106
Evaluation Assurance Level:	EAL 3
CC-Version:	3.1 Revision 5
Keywords:	Road Works Warning Unit

116 **1.3 Specific terms**

117 The following specific terms are used in the context of this document

Term	Description
САМ	Cooperative Awareness Message Status information periodically exchanged between vehicles by means of car-to- car communication (C2C) or road side units (RSU) by means of car-to- infrastructure communication (C2I), potentially including other road users (e.g. pedestrians, cyclists) and communication partners (C2X, car-to-everything). (Standardized in [ETSI EN 302 637-2]).
DENM	Decentralized Environmental Notification Message Event-based notifications exchanged between vehicles by means of car-to-car communication (C2C) or road side units (RSU) by means of car-to-infrastructure communication (C2I), potentially including other road users (e.g. pedestrians, cyclists) and communication partners (C2X, car-to-everything). DENM is also used to indicate road hazards, e.g. road works warning (RWW).
	(Standardized in [ETSI EN 302 637-3])
GNSS	Global Navigation Satellite System The system can be used for providing position, navigation or for tracking the position of something fitted with a receiver
ICS	ITS Central Station Fixed control station with broadband connection to IRS, potentially connecting

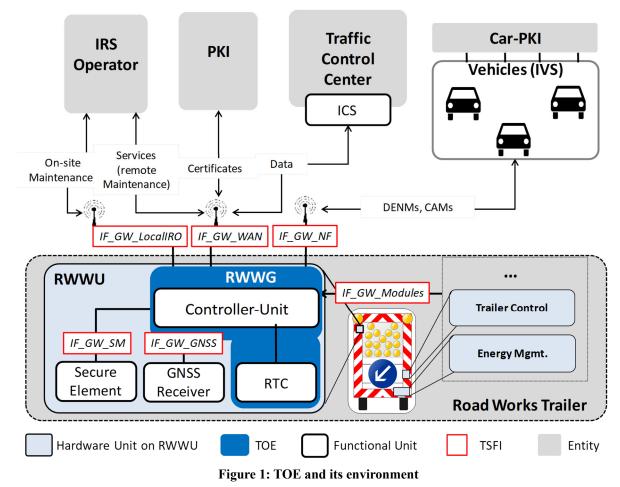
Term	Term Description					
	various (backend) systems.					
IRO	IRS Operator					
	Administrator of IRS.					
IRS	ITS Roadside Station					
	ITS computing platform, including communication and processing capacity, linked to road infrastructure.					
ITS	Intelligent Transport Systems Advanced application which, without embodying intelligence as such, aims to provide innovative services relating to different modes of transport and traffic management and enable users to be better informed and make safer, more coordinated, and 'smarter' use of transport networks.					
IVS	ITS Vehicle Station					
	Mobile platform transmitting CAMs and DENMs in ITS scenarios (e.g. vehicles)					
PKI	Public Key Infrastructure					
	A public key infrastructure (PKI) is a set of roles, policies, and procedures needed to create, manage, distribute, use, store & revoke digital certificates and manage public-key encryption.					
RWWG	WG Road Works Warning Gateway					
RWWU	Road Works Warning Unit					
	Table 1: Specific terms					

120 **1.4 TOE Overview**

121 1.4.1 **Introduction**

The TOE described in this Protection Profile is a Road Works Warning Gateway (RWWG) as a part of the corresponding Road Works Warning Unit (RWWU), which is an electronic device, mostly mounted on trailers that warn approaching traffic that road works is carried out. Seen from the road works trailer point of view, the services of the RWWG will be a service on top of the basic functionality of the road works trailer, i.e. barrier with physical warning sign. This means that even in the case when the RWWG is shortly not functioning due to breakdown or maintenance, the trailer must be available all times and the signboard must remain functional.

The TOE itself is the electronically driven module, which is able to collect data sent by bypassing vehicles near temporary road works using them for different features, like traffic surveillance or warnings. In Germany, the Road Works Warning service will be implemented for temporary road works only (typically one-day construction sites). The local traffic surveillance service will cover the vicinity of the road works site, with the objective to derive local traffic flow data and to provide input data to other cooperative services.


135 1.4.2 **TOE type**

136 The TOE is an embedded device within the Road Works Warning Unit, controlling the basic 137 functionalities and communication aspects as well as the data aggregation.

138 1.4.3 System Overview

139 The following figure provides an overview over the TOE, its separation from the RWWU and RWWG

- 140 respectively and its immediate environment.
- 141

- 144 The TOE is an electronic device that is able to collect data sent by bypassing vehicles near temporary
- road works using wireless access in vehicular environments (IEEE 802.11p). It is the electronic part of
- 146 a sign that would be able, among others, to trigger a warning to drivers of approaching traffic, which
- 147 additionally supports further services like local traffic surveillance.
- The Gateway utilises the services of a Secure Element (e.g. a smart card) as a cryptographic serviceprovider and as a secure storage for confidential assets.

150 1.4.4 Services of the TOE

- 151 The following paragraphs introduce the functionality of the TOE in a more detailed manner and
- 152 contribute to the logical boundary of the TOE. The purpose of the services enabled by the TOE is to
- 153 improve road traffic in various ways, e.g. in terms of increased traffic safety as well as improved traffic
- 154 flow and efficiency.

155 **1.4.4.1 Road Works Warning**

156 The Road Works Warning service is used to inform road users within the communication range of the 157 TOE about the actual situation on the road, i.e. vehicles in the vicinity of the TOE when approaching an 158 ongoing temporary road works. This information needs to be on time. To realize this objective, the road 159 works trailer broadcasts appropriate information towards the vehicles approaching the road works, using

160 Decentralised Environmental Notification Messages ([DENM]).

- 161 As mentioned above, the services of the RWWG will be a service on top of the basic functionality of
- 162 the road works trailer, i.e. barrier with physical warning sign. This means that even in the case when the

163 RWWG is shortly not functioning due to breakdown or maintenance, the trailer must be available all

164 times and the signboard must remain functional.

165 **1.4.4.2 Local Traffic Surveillance**

166 This service receives information being broadcasted by the vehicles using DENM and CAM 167 (Cooperative Awareness Messages) ([CAM]), potentially aggregates the received data and makes the 168 information available for improved traffic management services. This kind of potential aggregation may 169 be done partly or completely in the TCC and/or may also be used by other services of the road operators 170 and may be re-used by other service providers.

171 1.4.5 **TOE physical scope**

The TOE described in this Protection Profile aims on the provision of at least all mentioned functionalities (cmp. Section 1.4.4). Hence, only those components are integrated in the physical boundaries, which are mandatory. Therefore, the TOE comprises the hardware and firmware that is relevant for the security functionality of the Gateway as defined in this PP. The Secure Element that is utilised by the TOE is considered being not part of the TOE¹. Specifically, the TOE described in this PP only includes, next to a real-time clock, an independent computing system, and the corresponding software parts to control and steer the mentioned functionalities described in section1.4.6.

- 179 Furthermore, additional modules only support the TOE without being part of it:
- Mobile communication segments (at least one mandatory)
- 181 o GSM,
- 182 o UMTS,
- 183 o LTE.
- Car-2-X communication (mandatory)
- 185 o IEEE 802.11p
- Positioning technology (recommended)

¹ Please note that the Secure Element is physically integrated into the RWWG even though it is not part of the TOE.

187 o GPS / Galileo / GNSS receiver

188 It should be noted that this overview of possible physical implementations does not claim being a 189 complete overview of all possibilities. The Common Criteria allow to combine multiple TOE into one 190 device and have the flexibility to identify functionality that is not relevant for the security functionality 191 of the TOE or the environment. However, when focussing on a system of multiple TOEs, it is not

192 possible to move security features from the scope of one TOE to another.

193 1.4.6 **TOE logical scope**

- The TOE realizes the functional blocks primary belong to the group "message generation, processingand handling:
- Detection, definition, generation and storage of security-relevant events for logging and their mapping to corresponding entities.
- Information flow policies and rules.
- Authentication and Identification mechanisms including the implementation of access rules and policies.
- Management functionalities including the management of security attributes for the different entities.
- Ensure authenticity of information content received from or send to involved TSFIs.
- Guarantee secure state in case of error events (incl. initial values)
- Secure Firmware Update
- Provide self-test possibilities
- Replay detection
- Secure data deletion
- Reliable time-stamp generation
- Trusted communication establishment
- TLS communication to IRS or ICS after receiving decrypted session key from Secure Element

The services of the Secure Element are not part of this protection profile. The necessary service will be outlined in chapter 1.5 in more detail.

214 1.4.7 The logical interfaces of the TOE

215 The TOE offers its functionality as outlined before via a set of external interfaces. Figure 1 also indicates

the cardinality of the interfaces. The following table provides an overview of the mandatory external

- 217 interfaces of the TOE and provides additional information:
- 218

Interface Name	Description		
IF_GW_WAN	Via this interface, the RWWU has to establish all wide area communication connections, e.g. for interaction with a remote IRS Operator with the PKI respectively or for transmitting or receiving data from/to the TCC.		
IF_GW_IVS	This interface is responsible for every near-field communication. This includes the reception of DENMs or CAMs from the IVS, the potential Warning of al IVS in the direct surrounding if necessary or a locally connected IRO.		
IF_GW_LocalIRO	This interface is used for local IROs only, aiming on allowed administration tasks.		
IF_GW_GNSS	This interface is used for the connection to optional GNSS receiver, and the provision/estimation of the RWWG position.		
IF_GW_SM	The interface connects the TOE with the Secure Element.		
IF_GW_Modules	Via this interface, further functional modules on the road works trailer are		

Interface Name	Description			
	connected to the RWWG.			
Table 2: Mandatory TOE external interfaces				
A dia dia Ni da Ni dia ND 14 ang dia di CNV Madala ing di di secondari di Sharala di S				

Application Note: Within this PP, it is assumed that IF_GW_Modules is wired. Should any ST author prefers wireless connections, this shall be modeled accordingly to ensure received the integrity of the received data, e.g. by a corresponding encryption.

220 **1.5 Secure Element (not part of the TOE)**

The RWWG contains a Secure Element, which acts as a provider for the required cryptographic operations, as a secure key storage and for other needed cryptographic functionality used in the upper mentioned functions. The Secure Element provides strong cryptographic functionality, random number generation, secure storage of secrets and supports the authentication of external entities. The Secure Element is a different IT product and not part of the TOE as described in this PP. Nevertheless, it is physically embedded into the RWWG and protected by the same level of physical protection.

- 227 A Secure Element shall be used for:
- Storage of keys,
- Generating and using of random numbers and digital signatures,
- Secure deletion of private keys, and
- Decryption of session key (for TLS connection with the TCC).
- 232

219

- The Secure Element shall be protected against unauthorized removal, replacement and modification.The ST author shall define mechanisms to protect the link between the Secure Element and the TOE.
- 235 In practice the Secure Element can be realised by a smart card for example. The main application of
- 236 the RWWG should be capable of verifying the authenticity of the Secure Element on startup.

Application Note: Since it is expected that on some occasions a large number of messages from IVSs arrive at RWWG, it may be necessary that the verification of the corresponding digital signatures (and certificates) is done outside the Secure Element. This operation is less critical as it does not need access to the private key.

237 **1.6 Life cycle**

238 The Life Cycle of the TOE just consist of four consecutive phases without declines:

- 239 1. **Design/Development**
- 240 The development of The TOE itself.
- 241 2. Manufacturing/Assembly
- 242 The production itself like hardware assembly, or software installation.

3. Normal OperationOperational phase of

Operational phase of the TOE. All security functions shall be working as specified.

- **245 4. End of Life**
- In case the TOE comes to an irreparable, defect state or shall be taken out of order for other
 reason, it is ensured that the key material that is contained in the TOE is destroyed in a secure
 manner as described in the guidance documentation of the mandatory Secure Element.

All steps (including those, which are not parts of this Protection Profile) are further explained in [SiKo_RWWG].

Application Note: If the return of a TOE to the certified state at the process level should be possible (e.g. repair processes), the ST author shall also model this by means of appropriate specifications.

252 **2 Conformance Claims**

253 2.1 Conformance statement

254 This PP requires strict conformance of any PP/ST to this PP.

255 2.2 CC Conformance Claims

- 256 This PP has been developed using Version 3.1 Revision 5 of Common Criteria [CC].
- Conformance of this PP with respect to [CC] Part 2 (security functional components) is CC Part
 258 2 conformant.
- Conformance of this PP with respect to [CC] Part 3 (security assurance components) is CC Part 3 conformant.

261 2.3 PP Claim

262 This PP does not claim conformance to any other PP.

263 **2.4 Conformance claim rationale**

264 Since this PP does not claim conformance to any Protection Profile, this section is not applicable.

265 2.5 Package Claim

- 266 This PP is conforming claims assurance package EAL3 as defined in [CC] Part 3.
- 267

Hint:This PP acknowledges that the various components of the TOE may be developed
by different companies and that a large amount of the work of the developer of the
RWWG refers to the integration of those components. However, as the Evaluation
Assurance Level in this Protection Profile has been chosen to be EAL 3, this should
not introduce intractable problems during the evaluation process.

268

270 3 Security Problem Definition

- 271 The Security Problem Definition (SPD) is the part of a PP, which describes
- the **external entities** that are foreseen to interact with the TOE,
- the **assets** which the TOE shall protect,
- the **assumptions** on security relevant properties and behavior of the TOE's environment,
- threats against the assets, which shall be averted by the TOE together with its environment,
- operational security policies, which describe overall security requirements defined by the organisation in charge of the overall system including the TOE.

278 **3.1 External entities**

- 279 The following external entities are allowed to interact with the TOE.
- 280

Role	Description			
IRS Operator (IRO)	The IRS operator is responsible for initial setup of the RWWG, installing key and certificate material, firmware updates, and/or for the potential provision of the collected data to the TCC.			
Traffic Control Center (TCC)	The traffic control center sending and receiving traffic data to/from the RWWG, typically via ICS.			
Vehicles (IVS)	Vehicles are sending and receiving traffic/road works data to/from the RWWG.			
Maintenance Authority	The motorway maintenance authority/road works staff is setting up the trailer at the road works site. This entity does not operate the RWWG directly however.			
Maintenance Personnel	The Maintenance personnel are responsible for periodic local maintenance and repairs.			
РКІ	The public key infrastructure issuing certificates to the RWWG and traffic control center (TCC) required for establishing a secure connection between the RWWG and TCC.			

281

Table 3: External Entities

283 **3.2** Assets

- 284 The following table lists the assets that will need to be protected by the TOE.
- 285

Primary Assets	In(coming)/ Out(going)	Source/ Destination	Protection Requirements	Comment
Status of Signboard	In	Sign-board	-	Status of the signboard on the trailer, where the TOE is mounted (e.g. on tour or placed). Correctness of data has to be assumed
Status of illuminated arrow sign	In	Sign-board	-	Status of the illuminated arrow sign on the trailer, where the TOE is mounted (e.g. arrow down-left). Correctness of incoming data has to be assumed.
Status information (e.g. battery status, status of the board)	In & Out	Various sensor devices	-	Correctness of incoming data has to be assumed. Outgoing status information is out of evaluation scope
САМ	In & Out	IVS, TCC	Integrity, Authenticity	Incoming: TOE verifies signature; Outgoing: TOE forwards parts of CAM to TCC.
DENM	In & Out	IVS	Integrity, Authenticity	Incoming: TOE verifies signature; Outgoing: TOE forwards DENMs with original signature from IVS to IVS; TOE creates and signs DENM.
Payload of DENM	Out	TCC	Integrity, Authenticity	TOE forwards parts of DENM to TCC
Information from TCC	In	ТСС	Integrity, Authenticity	Correctness of incoming data has to be assumed. Out of evaluation scope

IRO data	In & Out	IRO	Integrity, Authenticity	Incoming: TOE verifies integrity and authenticity; Outgoing: Admin data for IRO, e.g. acknowledgements, logs, etc.
Firmware Update	In	IRO	Integrity, Authenticity	TOEverifiesintegrityandauthenticity
Secondary Assets	Description		Protection Requirements	Comment
Cryptographic keys		or long-term material used by or cryptographic	Integrity and Authenticity (for all keys), Confidentiality (at least for all private keys)	At least the private keys have to be stored in the Secure Element.

Table 4: Assets

Application Note: The integrity of the CAMs and DENMs received via IF_GW_IVS is given by the defined ETSI standards ([CAM] and [DENM]), the required PKI and additionally protected in case of forwarding to the ICS by the TLS channel, which is also mandatory.

If a data aggregation of the defined assets CAMs and DENMs are provided by the implementation-specific TOE, the ST shall include the aggregated data as additional asset and protect it accordingly against further manipulation (see T.LocalDataManipulation and T.RemoteDataManipulation) within the TOE using the following SFRs or appropriate:

- FDP_SDI.2 Stored data integrity monitoring and action (to protect the stored aggregated and raw data from manipulation)
- FCO_NRO.2 Enforced proof of origin (to prevent data injection from unauthorized entities and enable the evidence of origin of information for further entities)

287 **3.3 Assumptions**

288 In the following assumptions about the intended operational environment of the RWWG are stated.

Assumption	Description
A.SecureSetup	It is assumed that appropriate security measures are taken during the assembly/setup of the RWWG to guarantee for the confidentiality, authenticity and integrity of the initial cryptographic data.
A.TrustedAdministrator	It is assumed that the administrator of the RWWG (IRS operator) is trustworthy, non-hostile and well-trained.
A.PhysicalProtection	It is assumed that the RWWG is firmly mounted to the trailer, which is used in the context of road works, e.g. lane marking, construction or other lane-blocking events. Therefore, the TOE may also be left unobserved for a certain time (e.g. overnight during long-time road works) and hence the environment of the TOE cannot be assumed to

TOE cannot be completely avoided. Nevertheless, it is assumed that a theft of the TOE or an intervention that directly influences its telemetry is recognizable due to the existing communication link to the TCC. In addition, it is assumed that a visual examination at the beginning of the daily work by authorized personnel, which have to be included in the corresponding procedures, can securely ensure an identification of manipulations within a manageable timespan.
It is assumed that the RWWG is able to determine its correct location within a defined error bound.
It is assumed that the information that the TOE receives from other devices and sensors on the trailer are correct and cannot be manipulated.

Table 5: Assumptions

290 **3.4 Threats**

291 3.4.1 Threat agents (attackers)

292 Compared to other embedded devices, the TOE has a very specific attack scenario that it is exposed to. 293 Attackers can be classified after various characteristics. Basically, one can distinguish based on the 294 **attack path**. On the one hand, the TOE is exposed to local attacks. Local attacks are directly driven 295 against the device of the TOE, i.e. they assume physical access to the TOE. On the other hand, the TOE 296 may be access remotely via one of its network interfaces (WLAN, GSM, WCDMA, and LTE).

Further, the attacker can be classified after the **target** that they follow. An attack can be targeted locally at the device of the TOE (i.e. it can be the target to read out confidential information) or the TOE can be misused in order to attack one of the parties that the TOE is communicating with (specifically the TCC may be of interest for an attacker).

- 301 Attackers can be:
- external individuals or organizations located outside the community of the Cooperative ITS
 Corridor. They may perform attacks via the Internet, mobile networks, or ITS G5 network.
- an authorized user of the Cooperative ITS Corridor.
- an employee of any actor within the Cooperative ITS Corridor.

306 Attackers can also be characterized by their motivation. One possible motivation to perform attacks can 307 be to gain reputation. By publishing the performed attacks the person is respected as an expert e.g. for security within the ITS context. This respect could for example be used to be employed or to strengthen 308 309 a position (within a company, a consortium, ...). In the motivation of the attacker lays the main limitation for the attack potential that is considered in this Protection Profile. As outlined in chapter 5.10.11.1 the 310 analysis of all assets that are handled by the TOE showed that the value of those assets is limited. Based 311 312 on the consideration of the limited value of the assets, the motivation of an attacker to attack such assets is limited. Concretely, it can be assumed that an attacker only possesses a basic attack potential. 313

- 314 Another motivation is vandalism. Also there could be financial reasons. A company could successfully
- 315 perform attacks violating one actor in such a way that this actor will be replaced by the attacker (e.g. a
- 316 vendor of RWWG). Industrial spying could be another motivation.

317 3.4.2 Threats

Threat	Description							
T.Extraction	An attacker tries to extract secret key data from the TOE.							
	The attack can either be performed by directly accessing interfaces of the Secure Element (IF_GW_SM) or by the use of the external							

Threat	Description						
	interfaces of the TOE (i.e. by observing the data that the TOE send/receives).						
	As a specific aspect, the attacker may observe and analyse side- channel information that is leaked by the TOE. Classical examples for such side channel information include but are not limited to power consumption and light.						
	It can be the attacker's motivation to impersonate the TOE and to send false traffic, road works or status data to the TCC or IVS afterwards.						
T.LocalMalfunction	An attacker tries to induce faulty behaviour of the RWWG by applying environmental or physical stress, by injecting malformed messages to local interfaces or by manipulating internal connections of the RWWG.						
T.LocalDataManipulation	An attacker tries to inject false traffic, road works or status data of his own choosing by accessing local interfaces. The injected data would then be processed by the TOE.						
T.SoftwareManipulation	An attacker tries to install hostile software or firmware updates on the TOE. The attacker can try to achieve this either by directly accessing local interfaces of the TOE or by accessing remote interfaces.						
T.RemoteDataManipulation	An attacker injects false traffic data by impersonating a TCC or an IVS. (This includes replayed out-dated messages.)						
T.RemoteMalfunction	An attacker tries to induce faulty behaviour of the RWWG by sending malformed messages to the TOE.						
T.Interception	An attacker tries to intercept traffic, road works or status data sent between the RWWG and the TCC/IRO.						

Table 6: Threats

3.5 Organizational Security Policies (OSPs) 319

320 Organizations security policies (OSPs) are means to require functionality from a system that is 321 considered in this Protection Profile even though such functionality is not directly needed to mitigate an

- 322 attack against the system.
- 323 The following OSPs shall be implemented by the devices in this system.

OSP	Description						
OSP.SM	The TOE shall use the services of a certified Secure Element for:						
	 Storage of keys, Generating and using of random numbers and digital signatures, Secure deletion of private keys, and Decryption of session key (for TLS connection with the TCC). 						
	The Secure Element shall be certified according to Protection Profiles like [CSP- PP] or comparable and shall be used only in accordance with its corresponding guidance documentation and certification report.						
	Table 7: Organizational security policies						
Application Note:	When the RNG functionality is provided by the TOE itself, it has to be appropriately modelled by the ST author using SFR FCS_RNG according to						

[AIS20] or [AIS31].

325

Application Note: The ST author shall consider, that the evaluation body have to examine guidance and certification report of the used secure element for an appropriate application to the TOE (e.g. in terms of used data formats, implemented interactions as well as storage and destruction of the Secure Element).

327 **4 Security Objectives**

328 4.1 Security Objectives for the TOE

329 In this section the security objectives for the RWWG and its environment are described.

Objective	Description					
O.Crypt	 The TOE shall provide cryptographic functionality as follows: authentication, integrity protection and encryption of the communication and data to external entities using IF_GW_WAN or IF_GW_LocalIRO, replay detection for all communications with external entities. 					
O.ReceiveAuthenticatedData	The RWWG shall only accept and process traffic data by the IVSs, IRO and the TCC if the corresponding messages comply to the defined message formats and if its authenticity and integrity can be verified.					
O.SendAuthenticatedData	The TOE shall only send traffic, road works or status data to the TCC, IRO or the IVSs if the corresponding messages comply with the defined message formats and if it is authenticated.					
O.SecureChannel	For communication with the TCC and IRO the TOE shall establish a mutually authenticated and confidential channel.					
O.Protect	 The TOE shall implement functionality to protect its security functions against malfunctions and tampering. Specifically, the TOE shall overwrite relevant information that is no longer needed to ensure that it is no longer available implement and conduct a self-test on a regular basis physically protect the secret key material within the Secure Element against tampering ensure that the TOE does not emit any information that can be used to obtain information about the secret key material within the Secure Element, make any physical manipulation within the scope of the intended environment detectable for Maintenance Personnel ensure that the TOE fails into a secure state in case of a security relevant malfunction write a log of security relevant events 					
O.Authentication	The RWWG shall provide authentication mechanisms for all roles, which are defined in Table 3.					
O.Access	The TOE shall provide access control mechanisms for its functions and stored data.					
O.SecureFirmwareUpdate	The TOE shall implement functionality for a secure firmware update. The TOE shall accept firmware updates only if their authenticity and integrity can be verified.					
O.Management	The TOE shall provide the following management functionality to authorized administrators only:					

Objective	Objective Description						
Start firmware update							
Table 8: Security Objectives for the TOE							
Application Note:	Concerning O.	Authentication and O.Access, the ST author shall only provide					

Application Note: Concerning O.Authentication and O.Access, the ST author shall only provide authentication and access mechanisms for those roles, which need to have access to TOE configuration items. For all other users and entities, the ST author shall prevent any kind of access.

332 4.2 Security objectives for the operational environment

Objective for environment	Description								
OE.SM	The environment shall provide the services of a certified Secure Elementfor:								
	 Storage of keys, Generating and using of random numbers and digital signatures, Secure deletion of private keys, and Decryption of session key (for TLS connection with the TCC). 								
	The Secure Element shall be certified according Protection Profiles like [CSP-PP] or comparable and shall be used in accordance with its relevant guidance documentation.								
OE.SecureSetup	It shall be ensured that appropriate security measures are taken during the assembly/setup of the RWWG to guarantee for the confidentiality, authenticity and integrity of the initial cryptographic data.								
OE.TrustedAdministrator	It shall be ensured that the administrator of the RWWG is trustworthy, non-hostile and well-trained.								
OE.PhysicalProtection	It is shall be ensured that the RWWG is firmly mounted to the trailer, which is used in the context of road works, e.g. lane marking, construction or other lane-blocking events. The TOE may also be left unobserved for a certain time (e.g. overnight during long-time road works) and hence the environment of the TOE cannot ensure to provide a continuous and comprehensive level of physical protection. During the non-monitored phases, unauthorized physical access to the TOE cannot be completely avoided. Nevertheless, it is shall be ensured that a theft of the TOE or an intervention that directly influences its telemetry is recognizable due to the existing communication link to the TCC. In addition, it shall be ensured that a visual examination at the beginning of the daily work by authorized personnel, which have to be included in the corresponding procedures, can securely ensure an identification of manipulations within a manageable timespan.								
OE.CorrectLocation	It shall be ensured that the RWWG is able to determine its correct location within a defined error bound.								
OE.Information	It shall be ensured that the information that the TOE receives from other devices and sensors on the trailer are correct and cannot be manipulated.								

331

 Table 9: Security Objectives for the Environment

335 4.3 Security Objectives rationale

336 4.3.1 **Overview**

	Security Objectives for														
Security				th	e TC	DE							erati onm	onal ent	
Objective Security Problem Definition	0.Crypt	O.ReceiveAuthenticatedData	O.SendAuthenticatedData	O.SecureChannel	0.Protect	O.Authentication	0.Access	O.SecureFirmwareUpdate	O.Mananagement	OE.SM	OE.SecureSetup	OE.TrustedAdinistrator	OE.PhysicalProtection	OE.CorrectLocation	OE.Information
T.Extraction	X			X	X	X	X								
T.LocalMalfunction					X				X						
T.LocalDataManipulation	X	X	X		X	X	X		X						
T.SoftwareManipulation	X				X		X	X							
T.RemoteDataManipulation	X	X	X		X	X	X								
T.RemoteMalfunction	X	X	X		X	X									
T.Interception	X			X	X	X	X								
OSP.SM	X				X					X					
A.SecureSetup											X				
A.TrustedAdministrator												X			
A.PhysicalProtection													X		
A.CorrectLocation														X	
A.Information															X

337

338

Table 10: Rationale for Security Objectives

339

340 4.3.2 Countering the threats

341 The following sections provide more detailed information on how the threats are countered by the 342 security objectives for the TOE and its operational environment.

343

344 4.3.2.1 General objectives

345 The security objectives **O.Protect** counter each threat using self-tests on a regular basis, physical

346 protection against tampering etc., whereby **O.Management** is needed as it defines the requirements

347 around the management of the Security Functions and to document whether the TOE works as specified 348 using adequate logging information. Additionally, **O.Authentication** on the other hand to verify the

348 using adequate logging information. Additionally, **O.Authentication** on the other hand to verify the 349 corresponding administrators. **O.SecureChannel** secures the usage of appropriate communication

349 corresponding administrators. **O.SecureChannel** secures the usage of appropriate communication 350 channels, secured by the corresponding crypto-algorithms based on **O.Crypt** (cryptographic

351 operations). **O.ReceiveAuthenticatedData** and **O.SendAuthenticatedData** allow import and export

352 of required data, while its integrity and authenticity is ensured by digital signatures. **O.Access** ensures

that only authorized roles are able to access the TOE parts.

- Those general objectives that have been argued in the previous paragraphs will not be addressed in detail
- in the following paragraphs.

356

357 4.3.2.2 T.Extraction

The extraction of secret data is covered by the security objectives O.Crypt, O.SecureChannel,
 O.Protect, O.Authentication and O.Access.

Hereby, **O.SecureChannel** secures the usage of appropriate communication channels and **O.Crypt** enforces the usage of reliable signature generation, TLS-ensured communication channels and sidechannel resistant cryptographic algorithms. **O.Protect** protect the TOE's security functions against malfunctions and tampering, and **O.Authentication** and **O.Access** undertake the authentication and access procedures in a way that only the appropriate personnel may access the TOE itself and the usercorresponding functionalities.

366

367 **4.3.2.3 T.LocalMalfunction**

The induction of faulty behavior of the RWWG by injecting malformed messages or manipulations is covered by **O.Protect** and **O.Management**.

Hereby, **O.Protect** explicit implements the necessary functions against malfunctions and tampering by overwriting redundant data, provide self-test functionalities and prevent emitting any information that

372 may be used to obtain secret data. Additionally, **O.Protect** ensures a corresponding log to track security

373 relevant information. **O.Management** is hereby also necessary to start firmware updates or examine log

374 entries for administrators only.

375

376 4.3.2.4 T.LocalDataManipulation

The injection of false traffic or network/traffic information is countered by O.Crypt, O.Protect,
O.Authentication, O.Access, and O.Management.

379 **O.Crypt** generates the necessary key data and signature, which will be stored in the mandatory Secure Element. O.Protect implements the necessary functions against malfunctions and tampering by 380 overwriting redundant data, providing self-test functionalities and prevention against emitting any 381 382 information that may be used to obtain secret data. Additionally, O.Protect further ensures a corresponding log to track security relevant information. O.ReceiveAuthenticatedData and 383 **O.SendAuthenticatedData** allow import and export of required data, while its integrity and authenticity 384 385 is ensured by digital signatures. **O.Access** enables the necessary access control, which provides the rights to the corresponding user whereby **O.Authentication** provide authentication mechanisms. 386 **O.Management** also supports the countermeasures against this threat by adding the functionalities to 387 388 start firmware updates or examine log entries for administrators only.

389

390 4.3.2.5 T.SoftwareManipulation

The installation of hostile SW or FW updates on the TOE using (in-)direct access is countered by O.Crypt, O.Protect, O.Access and O.SecureFirmwareUpdate.

This threat is also countered by **O.Crypt, O.Protect and O.Access**, based on the same explanations like in chapter 4.3.2.4. Additionally **O.SecureFirmwareUpdate** only allows verified updates to be installed.

396 4.3.2.6 T.RemoteDataManipulation

The injection of false traffic data by impersonating a TCC or an IVS is countered by O.Crypt,
O.SendAuthenticatedData, O.ReceiveAuthenticatedData, O.Protect, O.Authentication and
O.Access.

400 This threat is countered by nearly the same objectives like in 4.3.2.5 (O.Crypt, O.Protect and 401 O.Access) based on the same reasons and application. Additionally, O.SendAuthenticatedData and 402 O.ReceiveAuthenticatedData ensure, in combination with O.Authentication that only verified 403 messages are accepted at the RWWG.

404

405 4.3.2.7 T.RemoteMalfunction

The induction of faulty behaviour of the RWWG by sending malformed messages to the TOE is
 countered by O.Crypt, O.SendAuthenticatedData, O.ReceiveAuthenticatedData and O.Protect.

408 **O.Protect** is used to counter this threat concerning to the explanations in 4.3.2.3. Additionally, **O.Crypt** 409 enforces the usage of reliable signature generation, TLS-ensured communication channels and side-410 channel resistant cryptographic algorithms. **O.SendAuthenticatedData** and 411 **O.ReceiveAuthenticatedData** ensure, in combination with **O.Authentication** that only verified

- 412 messages are accepted at the RWWG.
- 413
- 414

415 **4.3.2.8 T.Interception**

The interception of traffic, road works or status data sent between the RWWG and the TCC is countered
by **O.Crypt**, **O.SecureChannel**, **O.Protect**, **O.Authentication** and **O.Access**.

418 **O.Crypt** enforces the usage of reliable signature generation, TLS-ensured communication channels and 419 side-channel resistant cryptographic algorithms. In combination with **O.SecureChannel** the TOE can establish a mutually authenticated and confidential channel, whereby O.Authentication provides 420 421 authentication mechanisms. O.Protect implements the necessary functions against malfunctions and tampering by overwriting redundant data, providing self-test functionalities and prevention against 422 emitting any information that may be used to obtain secret data. Additionally, **O.Protect** further ensures 423 424 a corresponding log to track security relevant information. O.Access enables the necessary access control which provides the rights to the corresponding users. 425

426

427

428 4.3.3 Coverage of organisational security policies

The following sections provide more detailed information about how the security objectives for the environment and the TOE cover the organizational security policies.

431 **4.3.3.1 OSP.SM**

The Organizational Security Policy **OSP.SM** that mandates that the TOE utilises the services of a certified Secure Element is directly addressed by the security objectives **OE.SM** and **O.Crypt**. The objective **OE.SM** addresses the functions that the Secure Element shall be utilised for as defined in **OSP.SM** and also requires a certified Secure Element according to the specified requirements in **OE.SM**. **O.Crypt** defines the cryptographic functionalities for the TOE itself. In this context it has to be ensured that the Secure Element is operated in accordance with its guidance documentation.

438

439 4.3.4 Coverage of assumptions

440 The following sections provide more detailed information about how the security objectives for the 441 environment cover the assumptions.

442 **4.3.4.1 A.SecureSetup**

The assumption A.SecureSetup is directly and completely covered by the security objective
 OE.SecureSetup. The assumption and the objective for the environment are drafted in a way that the
 correspondence is obvious.

446

447 4.3.4.2 A.TrustedAdministrator

- The assumption A.TrustedAdministrator is directly and completely covered by the security objective
 OE. TrustedAdministrator. The assumption and the objective for the environment are drafted in a way
- 450 that the correspondence is obvious.
- 451

452 **4.3.4.3** A.PhysicalProtection

- The assumption A.PhysicalProtection is directly and completely covered by the security objective OE.
 PhysicalProtection. The assumption and the objective for the environment are drafted in a way that the
- 455 correspondence is obvious.
- 456

457 4.3.4.4 A.CorrectLocation

- 458 The assumption A.CorrectLocation is directly and completely covered by the security objective OE.
- 459 **CorrectLocation**. The assumption and the objective for the environment are drafted in a way that the 460 correspondence is obvious.
- 461

462 **4.3.4.5 A.Information**

463 The assumption **A.Information** is directly and completely covered by the security objective

464 **OE.Information**. The assumption and the objective for the environment are drafted in a way that the 465 correspondence is obvious.

467 **5 Security Requirements**

468 **5.1 Overview**

This chapter describes the security functional and the assurance requirements which have to be fulfilled
by the TOE. Those requirements comprise functional components from part 2 of [CC] and the assurance
components as defined for the Evaluation Assurance Level 3 from part 3 of [CC].

- 472 The following notations are used:
- 473 Refinement operation (denoted by bold text): is used to add details to a requirement, and thus
 474 further restricts a requirement. In case that a word has been deleted from the original text this
 475 refinement is indicated by crossed out bold text.
- 476 Selection operation (denoted by <u>underlined text</u>): is used to select one or more options provided
 477 by the [CC] in stating a requirement.
- Assignment operation (denoted by *italicised text*): is used to assign a specific value to an unspecified parameter, such as the length of a password.
- Iteration operation: are identified with a suffix in the name of the SFR (e.g. FMT_MOF.1/Mode).

482 It should be noted that the requirements in the following chapters are not necessarily be ordered 483 alphabetically. Where useful the requirements have been grouped.

484 The following table summarises all TOE security functional requirements of this PP:

Class FAU: Security Audit							
FAU_GEN.1	Audit data generation						
FAU_GEN.2	GEN.2 User identity association						
Class FCS: Cryptographic Operation							
FCS_COP.1/SIGVER	Cryptographic operation for signature verification						
FCS_COP.1/Hash	Cryptographic operation for hash value generation						
FCS_COP.1/TLS	Cryptographic operation (TLS encryption/decryption)						
FCS_CKM.1/TLS	Cryptographic key generation for TLS						
FCS_CKM.2/TLS	Cryptographic key distribution						
FCS_CKM.4 Cryptographic key destruction							
	Class FDP: User Data Protection						
FDP_ACC.1 Subset access control							
FDP_ACF.1	Security attribute based access control						
FDP_IFC.2	Complete information flow control						
FDP_IFF.1	Simple security attributes						
FDP_RIP.1	Subset residual information protection						
Class FIA: Identification and Authentication							

FIA_ATD.1 User attribute definition							
FIA_UAU.2	User authentication before any action						
FIA_UAU.5	ultiple authentication mechanisms						
FIA_UID.2	User identification before any action						
	Class FMT: Security Management						
FMT_SMF.1	Specification of Management Functions						
FMT_SMR.1	Security roles						
FMT_MSA.1	MT_MSA.1 Management of security attributes						
	Class FPT: Protection of the TSF						
FPT_FLS.1	FPT_FLS.1 Failure with preservation of secure						
FPT_STM.1	Reliable time stamps						
FPT_PHP.1	Passive detection of physical attack						
FPT_TST.1	TSF testing						
Class FTP: Trusted path/channels							
FTP_ITC.1:	Inter-TSF trusted channel						
Table 11: List of Security Functional Requirements							

ŗy qı

486 5.2 Class FAU: Security audit

487 5.2.1 FAU_GEN.1 Audit data generation

FAU_GEN.1.1 The TSF shall be able to generate an audit record of the following auditable events:
a) Start-up and shutdown of the audit functions;
b) All auditable events for the [basic] level of audit; and
c) [assignment: other non-privacy relevant auditable events].
FAU_GEN.1.2 The TSF shall record within each audit record at least the following information:
a) Date and time of the event, type of event, subject identity (if applicable), and the outcome (success or failure) of the event; and
b) For each audit event type, based on the auditable event
definitions of the functional components included in the PP/ST, [assignment: other audit relevant information or none].

488 5.2.2 FAU_GEN.2 User identity association

FAU_GEN.2.1 For audit events resulting from actions of identified users, the TSF shall be able to associate each auditable event with the identity of the user that caused the event.

489 5.3 Class FCS: Cryptographic Support

490 5.3.1 FCS_COP.1/SIGVER Cryptographic operation for signature verification

FCS_COP.1.1/SIThe TSF shall perform [signature verification] in accordance with a specified
cryptographic algorithm [ECDSA NIST P256 and [assignment: cryptographic
algorithm or none]] and cryptographic key sizes [256 bit and [assignment:
cryptographic key sizes or none]] that meet the following: [ETSI TS 103 097] or
[assignment: list of standards or none].

Application Note: The signature generation will always be performed by the built in Secure Element while signature verification of received IVS transmissions may also be performed by a software implementation.

491 5.3.2 FCS_COP.1/Hash Cryptographic operation for hash value generation

FCS_COP.1.1/HThe TSF shall perform [cryptographic hashing] in accordance with a specified
cryptographic algorithm [SHA-256, SHA-384, SHA-512] and cryptographic key
sizes [256-bit, 384-bit, 512-bit] that meet the following: [ETSI TS 103 097 and
FIPS Pub 180-4].

492 5.3.3 FCS_COP.1/TLS Cryptographic operation (TLS encryption/decryption)

FCS_COP.1.1/TL The TSF shall perform [*encryption and decryption*] in accordance with a specified S cryptographic algorithm [*cryptographic algorithms as identified in chapter 5.3.7*] and cryptographic key sizes [*key sizes as identified in chapter 5.3.7*] that meet the following: [*standards as listed in chapter 5.3.7*].

493 5.3.4 FCS_CKM.1/TLS Cryptographic key generation for TLS

FCS_CKM.1.1/T The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm [algorithms for key generation as listed in chapter 5.3.7] and specified cryptographic key sizes [key sizes as listed in chapter 5.3.7] that meet the following: [standards as listed in chapter 5.3.7].

Application Note: The Secure Element is used for parts of the TLS key negotiation.

494 5.3.5 FCS_CKM.2/TLS Cryptographic key distribution for TLS

FCS_CKM.2.1/T The TSF shall distribute cryptographic key in accordance with a specified LS cryptographic key distribution method [*see Table 12*] that meets the following: [*see Table 12*].

Operation/Purpose	Algorithms / Cipher Suite	Standard
Key Agreement	Ephemeral elliptic curve DH key exchange supports the P-256 and the P-384 curves	FIPS186- 4

495

Table 12: Cryptographic Key Exchange

496 5.3.6 FCS_CKM.4 Cryptographic key destruction

- FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method [assignment: cryptographic key destruction method] that meets the following: [assignment: list of standards].
- Application Note: Please note that as against the requirement FDP_RIP.1 the mechanisms implementing the requirement from FCS_CKM.4 shall be suitable to avoid attackers with physical access to the TOE from accessing the keys after they are no longer used.

497

498 5.3.7 TLS – cryptographic requirements at a glance

The TOE implements a TLS channel that is modelled in a variety of SFRs. In this context the TOE shallimplement the following cipher suites as recommended by [TR2102-2]:

502 •	TLS	ECDHE	ECDSA	WITH	AES	128	CBC	SHA256
-------	-----	-------	-------	------	-----	-----	-----	--------

- 503 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- 505 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- 507 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- 508 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- 509 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- 510 TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- 511 TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA384
- 513 TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- 514 TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- 515 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- 516 TLS_DHE_RSA_WITH_AES_256_CBC_SHA384
- 517 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

- 518 Further, the following requirements shall be followed by the TOE:
- The TLS connection as required by FTP_ITC.1 shall be based on TLS v1.2 [RFC5246] or newer.
- The TOE shall be technically prevented from establishing a TLS connection with another external entity using TLS v1.0 [RFC2246], TLS v1.1 [RFC4346] or SSL.
- Session renegotiation shall only take place on the basis of [RFC5746].

523 5.3.8 Firmware update at a glance

- 524 The TOE performs a secure firmware update, which requires the TOE to implement the following:
- Verify firmware update signature to ensure authenticity and integrity prior to installation (acc.
 FCS_COP.1/SIGVER),
- IRO authentication is required to upload the firmware update data (acc. FIA_UAU.2 and FIA_UID.2),
- Automatic firmware update is not allowed.
- 530 The term firmware update applies to any security relevant software update in the TOE.

531 5.4 Class FDP: User data protection

532 5.4.1 FDP_ACC.1 Subset access control

FDP_ACC.1.1 The TSF shall enforce the [*RWWG access policy*] on [

- Subjects: external entities using any TSFI
- Objects: any information that is sent to, from or via the TOE and any information that is stored in the TOE]
- Operations: all operations among subjects and objects covered by the SFP
-].

533 5.4.2 FDP_ACF.1 Security attribute based access control

FDP_ACF.1.1 The TSF shall enforce the [*RWWG access policy*] to objects based on the following:[

subjects: external entities using any TSFI

objects: any information or data that is sent to, from or via the TOE attributes: destination interface and [assignment: further SFP-relevant security attributes **or none**]].

- FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed: [
 - an authorized IRO is allowed to have access via wide-area communication or local interfaces, but is not allowed to read, modify or write stored and/or processed assets within the TOE, except status, logging and update information
 - only an authorized IRO is allowed to start the firmware update process.
 - *an authorized TCC is only allowed to interact with the TOE via a WAN interface*].
- FDP_ACF.1.3 The TSF shall explicitly authorise access of subjects to objects based on the following additional rules: [assignment: *rules, based on security attributes that explicitly authorise access of subjects to objects*].
- FDP_ACF.1.4 The TSF shall explicitly deny access of subjects to objects based on the following additional rules: [
 - private cryptographic keys must never be readable,
 - *TCC is not allowed to read logging information,*
 - [assignment: rules, based on security attributes, that explicitly deny access of subjects to objects]].
- Application Note: Please note, that the PP is based on the assumption, that only static attributes will be defined in FDP_ACF.1. If an ST author include any dynamic ones, the author also shall model corresponding management functionalities and rules within FMT_MSA.3 and adapt the SFR dependencies table (Table 15).

535 5.4.3 FDP_IFC.2 Complete information flow control

- FDP_IFC.2.1 The TSF shall enforce the [*RWWG IFP*] on [
 - Subjects: TOE, TCC, IVS, PKI, Modules on road works trailor [assignment: other or none]
 - Information: messages
 - Operation: send, receive

] and all operations that cause that information to flow to and from subjects covered by the SFP.

FDP_IFC.2.2 The TSF shall ensure that all operations that cause any information in the TOE to flow to and from any subject in the TOE are covered by an information flow control SFP.

536 5.4.4 FDP_IFF.1 Simple security attributes

FDP_IFF.1.1 The TSF shall enforce the [*RWWG IFP*] based on the following types of subject and information security attributes: [

- Subjects: TOE, TCC, IVS, IRO, PKI, Modules on road works trailer [assignment: other or none]
- Information: messages and their signature
- Attributes: destination_interface (TOE, TCC, IVS, PKI, Modules of the road works trailer or IRO), source_interface (TOE, TCC, IVS, PKI, Modules of the road works trailer or IRO), destination_authenticated
-].

FDP_IFF.1.2 The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [

• *an information flow shall only be possible if allowed by a corresponding communication profile within the TOE*].

- FDP_IFF.1.3 The TSF shall enforce the [*following rules*:
 - Connection establishment is only allowed between the introduced destination_interfaces and source_interfaces.
 - Connection establishment is especially denied in the following cases:
 - (Source_interface = IRO or source_interface=TCC) and destination_interface = IVS
 - Source_interface = IVS and (destination_interface= IRO or destination_interface=TCC)
 - Source_interface = IRO and destination_interface=TCC
 - Source_interface= TCC and destination_interface=IRO
 - Source_interface= PKI and destination_interface=TOE
 - Source_interface=TOE and destination_interface=Modules of the road works trailer
 - All messages sent to TCC, all IRO roles and the PKI must only be sent via an encrypted TLS channel and must be signed prior to sending
 - The signature of every message received by source_interface = TCC, or source_interface=IVS, or source_interface=IRO and source_interface=Modules of the road works trailer must be verified
 - 0 If the signature is found to be invalid, the message must be dropped
 - Only messages with a valid signature may be processed
 - Received messages from source_interface = IVS that do not fulfill the standard of CAM or DENM [assignment: other standards or none] shall be dropped].
- FDP_IFF.1.4 The TSF shall explicitly authorise an information flow based on the following rules: [assignment: *rules, based on security attributes, that explicitly authorise information flows*].
- FDP_IFF.1.5 The TSF shall explicitly deny an information flow based on the following rules: [assignment: *rules, based on security attributes, that explicitly deny information flows*].
- Application Note: Please note, that the PP is based on the assumption, that only static firewall rules will be defined in FDP_IFF.1. If an ST author include any dynamic ones, the author also shall model corresponding management functionalities and rules within FMT_MSA.3 and adapt the SFR dependencies table (Table 15).

538 5.4.5 FDP_RIP.1 Subset residual information protection

FDP_RIP.1.1The TSF shall ensure that any previous information content of a resource is made
unavailable upon the [deallocation of the resource from] the following objects:
[cryptographic keys (and session keys), all received messages, all sent messages,
aggregated information, [assignment: other objects or none]].

539 5.5 Class FIA: Identification and authentication

540 5.5.1 FIA_ATD.1 User attribute definition

- FIA_ATD.1.1 The TSF shall maintain the following list of security attributes belonging to individual users: [
 - User identity

- Connecting network
- Role membership
- [assignment: list of security attributes]].

542 5.5.2 FIA_UAU.2 User authentication before any action

FIA_UAU.2.1 The TSF shall require each user to be successfully authenticated before allowing any other TSF-mediated actions on behalf of that user.

543 5.5.3 FIA_UAU.5 Multiple authentication mechanisms

- FIA_UAU.5.1 The TSF shall provide [
 - TLS-authentication via certificates at the WAN interface to IROs and TCCs
 - [assignment: list of multiple authentication mechanisms]

] to support user authentication.

- FIA_UAU.5.2 The TSF shall authenticate any user's claimed identity according to the [
 - IROs shall be authenticated via TLS-certificates at IF_GW_WAN or IF_GW_LocalIRO only
 - TCCs shall be authenticated via TLS-certificates at IF_GW_WAN interface only
 - *IVS shall be authenticated via certificates at IG_GW_IVS only*
 - [assignment: rules describing how the multiple authentication mechanisms provide authentication]].
- Application Note: The ST author is reminded that the assignment in FIA_UAU.5 shall cover the authentication mechanisms for the TLS connection as well as the authentication mechanisms for local maintenance.
- 544

545 5.5.4 FIA_UID.2 User identification before any action

FIA_UID.2.1 The TSF shall require each user to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

546 5.6 Class FMT: Security Management

547 5.6.1 FMT_MSA.1 Management of security attributes

FMT_MSA.1.1The TSF shall enforce the [RWWG access policy] to restrict the ability to [modify,
delete, [assignment: other operations]] the security attributes [all relevant security
attributes] to [authorised identified roles].

548 5.6.2 FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions: [

- Firmware Update
- [assignment: list of additional management functions to be provided by the TSF or none]].

549 5.6.3 FMT_SMR.1 Security roles

FMT_SMR.1.1 The TSF shall maintain the roles [

- IRO,
- TCC,
- IVS, and
- [assignment: additional roles or none]].

FMT_SMR.1.2 The TSF shall be able to associate users with roles.

550 5.7 Class FPT: Protection of the TSF

551 5.7.1 **FPT_FLS.1** Failure with preservation of secure state

FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of failures occur: [

- the deviation between local system time of the TOE and the reliable external time source is too large,
- [assignment: other of types of failures in the TSF]].

552 5.7.2 FPT_STM.1 Reliable time stamps

FPT_STM.1.1 The TSF shall be able to provide reliable time stamps.

Application Note: The time stamps as defined by FPT_STM.1 shall be of sufficient exactness. Therefore, the local system time of the TOE is synchronised regularly with a reliable external time source. However, the local clock also needs a sufficient exactness as the synchronisation will fail if the deviation is too large (the TOE will preserve a secure state according to FPT_FLS.1).

Therefore the local clock shall be as exact as required by [RFC5246].

553 5.7.3 FPT_PHP.1 Passive detection of physical attack

- FPT_PHP.1.1 The TSF shall provide unambiguous detection of physical tampering that might compromise the TSF.
- FPT_PHP.1.2 The TSF shall provide the capability to determine whether physical tampering with the TSF's devices or TSF's elements has occurred.

554 5.7.4 **FPT_TST.1 TSF testing**

- FPT_TST.1.1 The TSF shall run a suite of self tests [during initial start-up, periodically during normal operation, at the request of the authorised user] to demonstrate the correct operation of [the TSF].
- FPT_TST.1.2 The TSF shall provide authorised users with the capability to verify the integrity of [TSF data].

FPT_TST.1.3 The TSF shall provide authorised users with the capability to verify the integrity of [TSF].

555 **5.8 Class FTP: Trusted path/channels**

556 5.8.1 FTP_ITC.1: Inter-TSF trusted channel

- FTP_ITC.1.1 The TSF shall provide a communication channel between itself and another trusted IT product that is logically distinct from other communication channels and provides assured identification of its end points and protection of the channel data from modification or disclosure **using the following mechanisms**:
 - a) Cryptographically-protected communication channel between the TOE and all IRO and TCC partners with a combination of the following cipher suites defined there:
 - 1. Symmetric cipher defined in FCS_COP.1/TLS
 - 2. Keyed hash algorithms defined in FCS_COP.1/Hash as defined in [RFS5246].
 - b) Authenticated communication channel using TLS as defined in [RFC5246] for server authentication.
 - c) Authenticated communication channel using a password authentication scheme as defined in FIA_UAU.2.
- FTP_ITC.1.2 The TSF shall permit [<u>the TSF, another trusted IT product</u>] to initiate communication via the trusted channel.
- FTP_ITC.1.3 The TSF shall initiate communication via the trusted channel for [all security functions specified in the ST that interact with remote trusted IT systems and no other conditions or functions].

557 5.9 Security Assurance Requirements for the TOE

- 558 The minimum Evaluation Assurance Level for this Protection Profile is EAL 3.
- 559 The following table lists the assurance components which are therefore applicable to this PP.
- 560

Assurance Class	Assurance Component
Development	ADV_ARC.1
	ADV_FSP.3
	ADV_TDS.2
Guidance documents	AGD_OPE.1
	AGD_PRE.1
Life-cycle support	ALC_CMC.3
	ALC_CMS.3

Assurance Class	Assurance Component
	ALC_DEL.1
	ALC_DVS.1
	ALC_LCD.1
Security Target Evaluation	ASE_CCL.1
	ASE_ECD.1
	ASE_INT.1
	ASE_OBJ.2
	ASE_REQ.2
	ASE_SPD.1
	ASE_TSS.1
Tests	ATE_COV.2
	ATE_DPT.1
	ATE_FUN.1
	ATE_IND.2
Vulnerability Assessment	AVA_VAN.2

Table 13: Assurance Requirements

562 5.10 Security Requirements rationale

563 This chapter proves that the set of security requirements (TOE) is suited to fulfil the security objectives 564 described in chapter 4 and that each SFR can be traced back to the security objectives. At least one 565 security objective exists for each security requirement.

	O.Crypt	O.ReceiveAuthentificatedData	O.SendAuthenticatedData	O.SecureChannel	O.Protect	O.Authentication	0.Access	O.SecureFirmwareUpdate	O.Management
FAU_GEN.1					Х				
FAU_GEN.2					Х				
FCS_COP.1/SIGVER	Х	Х			Х			Х	

	0.Crypt	O.ReceiveAuthentificatedData	O.SendAuthenticatedData	O.SecureChannel	O.Protect	O.Authentication	0.Access	O.SecureFirmwareUpdate	O.Management
FCS_COP.1/HASH	Х					Х			
FCS_COP.1/TLS	Х			X					
FCS_CKM.1/TLS	Х			Х					
FCS_CKM.2/TLS	Х			Х					
FCS_CKM.4	Х								
FDP_ACC.1							Х		
FDP_ACF.1							Х		
FDP_IFC.2		Х	X	Х					
FDP_IFF.1		Х	X						
FDP_RIP.1					Х				
FIA_ATD.1						Х	Х		Х
FIA_UAU.2						Х			Х
FIA_UAU.5						Х			Х
FIA_UID.2						Х	Х		Х
FMT_SMF.1									Х
FMT_SMR.1									Х
FMT_MSA.1									Х
FPT_FLS.1					X				
FPT_STM.1					Х				

	O.Crypt	O.ReceiveAuthentificatedData	O.SendAuthenticatedData	O.SecureChannel	O.Protect	O.Authentication	0.Access	O.SecureFirmwareUpdate	O.Management
FPT_PHP.1					Х				
FPT_TST.1					Х				
FTP_ITC.1				Х					

~	1	1
2	h	h
~	υ	v

Table 14: Security Requiremtens Rationale

567 The following paragraphs contain more details on this mapping.

568	5.10.1	O.ReceiveAuthenticatedData

569	O.ReceiveAuthenticatedData is met by the following SFR:
-----	---

- **FDP_IFC.2** which defines the complete information flow control
- **FDP_IFF.1** defines the corresponding security attributes
- 572 FCS_COP.1/SIGVER verifies incoming data
- 573

574 5.10.2 **O.SendAuthenticatedData**

575	O.SendAuthenticatedData is met by the following SFR:
576	• FDP_IFC.2 which defines the complete information flow control.
577	• FDP_IFF.1 defines the corresponding security attributes.
578	
579	5.10.3 O.SecureChannel
580	O.SecureChannel is met by a combination of the following SFRs:
581	• FCS_COP.1/TLS defines the cryptographic operations for the TLS channel.
582	• FCS_CKM.1/TLS defines the cryptographic key generation for the TLS connection.
583	• FCS_ITC.1 defines the inter-TSF trusted channel itself.
584	• FDP_IFC.2 defines the information flow control within the given architecture.
585	
586	5.10.4 O.Authentication

- 587 O.Authentication is met by a combination of the following SFRs:
- **FIA_ATD.1** defines the security attributes for all users.
- **FIA_UAU.2** defines requirements around the authentication of users.
- FIA_UID.2 defines requirements around the identification of users.

591	
592	5.10.5 O.Access
593 594 595 596	 O.Access is met by a combination of: FDP_ACC.2 and FDP_ACF.1, which define the required access control policy. FIA_ATD.1 defines the security attributes for all users.
597	5.10.6 O.SecureFirmwareUpdate
598 599 600 601 602	 O.SecureFirmwareUpdate is met by a combination of the following SFRs: FCS_COP.1/SIGVER verifies the firmware update signature to ensure authenticity and integrity prior to installation. FIA_UAU.2 and FIA_UAU.5 addresses to valid authentication of a responsible administrator
603	5.10.7 O.Protect
604 605 606 607 608 609 610 611 612 613 614	 O.Protect is met by a combination of the following SFRs: FDP_RIP.1 defines that the TOE shall make information unavailable as soon as it is no longer needed. FPT_FLS.1 ensures that the TOE fails into a secure state in case of a security relevant malfunction FPT_TST.1 defines the self testing functionality. FPT_PHP.1 defines the requirements around the physical protection that the TOE has to provide. FAU_GEN.1 defines the necessary audit data generation FAU_GEN.2 defines the corresponding user identity association
615	5.10.8 O.Management
616 617 618 619 620 621 622 623 624	 O.Management is met by a combination of the following SFRs: FIA_ATD.1 defines how authorised administrator might be able to define additional security attributes for users. FIA_UAU.2 defines requirements around the authentication of users. FIA_UID.2 defines requirements around the identification of users. FMT_MSA.1 defines the management of the security attributes. FMT_SMF.1 defines the management functionalities that the TOE must offer. FMT_SMR.1 defines the role concept for the TOE.
625	5.10.9 O.Crypt
626 627 628 629 630 631 632 633	 O.Crypt is met by a combination of the following SFRs: FCS_CKM.4 defines the requirements around the secure deletion of ephemeral cryptographic keys. FCS_CKM.1/TLS defines the requirements on key negotiation for the TLS protocol. FCS_COP.1/TLS defines the requirements around the encryption and decryption capabilities of the Gateway for communications with external parties in the WAN and (if not implemented in one physical device) to Meters. ECS_COP.1/SICVEP_defines_the_requirements_around_the_encryption_and_decryption_of
633 634	• FCS_COP.1/SIGVER defines the requirements around the encryption and decryption of signatures.

- 635 FCS_CKM.2/TLS defines the allowed key distribution mechanisms.
- FCS_COP.1/HASH defines the requirements for the hash operations.
- 637

638 5.10.10 Fulfilment of the dependencies

639 The following table summarises all TOE functional requirements dependencies of this PP and

- 640 demonstrates that they are fulfilled.
- 641

SFR	Dependencies	Fulfilled by
FAU_GEN.1	FPT_STM.1 Reliable Time Stamps	FPT_STM.1
FAU_GEN.2	FAU_GEN.1 Audit data generation FIA_UID.1 Timing of identification	FAU_GEN.1 FIA_UID.2
FCS_COP.1/TLS	[FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation] FCS_CKM.4 Cryptographic key destruction	FCS_CKM.1/TL S FCS_CKM.4
FCS_COP.1/SIGVER	[FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation] FCS_CKM.4 Cryptographic key destruction	1 st dependency need to be fulfilled within the production or installation phase of the TOE, during the implementation of the corresponding key value.
FCS_COP.1/Hash	[FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation] FCS_CKM.4 Cryptographic key destruction	1 st dependency need to be fulfilled within the production or installation phase of the TOE, during the implementation of the corresponding key value. FCS_CKM.4

SFR	Dependencies	Fulfilled by
FCS_CKM.1/TLS	[FCS_CKM.2 Cryptographic key distribution, or FCS_COP.1 Cryptographic operation] FCS_CKM.4 Cryptographic key destruction	FCS_CKM.2/TL S FCS_CKM.4
FCS_CKM.2/TLS	[FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation] FCS_CKM.4 Cryptographic key destruction	FCS_CKM.1/TL S FCS_CKM.4
FCS_CKM.4	[FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1/TLS Cryptographic key generation]	FCS_CKM.1/TL S
FDP_ACC.1	FDP_ACF.1 Security attribute based access control	FDP_ACF.1
FDP_ACF.1	FDP_ACC.1 Subset access control FMT_MSA.3 Static attribute initialisation	FDP_ACC.1 FMT_MSA.3 does not have to be fulfilled here because all the defined in ACF attributes are static and unchangeable. If an ST author include any dynamic attributes, the author also has to model FMT_MSA.3 (see application note in FDP_ACF.1)
FDP_IFC.2	FDP_IFF.1 Simple security attributes	FDP_IFF.1

SFR	Dependencies	Fulfilled by
FDP_IFF.1	FDP_IFC.1 Subset information flow control FMT_MSA.3 Static attribute initialisation	FDP_IFC.2 FMT_MSA.3 does not have to be fulfilled here, because all in IFF defined attributes are static and unchangeable. If an ST author include any dynamic rules, the author also has to model FMT_MSA.3 (see application note in FDP_IFF.1)
FDP_RIP.1	-	
FIA_ATD.1	-	
FIA_UAU.2	FIA_UID.1 Timing of identification	FIA_UID.2 User identification before any action
FIA_UAU.5	-	
FIA_UID.2	-	
FMT_SMF.1	-	
FMT_SMR.1	FIA_UID.1 Timing of identification	FIA_UID.2
FMT_MSA.1	[FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT_SMR.1 Security roles FMT_SMF.1 Specification of Management Functions	FDP_ACC.1 FMT_SMR.1 FMT_SMF.1
FPT_FLS.1	-	
FPT_STM.1	-	
FPT_PHP.1	-	
FPT_TST.1	-	
FTP_ITC.1	-	

644 5.10.11 Security Assurance Requirements rationale

645 **5.10.11.1 Justification for selection of assurance level**

646 The main decision about the assurance level has been taken based on the assumed attackers that exist

against the TOE. Many discussions and a structured threat model have shown that one can act on the

assumption that the potential of the assumed attackers is only of basic potential. This lead to the selectionof the component AVA VAN.2 for vulnerability assessment. This component is contained in two

- 650 evaluation assurance levels, namely EAL 2 and EAL 3.
- 651 As the discussions around the threat model further lead to the fact that the security of the development
- 652 environment and of the development processes is an important aspect for the security of the TOE, it has
- 653 been decided to use EAL 3 as the assurance level in this Protection Profile.

654 5.10.11.2 Dependencies of assurance components

The dependencies of the assurance requirements taken from EAL 3 are fulfilled automatically.

657 6 Appendix

658 6.1 Glossary

СА	Certificate Authority or Certification Authority, an entity that issues digital certificates.
EAL	Evaluation Assurance Level
LAN	Local Area Network
Personally Identifiable Information (PII)	Personally Identifiable Information refers to information that can be used to uniquely identify, contact, or locate a single person or can be used with other sources to uniquely identify a single individual.
TSF	Transport Layer Security protocol according to RFC5246
TOE	Target of Evaluation - set of software, firmware and/or hardware possibly accompanied by guidance
WAN	Wide Area Network

659

660 6.2 References

[AIS20]	Anwendungshinweise und Interpretationen zum Schema (AIS) – AIS 20, Funktionalitätsklassen und Evaluationsmethodologie für deterministische Zufallszahlengeneratoren, Version 3, 2013-05-15, Herausgeber: Zertifizierungsstelle des BSI im Rahmen des Zertifizierungsschemas, Bundesamt für Sicherheit in der Informationstechnik.
[AIS31]	Anwendungshinweise und Interpretationen zum Schema (AIS) – AIS 31, Funktionalitätsklassen und Evaluationsmethodologie für physikalische Zufallszahlengeneratoren, Version 3, 2013-05-15, Bundesamt für Sicherheit in der Informationstechnik.
[CC]	Common Criteria for Information Technology Security Evaluation –
	• Part 1: Introduction and general model, dated April 2017, version 3.1, Revision 5
	• Part 2: Security functional requirements, dated April 2017, version 3.1, Revision 5
	• Part 3: Security assurance requirements, dated April 2017, version 3.1, Revision 5
[DENM]	ETSI EN 302 637-3 V1.2.2 (2013-08): Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic Service
[CAM]	ETSI EN 302 637-2 V1.3.2 (2013-08): Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service

[TR2102-1]	Technische Richtlinie TR-02102-1 Kryptographische Verfahren: Empfehlungen und Schlüssellängen, Version 2018-012 29. Mai 2018
[TR2102-2]	Technische Richtlinie TR-02102-2 Kryptographische Verfahren: Empfehlungen und Schlüssellängen, Teil 2 – Verwendung von Transport Layer Security (TLS), (Version 2019-01)
[TR3111]	Technical Guideline TR-03111, Elliptic Curve Cryptography, Version 2.10, 01.06.2018
[SiKo_RWWG]	Informationssicherheitskonzept C-ITS Corridor, Version 1.2, March 2018
[ETSI TS 103 097]	Security Header & Certificates ETSI TS 103 097, Version 1.3.1, October 2017
[RFC5246]	RFC 5246 The Transport Layer Security (TLS) Protocol Version 1.2, August 2008
[RFC2246]	RFC 2246, The TLS Protocol, January 1999
[ETSI TS 102 941]	Intelligent Transport Systems (ITS); Security; Trust and Privacy Management, version 1.2.1, May 2018
[C-ITS-Policy]	Certificate Policy for Deployment and Operation of European Cooperative Intelligent Transportation Systems (C-ITS), release 1.1, June 2018