
 1

Protection Profile for Virtualization

Version: 1.0
2016-11-17

National Information Assurance Partnership

 2

Revision History

Version Date Comment

v1.0 2016-11-17 Initial publication

 3

Table of Contents

1 Introduction ... 5

1.1 Overview ..5

1.2 Terms ...5

1.2.1 Common Criteria Terms .. 5

1.2.2 Technology Terms ... 5

1.3 Compliant Targets of Evaluation ..8

1.3.1 TOE Boundary ... 8

1.3.2 Requirements Met by the Platform .. 9

1.3.3 Scope of Certification .. 9

1.3.4 Vendor Attestation ... 10

1.3.5 Product and Platform Equivalence ... 10

1.4 Use Cases .. 10

2 Conformance Claims ... 11

3 Security Problem Description .. 12

3.1 Threats ... 12

3.2 Assumptions ... 14

3.3 Organizational Security Policies ... 14

4 Security Objectives ... 15

4.1 Security Objectives for the TOE .. 15

4.2 Security Objectives for the Operational Environment ... 17

4.3 Security Objectives Rationale .. 18

5 Security Requirements .. 20

5.1 TOE Security Functional Requirements ... 20

5.1.1 Security Audit (FAU) .. 20

5.1.2 Cryptographic Support (FCS) ... 25

5.1.3 User Data Protection (FDP) ... 45

5.1.4 Identification and Authentication (FIA) .. 51

5.1.5 Security Management (FMT) .. 55

5.1.6 Protection of the TSF (FPT) ... 56

5.1.7 TOE Access (FTA) ... 65

5.1.8 Trusted Path/Channel (FTP) .. 65

5.2 TOE Security Assurance Requirements ... 67

5.2.1 Class ASE: Security Target Evaluation ... 67

5.2.2 Class ADV: Development ... 67

5.2.3 Class AGD: Guidance Documents .. 69

5.2.4 Class ALC: Life-Cycle Support .. 71

5.2.5 Class ATE: Tests ... 73

5.2.6 Class AVA: Vulnerability Assessment .. 75

Annex A. Optional Requirements ... 77

 4

Annex B. Selection-Based Requirements .. 80

Annex C. Objective Requirements ... 115

Annex D. Entropy Documentation and Assessment .. 119

D.1 Design Description .. 119

D.2 Entropy Justification .. 119

D.3 Operating Conditions .. 119

D.4 Health Testing ... 119

Annex E. References ... 120

Annex F. Acronyms .. 121

 5

1 Introduction

1.1 Overview
The scope of this Protection Profile (PP) is to describe the security functionality of virtualization
technologies in terms of [CC] and to define security functional and assurance requirements for such
products. This PP is not complete in itself, but rather provides a set of requirements that are common to
the Extended Packages (EP) for Server Virtualization and for Client Virtualization. These capabilities have
been broken out into this generic ‘base’ PP due to the high degree of similarity between the two
product types.

Due to the increasing prevalence of virtualization technology in enterprise computing environments, it is
essential to ensure that this technology is implemented securely in order to mitigate the risk introduced
by sharing multiple computers and their data across a single physical system.

1.2 Terms
The following sections provide both Common Criteria and technology terms used in this PP.

1.2.1 Common Criteria Terms
Common Criteria
(CC)

Common Criteria for Information Technology Security Evaluation
(International Standard ISO/IEC 15408).

Common Criteria
Testing Laboratory

Within the context of the Common Criteria Evaluation and Validation Scheme
(CCEVS), an IT security evaluation facility, accredited by the National
Voluntary Laboratory Accreditation Program (NVLAP) and approved by the
NIAP Validation Body to conduct Common Criteria-based evaluations.

Common Evaluation
Methodology (CEM)

Common Evaluation Methodology for Information Technology Security
Evaluation.

Extended Package
(EP)

An implementation-independent set of security requirements for a specific
subset of products described by a PP.

Protection Profile
(PP)

An implementation-independent set of security requirements for a category
of products.

Security Assurance
Requirement (SAR)

A requirement for how the TOE’s proper implementation of the SFRs is
verified by an evaluator.

Security Functional
Requirement (SFR)

A requirement for security enforcement by the TOE.

Security Target (ST) A set of implementation-dependent security requirements for a specific
product.

Target of Evaluation
(TOE)

The product under evaluation.

TOE Security
Functionality (TSF)

The security functionality of the product under evaluation.

TOE Summary
Specification (TSS)

A description of how a TOE satisfies the SFRs in an ST.

1.2.2 Technology Terms
Term Meaning

Administrator Administrators perform management activities on the VS. These management
functions do not include administration of software running within Guest

 6

VMs, such as the Guest OS. Administrators need not be human as in the case
of embedded or headless VMs. Administrators are often nothing more than
software entities that operate within the VM.

Auditor Auditors are responsible for managing the audit capabilities of the TOE. An
Auditor may also be an Administrator. It is not a requirement that the TOE be
capable of supporting an Auditor role that is separate from that of an
Administrator.

Domain A Domain or Information Domain is a policy construct that groups together
execution environments and networks by sensitivity of information and
access control policy. For example, classification levels represent information
domains. Within classification levels, there might be other domains
representing communities of interest or coalitions. In the context of a VS,
information domains are generally implemented as collections of VMs
connected by virtual networks. The VS itself can be considered an Information
Domain, as can its Management Subsystem.

Guest Network See Operational Network.

Guest Operating
System (OS)

An operating system that runs within a Guest VM.

Guest VM A Guest VM is a VM that contains a virtual environment for the execution of
an independent computing system. Virtual environments execute mission
workloads and implement customer-specific client or server functionality in
Guest VMs, such as a web server or desktop productivity applications.

Helper VM A Helper VM is a VM that performs services on behalf of one or more Guest
VMs, but does not qualify as a Service VM—and therefore is not part of the
VMM. Helper VMs implement functions or services that are particular to the
workloads of Guest VMs. For example, a VM that provides a virus scanning
service for a Guest VM would be considered a Helper VM. For the purposes of
this document, Helper VMs are considered a type of Guest VM, and are
therefore subject to all the same requirements, unless specifically stated
otherwise.

Host Operating
System (OS)

An operating system onto which a VS is installed. Relative to the VS, the Host
OS is part of the Platform.

Hypervisor 1 The Hypervisor is part of the VMM. It is the software executive of the physical
platform of a VS. A Hypervisor’s primary function is to mediate access to all
CPU and memory resources, but it is also responsible for either the direct
management or the delegation of the management of all other hardware
devices on the hardware platform.

Hypercall An API function that allows VM-aware software running within a VM to invoke
VMM functionality.

Information Domain See Domain.

Introspection A capability that allows a specially designated and privileged domain to have
visibility into another domain for purposes of anomaly detection or
monitoring.

Management
Network

A network, which may have both physical and virtualized components, used
to manage and administer a VS. Management networks include networks
used by VS Administrators to communicate with management components of
the VS, and networks used by the VS for communications between VS

 7

components. For purposes of this document, networks that connect physical
hosts for purposes of VM transfer or coordinate, and backend storage
networks are considered management networks.

Management
Subsystem

Components of the VS that allow VS Administrators to configure and manage
the VMM, as well as configure Guest VMs. VMM management functions
include VM configuration, virtualized network configuration, and allocation of
physical resources.

Operational Network An Operational Network is a network, which may have both physical and
virtualized components, used to connect Guest VMs to each other and
potentially to other entities outside of the VS. Operational Networks support
mission workloads and customer-specific client or server functionality. Also
called a “Guest Network.”

Physical Platform The hardware environment on which a VS executes. Physical platform
resources include processors, memory, devices, and associated firmware.

Platform The hardware, firmware, and software environment into which a VS is
installed and executes.

Service VM 2 A Service VM is a VM whose purpose is to support the Hypervisor in providing
the resources or services necessary to support Guest VMs. Service VMs may
implement some portion of Hypervisor functionality, but also may contain
important system functionality that is not necessary for Hypervisor operation.
As with any VM, Service VMs necessarily execute without full Hypervisor
privileges—only the privileges required to perform its designed functionality.
Examples of Service VMs include device driver VMs that manage access to a
physical devices, and name-service VMs that help establish communication
paths between VMs.

System Security
Policy (SSP)

The overall policy enforced by the VS defining constraints on the behavior of
VMs and users.

User Users operate Guest VMs and are subject to configuration policies applied to
the VS by Administrators. Users need not be human as in the case of
embedded or headless VMs, users are often nothing more than software
entities that operate within the VM.

Virtual Machine
(VM)

A Virtual Machine is a virtualized hardware environment in which an
operating system may execute.

Virtual Machine
Manager (VMM)

A VMM is a collection of software components responsible for enabling VMs
to function as expected by the software executing within them. Generally, the
VMM consists of a Hypervisor, Service VMs, and other components of the VS,
such as virtual devices, binary translation systems, and physical device drivers.
It manages concurrent execution of all VMs and virtualizes platform resources
as needed.

Virtualization System
(VS)

3 A software product that enables multiple independent computing systems to
execute on the same physical hardware platform without interference from
one other. For the purposes of this document, the VS consists of a Virtual
Machine Manager (VMM), Virtual Machine (VM) abstractions, a management
subsystem, and other components.

 8

1.3 Compliant Targets of Evaluation

A Virtualization System (VS) is a software product that enables multiple independent computing systems
to execute on the same physical hardware platform without interference from one other. A VS creates a
virtualized hardware environment (virtual machines or VMs) for each instance of an operating system
permitting these environments to execute concurrently while maintaining isolation and the appearance
of exclusive control over assigned computing resources. For the purposes of this document, the VS
consists of a Virtual Machine Manager (VMM), Virtual Machine (VM) abstractions, a management
subsystem, and other components.

A VMM is a collection of software components responsible for enabling VMs to function as expected by
the software executing within them. Generally, the VMM consists of a Hypervisor, Service VMs, and other
components of the VS, such as virtual devices, binary translation systems, and physical device drivers. It
manages concurrent execution of all VMs and virtualizes platform resources as needed.

The Hypervisor is the software executive of the physical platform of a Virtualization System. A hypervisor
operates at the highest CPU privilege level and manages access to all of the physical resources of the
hardware platform. It exports a well-defined, protected interface for access to the resources it manages.
A Hypervisor’s primary function is to mediate access to all CPU and memory resources, but it is also
responsible for either the direct management or the delegation of the management of all other hardware
devices on the hardware platform. This document does not specify any Hypervisor-specific requirements,
though many VMM requirements would naturally apply to a Hypervisor.

A Service VM is a VM whose purpose is to support the Hypervisor in providing the resources or services
necessary to support Guest VMs. Service VMs may implement some portion of Hypervisor functionality,
but also may contain important system functionality that is not necessary for Hypervisor operation. As
with any VM, Service VMs necessarily execute without full Hypervisor privileges—only the privileges
required to perform its designed functionality. Examples of Service VMs include device driver VMs that
manage access to physical devices, and name-service VMs that help establish communication paths
between VMs.

A Guest VM is a VM that contains a virtual environment for the execution of an independent computing
system. Virtual environments execute mission workloads and implement customer-specific client or
server functionality in Guest VMs, such as a web server or desktop productivity applications. A Helper VM
is a VM that performs services on behalf of one or more Guest VMs, but does not qualify as a Service
VM—and therefore is not part of the VMM. Helper VMs implement functions or services that are
particular to the workloads of Guest VMs. For example, a VM that provides a virus scanning service for a
Guest VM would be considered a Helper VM. The line between Helper and Service VMs can easily be
blurred. For instance, a VM that implements a cryptographic function—such as an in-line encryption VM—
could be identified as either a Service or Helper VM depending on the particular virtualization solution. If
the cryptographic functions are necessary only for the privacy of Guest VM data in support of the Guest’s
mission applications, it would be proper to classify the encryption VM as a Helper. But if the encryption
VM is necessary for the VMM to isolate Guest VMs, it would be proper to classify the encryption VM as a
Service VM. For the purposes of this document, Helper VMs are subject to all requirements that apply to
Guest VMs, unless specifically stated otherwise.

1.3.1 TOE Boundary
Figure 1 shows a greatly simplified view of a generic Virtualization System and Platform. TOE

components are displayed in Red. Non-TOE components are in Blue. The Platform is the hardware,

 9

firmware, and software onto which the VS is installed. The VMM includes the Hypervisor, Service VMs,

and VM containers, but not the software that runs inside Guest VMs or Helper VMs. The Management

Subsystem is part of the TOE, but may or may not be part of the VMM.

Figure 1. Virtualization System and Platform

For purposes of this Protection Profile, the Virtualization System is the TOE, subject to some caveats. The
Platform onto which the VS is installed (which includes hardware, platform firmware, and Host Operating
System) is not part of the TOE. Software installed with the VS on the Host OS specifically to support the
VS or implement VS functionality is part of the TOE. General purpose software—such as device drivers for
physical devices and the Host OS itself—is not part of the TOE, regardless of whether it supports VS
functionality or runs inside a Service VM or control domain. Software that runs within Guest and Helper
VMs is not part of the TOE.

In general, for virtualization products that are installed onto “bare metal,” the entire set of installed
components constitute the TOE, and the hardware constitute the Platform. Also in general, for products
that are hosted by or integrated into a commodity operating system, the components installed expressly
for implementing and supporting virtualization are in the TOE, and the Platform comprises the hardware
and Host OS.

1.3.2 Requirements Met by the Platform

Depending on the way the VS is installed, functions tested under this PP may be implemented by the TOE
or by the Platform. There is no difference in the testing required whether the function is implemented by
the TOE or by the Platform. In either case, the tests determine whether the function being tested provides
a level of assurance acceptable to meet the goals of this Profile with respect to a particular product and
platform. The equivalency guidelines are intended in part to address this TOE vs. Platform distinction, and
to ensure that the assurance level does not change between instances of equivalent products on
equivalent platforms—and also, of course, to ensure that the appropriate testing is done when the
distinction is significant.

1.3.3 Scope of Certification

Successful evaluation of a Virtualization System against this profile does not constitute or imply successful
evaluation of any Host Operating System or Platform—no matter how tightly integrated with the VS. The
Platform, including any Host OS, supports the VS through provision of services and resources. Specialized
VS components installed on or in a Host OS to support the VS may be considered part of the TOE. But

Platform

Hypervisor

Helper
VM

Guest
VM

Service
VM

Mgmt
Subsys

VMM

Virtualization

System

 10

general-purpose OS components and functions—whether or not they support the VS—are not part of the
TOE, and thus are not evaluated under this PP.

1.3.4 Vendor Attestation

This PP includes several SFRs that include elements that are met via vendor attestation. Attestation
assurance activities are reserved for SFRs that define properties that are critical to the system’s security
functionality, but that are impossible or impractical to test in a repeatable and consistent manner. These
Attestation assurance activities require the vendor to make an assertion in the ST that their product meets
the specified SFR—no further testing or assessment of the product regarding these SFRs or elements is
performed by the CCTL. The CCTL will simply verify that the ST includes a pre-determined Attestation
statement. By including this statement in the ST, the vendor is accepting responsibility for the assurance
of their product in these particular areas. If at any time evidence is produced that indicates that these
statements are false (and the product does not meet the specified security functionality), the CC
certificate may be revoked. See FDP_VMS_EXT.1, FDP_VNC_EXT.1, FPT_VDP_EXT.1, and FPT_VIV_EXT.1
for the associated Attestation statements.

1.3.5 Product and Platform Equivalence

The tests in this Protection Profile must be run on all product versions and Platforms with which the
Vendor would like to claim compliance—subject to this Profile’s equivalency guidelines (to be published).

1.4 Use Cases

This base PP does not define any use cases for virtualization technology. Client Virtualization and Server

Virtualization products have different use cases and so these are defined in their respective EPs.

 11

2 Conformance Claims

Conformance Statement

To be conformant to this PP, an ST must demonstrate Exact Conformance, a subset of Strict
Conformance as defined in [CC] Part 1 (ASE_CCL). The ST must include all components in this PP that
are:

 Unconditional (which are always required)

 Selection-based (which are required when certain selections are chosen in the unconditional
requirements)

It may also include components that are:

 Optional

 Objective

Unconditional requirements are found in the main body of the document (Section 5), while
appendices contain the selection-based, optional, and objective requirements. The ST may iterate
any of these components but it must not introduce any additional component (e.g., from CC Part 2
or 3) that is not defined in this PP.

CC Conformance Claims

This PP is conformant to Parts 2 (extended) and 3 (extended) of Common Criteria Version 3.1,
Revision 4 [CC].

PP Claims

This PP does not claim conformance to any Protection Profile.

Package Claims

This PP does not claim conformance to any packages.

 12

3 Security Problem Description

Regardless of whether a virtualization product is embodied as client virtualization or server
virtualization, there are a number of common threats that must be mitigated in order to have assurance
that it is operating securely.

3.1 Threats
T.DATA_LEAKAGE

It is a fundamental property of VMs that the domains encapsulated by different VMs remain separate
unless data sharing is permitted by policy. For this reason, all Virtualization Systems shall support a
policy that prohibits information transfer between VMs.

It shall be possible to configure VMs such that data cannot be moved between domains from VM to
VM, or through virtual or physical network components under the control of the VS. When VMs are
configured as such, it shall not be possible for data to leak between domains, neither by the express
efforts of software or users of a VM, nor because of vulnerabilities or errors in the implementation of
the VMM or other VS components.

If it is possible for data to leak between domains when prohibited by policy, then an adversary on one
domain or network can obtain data from another domain. Such cross-domain data leakage can, for
example, cause classified information, corporate proprietary information, or personally identifiable
information to be made accessible to unauthorized entities.

T.UNAUTHORIZED_UPDATE

It is common for attackers to target outdated versions of software containing known flaws. This means
it is extremely important to update Virtualization System software as soon as possible when updates
are available. But the source of the updates and the updates themselves must be trusted. If an
attacker can write their own update containing malicious code they can take control of the VS.

T.UNAUTHORIZED_MODIFICATION

System integrity is a core security objective for Virtualization Systems. To achieve system integrity,
the integrity of each VMM component must be established and maintained. Malware running on the
platform must not be able to undetectably modify Virtualization System components while the system
is running or at rest. Likewise, malicious code running within a virtual machine must not be able to
modify Virtualization System components.

T.USER_ERROR

If a Virtualization System is capable of simultaneously displaying VMs of different domains to the same
user at the same time, there is always the chance that the user will become confused and
unintentionally leak information between domains. This is especially likely if VMs belonging to
different domains are indistinguishable. Malicious code may also attempt to interfere with the user’s
ability to distinguish between domains. The VS must take measures to minimize the likelihood of such
confusion.

T.3P_SOFTWARE

In some VS implementations, critical functions are by necessity performed by software not produced
by the virtualization vendor. Such software may include Host Operating Systems and physical device
drivers. Vulnerabilities in this software can be exploited by an adversary and result in VMM

 13

compromise. Where possible, the VS should mitigate the results of potential vulnerabilities or
malicious content in third-party code.

T.VMM_COMPROMISE

The Virtualization System is designed to provide the appearance of exclusivity to the VMs and is
designed to separate or isolate their functions except where specifically shared. Failure of security
mechanisms could lead to unauthorized intrusion into or modification of the VMM, or bypass of the
VMM altogether. This must be prevented to avoid compromising the Virtualization System.

T.PLATFORM_COMPROMISE

The VS must be capable of protecting the platform from threats that originate within VMs and
operational networks connected to the VS. The hosting of untrusted—even malicious—domains by
the VS cannot be permitted to compromise the security and integrity of the platform on which the VS
executes. If an attacker can access the underlying platform in a manner not controlled by the VMM,
the attacker might be able to modify system firmware or software—compromising both the
Virtualization System and the underlying platform.

T.UNAUTHORIZED_ACCESS

Functions performed by the management layer include VM configuration, virtualized network
configuration, allocation of physical resources, and reporting. Only certain authorized system users
(administrators) are allowed to exercise management functions.

Virtualization Systems are often managed remotely over communication networks. Members of these
networks can be both geographically and logically separated from each other, and pass through a
variety of other systems which may be under the control of an adversary, and offer the opportunity
for communications to be compromised. An adversary with access to an open management network
could inject commands into the management infrastructure. This would provide an adversary with
administrator privilege on the platform, and administrative control over the VMs and virtual network
connections. The adversary could also gain access to the management network by hijacking the
management network channel.

T.WEAK_CRYPTO

To the extent that VMs appear isolated within the Virtualization System, a threat of weak
cryptography may arise if the VMM does not provide good entropy to support security-related
features that depend on entropy to implement cryptographic algorithms. For example, a random
number generator keeps an estimate of the number of bits of noise in the entropy pool. From this
entropy pool random numbers are created. Good random numbers are essential to implementing
strong cryptography. Cryptography implemented using poor random numbers can be defeated by a
sophisticated adversary.

T.UNPATCHED_SOFTWARE

Vulnerabilities in outdated or unpatched software can be exploited by adversaries to compromise the
Virtualization System or platform.

T.MISCONFIGURATION

The Virtualization System may be misconfigured, which could impact its functioning and security. This
misconfiguration could be due to an administrative error or the use of faulty configuration data.

T.DENIAL_OF_SERVICE

 14

A VM may block others from system resources (e.g., system memory, persistent storage, and
processing time) via a resource exhaustion attack.

3.2 Assumptions
A.PLATFORM_INTEGRITY

The platform has not been compromised prior to installation of the Virtualization System.

A.PHYSICAL
Physical security commensurate with the value of the TOE and the data it contains is assumed to be

provided by the environment.

A.TRUSTED_ADMIN
TOE Administrators are trusted to follow and apply all administrator guidance.

A.COVERT_CHANNELS

If the TOE has covert storage or timing channels, then for all VMs executing on that TOE, it is

assumed that relative to the IT assets to which they have access, those VMs will have assurance

sufficient to outweigh the risk that they will violate the security policy of the TOE by using those

covert channels.

A.NON_MALICIOUS_USER

The user of the VS is not willfully negligent or hostile, and uses the VS in compliance with the applied

enterprise security policy and guidance. At the same time, malicious applications could act as the

user, so requirements which confine malicious applications are still in scope.

3.3 Organizational Security Policies
There are no organizational security policies defined for this PP.

 15

4 Security Objectives

4.1 Security Objectives for the TOE
O.VM_ISOLATION

VMs are the fundamental subject of the system. The VMM is responsible for applying the system
security policy (SSP) to the VM and all resources. As basic functionality, the VMM must support a
security policy that mandates no information transfer between VMs.

The VMM must support the necessary mechanisms to isolate the resources of all VMs. The VMM
partitions a platform's physical resources for use by the supported virtual environments. Depending
on the use case, a VM may require a completely isolated environment with exclusive access to system
resources, or share some of its resources with other VMs. It must be possible to enforce a security
policy that prohibits the transfer of data between VMs through shared devices. When the platform
security policy allows the sharing of resources across VM boundaries, the VMM must ensure that all
access to those resources is consistent with the policy. The VMM may delegate the responsibility for
the mediation of sharing of particular resources to select Service VMs; however in doing so, it remains
responsible for mediating access to the Service VMs, and each Service VM must mediate all access to
any shared resource that has been delegated to it in accordance with the SSP.

Devices, whether virtual or physical, are resources requiring access control. The VMM must enforce
access control in accordance to system security policy. Physical devices are platform devices with
access mediated via the VMM per the O.VMM_Integrity objective. Virtual devices may include virtual
storage devices and virtual network devices. Some of the access control restrictions must be enforced
internal to Service VMs, as may be the case for isolating virtual networks. VMMs may also expose
purely virtual interfaces. These are VMM specific, and while they are not analogous to a physical
device, they are also subject to access control.

The VMM must support the mechanisms to isolate all resources associated with virtual networks and
to limit a VM's access to only those virtual networks for which it has been configured. The VMM must
also support the mechanisms to control the configurations of virtual networks according to the SSP.

O.VMM_INTEGRITY

Integrity is a core security objective for Virtualization Systems. To achieve system integrity, the
integrity of each VMM component must be established and maintained. This objective concerns only
the integrity of the Virtualization System—not the integrity of software running inside of Guest VMs
or of the physical platform. The overall objective is to ensure the integrity of critical components of a
Virtualization System.

Initial integrity of a VS can be established through mechanisms such as a digitally signed installation
or update package, or through integrity measurements made at launch. Integrity is maintained in a
running system by careful protection of the VMM from untrusted users and software. For example, it
must not be possible for software running within a Guest VM to exploit a vulnerability in a device or
hypercall interface and gain control of the VMM. The vendor must release patches for vulnerabilities
as soon as practicable after discovery.

O.PLATFORM_INTEGRITY

The integrity of the VMM depends on the integrity of the hardware and software on which the

VMM relies. Although the VS does not have complete control over the integrity of the platform, the

 16

VS should as much as possible try to ensure that no users or software hosted by the VS is capable of

undermining the integrity of the platform.

O.DOMAIN_INTEGRITY

While the VS is not responsible for the contents or correct functioning of software that runs within
Guest VMs, it is responsible for ensuring that the correct functioning of the software within a Guest
VM is not interfered with by other VMs.

O.MANAGEMENT_ACCESS

VMM management functions include VM configuration, virtualized network configuration, allocation
of physical resources, and reporting. Only certain authorized system users (administrators) are
allowed to exercise management functions.

Because of the privileges exercised by the VMM management functions, it must not be possible for
the VMM’s management components to be compromised without administrator notification. This
means that unauthorized users cannot be permitted access to the management functions, and the
management components must not be interfered with by Guest VMs or unprivileged users on other
networks—including operational networks connected to the TOE.

VMMs include a set of management functions that collectively allow administrators to configure and
manage the VMM, as well as configure Guest VMs. These management functions are specific to the
virtualization system, distinct from any other management functions that might exist for the internal
management of any given Guest VM. These VMM management functions are privileged, with the
security of the entire system relying on their proper use. The VMM management functions can be
classified into different categories and the policy for their use and the impact to security may vary
accordingly.

The management functions might be distributed throughout the VMM (within the VMM and Service
VMs). The VMM must support the necessary mechanisms to enable the control of all management
functions according to the system security policy. When a management function is distributed among
multiple Service VMs, the VMs must be protected using the security mechanisms of the Hypervisor
and any Service VMs involved to ensure that the intent of the system security policy is not
compromised. Additionally, since hypercalls permit Guest VMs to invoke the Hypervisor, and often
allow the passing of data to the Hypervisor, it is important that the hypercall interface is well-guarded
and that all parameters be validated.

The VMM maintains configuration data for every VM on the system. This configuration data, whether
of Service or Guest VMs, must be protected. The mechanisms used to establish, modify and verify
configuration data are part of the VS management functions and must be protected as such. The
proper internal configuration of Service VMs that provide critical security functions can also greatly
impact VS security. These configurations must also be protected. Internal configuration of Guest VMs
should not impact overall VS security. The overall goal is to ensure that the VMM, including the
environments internal to Service VMs, is properly configured and that all Guest VM configurations are
maintained consistent with the system security policy throughout their lifecycle.

Virtualization Systems are often managed remotely. For example, an administrator can remotely
update virtualization software, start and shut down VMs, and manage virtualized network
connections. If a console is required, it could be run on a separate machine or it could itself run in a
VM. When performing remote management, an administrator must communicate with a privileged
management agent over a network. Communications with the management infrastructure must be
protected from Guest VMs and operational networks.

 17

O.PATCHED_SOFTWARE

The Virtualization System must be updated and patched when needed in order to prevent the
potential compromise of the VMM, as well as the networks and VMs that it hosts. Identifying and
applying needed updates must be a normal part of the operating procedure to ensure that patches
are applied in a timely and thorough manner. In order to facilitate this, the VS must support
standards and protocols that help enhance the manageability of the VS as an IT product, enabling it
to be integrated as part of a manageable network (e.g., reporting current patch level and
patchability).

O.VM_ENTROPY

VMs must have access to good entropy sources to support security-related features that implement

cryptographic algorithms. For example, in order to function as members of operational networks,

VMs must be able to communicate securely with other network entities—whether virtual or

physical. They must therefore have access to sources of good entropy to support that secure

communication.

O.AUDIT

The purpose of audit is to capture and protect data about what happens on a system so that it can

later be examined to determine what has happened in the past.

O.CORRECTLY_APPLIED_CONFIGURATION

The TOE must not apply configurations that violate the current security policy.

The TOE must correctly apply configurations and policies to newly created Guest VMs, as well as to

existing Guest VMs when applicable configuration or policy changes are made. All changes to

configuration and to policy must conform to the existing security policy. Similarly, changes made to

the configuration of the TOE itself must not violate the existing security policy.

O.RESOURCE_ALLOCATION

The TOE will provide mechanisms that enforce constraints on the allocation of system resources in

accordance with existing security policy.

4.2 Security Objectives for the Operational Environment
OE.CONFIG

TOE administrators will configure the Virtualization System correctly to create the intended

security policy.

OE.PHYSICAL
Physical security, commensurate with the value of the TOE and the data it contains, is provided

by the environment.

OE.TRUSTED_ADMIN
TOE Administrators are trusted to follow and apply all administrator guidance in a trusted

manner.

OE.COVERT_CHANNELS

If the TOE has covert storage or timing channels, then for all VMs executing on that TOE, it is

assumed that those VMs will have sufficient assurance relative to the IT assets to which they

 18

have access, to outweigh the risk that they will violate the security policy of the TOE by using

those covert channels.

OE.NON_MALICIOUS_USER

Users are trusted to be not willfully negligent or hostile and use the VS in compliance with the

applied enterprise security policy and guidance.

4.3 Security Objectives Rationale
This section describes how the assumptions, threats, and organizational security policies map to the

security objectives. Note that this section only provides mappings for the security objectives defined in

this base PP.

Threat, Assumption, or OSP Security Objective Rationale

T.DATA_LEAKAGE
O.VM_ISOLATION
O.DOMAIN_INTEGRITY

Logical separation of VMs and
enforcement of domain integrity
prevent unauthorized transmission
of data from one VM to another.

T.UNAUTHORIZED_UPDATE O.VMM_INTEGRITY

System integrity prevents the TOE
from installing a software patch
containing unknown and potentially
malicious code.

T.UNAUTHORIZED_MODIFICATION
O.VMM_INTEGRITY
O.AUDIT

Enforcement of VMM integrity
prevents the bypass of enforcement
mechanisms and auditing ensures
that abuse of legitimate authority
can be detected.

T.USER_ERROR O.VM_ISOLATION

Isolation of VMs includes clear
attribution of those VMs to their
respective domains which reduces
the likelihood that a user
inadvertently inputs or transfers
data meant for one VM into
another.

T.3P_SOFTWARE O.VMM_INTEGRITY

The VMM integrity mechanisms
include environment-based
vulnerability mitigation and
potentially support for
introspection and device driver
isolation, all of which reduce the
likelihood that any vulnerabilities in
third-party software can be used to
exploit the TOE.

T.VMM_COMPROMISE
O.VMM_INTEGRITY
O.VM_ISOLATION

Maintaining the integrity of the
VMM and ensuring that VMs
execute in isolated domains
mitigate the risk that the VMM can
be compromised or bypassed.

 19

T.PLATFORM_COMPROMISE O.PLATFORM_INTEGRITY

Platform integrity mechanisms used
by the TOE reduce the risk that an
attacker can ‘break out’ of a VM
and affect the platform on which
the VS is running.

T.UNAUTHORIZED_ACCESS O.MANAGEMENT_ACCESS

Ensuring that TSF management
functions cannot be executed
without authorization prevents
untrusted subjects from modifying
the behavior of the TOE in an
unanticipated manner.

T.WEAK_CRYPTO O.VM_ENTROPY

Acquisition of good entropy is
necessary to support the TOE’s
security-related cryptographic
algorithms.

T.UNPATCHED_SOFTWARE O.PATCHED_SOFTWARE

The ability to patch the TOE
software ensures that protections
against vulnerabilities can be
applied as they become available.

T.MISCONFIGURATION
O.CORRECTLY_APPLIED_CO
NFIGURATION

Mechanisms to prevent the
application of configurations that
violate the current security policy
help prevent misconfigurations.

T.DENIAL_OF_SERVICE O.RESOURCE_ALLOCATION

The ability of the TSF to ensure the
proper allocation of resources
makes denial of service attacks
more difficult.

A.COVERT_CHANNELS OE.COVERT_CHANNELS

It is expected that any data
contained within VMs is
commensurate with the security
provided by the TOE, which includes
any vulnerabilities due to the
potential presence of covert
storage and/or timing channels.

A.NON_MALICIOUS_USER OE.NON_MALICIOUS_USER
If the organization properly vets
and trains users, it is expected that
they will be non-malicious.

A.PLATFORM_INTEGRITY OE.PLATFORM_INTEGRITY

If the underlying platform has not
been compromised prior to
installation of the TOE, its integrity
can be assumed to be intact.

A.PHYSICAL OE.PHYSICAL

If the TOE is deployed in a location
that has appropriate physical
safeguards, it can be assumed to be
physically secure.

A.TRUSTED_ADMIN OE.TRUSTED_ADMIN
Providing guidance to
administrators and ensuring that

 20

individuals are properly trained and
vetted before being given
administrative responsibilities will
ensure that they are trusted.

5 Security Requirements

5.1 TOE Security Functional Requirements
The Security Functional Requirements (SFRs) included in this section are derived from Part 2 of the

Common Criteria for Information Technology Security Evaluation, Version 3.1, Revision 4, with additional

extended functional components.

The CC defines operations on Security Functional Requirements: assignments, selections, assignments
within selections and refinements. This document uses the following font conventions to identify the
operations defined by the CC:

 Assignment: Indicated with italicized text;

 Refinement made by EP author: Indicated with bold text;

 Selection: Indicated with underlined text;

 Assignment within a Selection: Indicated with italicized and underlined text;

 Iteration: Indicated by appending the SFR name with a slash and unique identifier suggesting the
purpose of the iteration, e.g., ‘/CDR’ for an SFR relating to call detail records;

 Extended SFRs: identified by having a label “EXT” after the SFR name.

5.1.1 Security Audit (FAU)

FAU_GEN.1 Audit Data Generation
FAU_GEN.1.1 The TSF shall be able to generate an audit record of the following auditable

events:

a. Start-up and shutdown of audit functions;

b. All administrative actions;

c. [Specifically defined auditable events in Table 1]

d. [selection: additional information defined in Table 2, additional

information defined in Table 3, additional information defined in Table 4,

additional information defined in in Table 5, no other information].

FAU_GEN.1.2 The TSF shall record within each audit record at least the following information:

a. Date and time of the event;

b. Type of event;

c. Subject and object identity (if applicable);

d. The outcome (success or failure) of the event;

e. [Additional information defined in Table 1]; and

 21

f. [selection: additional information defined in Table 2, additional

information defined in Table 3, additional information defined in Table 4,

additional information defined in in Table 5, no other information].

Application Note: The ST author can include other auditable events directly in Table 1; they are not

limited to the list presented. The ST author should update the table in

FAU_GEN.1.2 with any additional information generated. “Subject identity” in

FAU_GEN.1.2 could be a user id or an identifier specifying a VM, for example.

The Table 1 entry for FDP_VNC_EXT.1 refers to configuration settings that attach
VMs to virtualized network components. Changes to these configurations can be
made during VM execution or when VMs are not running. Audit records must be
generated for either case.

The intent of the audit requirement for FDP_PPR_EXT.1 is to log that the VM is
connected to a physical device (when the device becomes part of the VM’s
hardware view), not to log every time that the device is accessed. Generally, this
is only once at VM startup. However, some devices can be connected and
disconnected during operation (e.g., virtual USB devices such as CD-ROMs). All
such connection/disconnection events must be logged.

Assurance Activity

The evaluator shall check the TSS and ensure that it lists all of the auditable
events and provides a format for audit records. Each audit record format type
shall be covered, along with a brief description of each field. The evaluator shall
check to make sure that every audit event type mandated by the PP is
described in the TSS.

The evaluator shall also make a determination of the administrative actions
that are relevant in the context of this PP. The evaluator shall examine the
administrative guide and make a determination of which administrative
commands, including subcommands, scripts, and configuration files, are
related to the configuration (including enabling or disabling) of the
mechanisms implemented in the TOE that are necessary to enforce the
requirements specified in the PP. The evaluator shall document the
methodology or approach taken while determining which actions in the
administrative guide are security-relevant with respect to this PP.

The evaluator shall test the TOE’s ability to correctly generate audit records by
having the TOE generate audit records for the events listed and administrative
actions. For administrative actions, the evaluator shall test that each action
determined by the evaluator above to be security relevant in the context of
this PP is auditable. When verifying the test results, the evaluator shall ensure
the audit records generated during testing match the format specified in the
administrative guide, and that the fields in each audit record have the proper
entries.

Note that the testing here can be accomplished in conjunction with the testing
of the security mechanisms directly.

 22

Table 1: Auditable Events

Requirement Auditable Events Additional Audit Record Contents

FAU_GEN.1 1 None. 2 None.

FAU_SAR.1 3 None. 4 None.

FAU_STG.1 5 None. 6 None.

FAU_STG_EXT.1 7 Failure of audit data capture due to lack
of disk space or pre-defined limit.

8 On failure of logging function, capture
record of failure and record upon restart
of logging function.

9 None

FCS_CKM.1 10 None. 11 None.

FCS_CKM.2 12 None. 13 None.

FCS_CKM_EXT.4 14 None. 15 None.

FCS_COP.1(1) 16 None. 17 None.

FCS_COP.1(2) 18 None. 19 None.

FCS_COP.1(3) 20 None. 21 None.

FCS_COP.1(4) 22 None. 23 None.

FCS_ENT_EXT.1 24 None. 25 None.

FCS_RBG_EXT.1 26 Failure of the randomization process. 27 No additional information.

FDP_HBI_EXT.1 28 None. 29 None.

FDP_PPR_EXT.1 30 Successful and failed VM connections to
physical devices where connection is
governed by configurable policy.

31 Security policy violations.

32 VM and physical device identifiers.
33 Identifier for the security policy that

was violated.

FDP_RIP_EXT.1 34 None. 35 None.

FDP_RIP_EXT.2 36 None. 37 None.

FDP_VMS_EXT.1 38 None. 39 None.

FDP_VNC_EXT.1 40 Successful and failed attempts to
connect VMs to virtual and physical
networking components.

41 Security policy violations.
42 Administrator configuration of inter-VM

communications channels between
VMs.

43 VM and virtual or physical
networking component identifiers.

44 Identifier for the security policy that
was violated.

FIA_UAU.5 45 None. 46 None.

FIA_UIA_EXT.1 47 Administrator authentication attempts
48 All use of the identification and

authentication mechanism.

49 Provided user identity, origin of the
attempt (e.g., console, remote IP
address).

FMT_MSA_EXT.1 50 None. 51 None.

FMT_SMO_EXT.1 52 None. 53 None.

FMT_SMR.2 54 None. 55 None.

FPT_DVD_EXT.1 56 None. 57 None.

FPT_EEM_EXT.1 58 None. 59 None.

FPT_HAS_EXT.1 60 None. 61 None.

 23

FPT_HCL_EXT.1 62 Attempts to access disabled hypercall
interfaces.

63 Security policy violations.

64 Interface for which access was
attempted.

65 Identifier for the security policy that
was violated.

FPT_RDM_EXT.1 66 Transfer of removable media or device
between VMs.

67 None.

FPT_TUD_EXT.1 68 Initiation of update.
69 Failure of signature verification.

70 No additional information.

FPT_VDP_EXT.1 71 None. 72 None.

FPT_VIV_EXT.1 73 None. 74 None.

FTA_TAB.1 75 None. 76 None.

FTP_ITC_EXT.1 77 Initiation of the trusted channel.
Termination of the trusted channel.
Failures of the trusted path functions.

78 User ID and remote source (IP
Address) if feasible.

FTP_UIF_EXT.1 79 None. 80 None.

FTP_UIF_EXT.2 81 None. 82 None.

FAU_SAR.1 Audit Review
FAU_SAR.1.1 The TSF shall provide [administrators] with the capability to read [all

information] from the audit records.

FAU_SAR.1.2 The TSF shall provide the audit records in a manner suitable for the user to

interpret the information.

Assurance Activity

The evaluator shall verify that the audit records provide all of the information
specified in FAU_GEN.1 and that this information is suitable for human
interpretation. The evaluator shall review the operational guidance for the
procedure on how to review the audit records. The assurance activity for this
requirement is performed in conjunction with the assurance activity for
FAU_GEN.1.

FAU_STG.1 Protected Audit Trail Storage
FAU_STG.1.1 The TSF shall protect the stored audit records in the audit trail from

unauthorized deletion.

FAU_STG.1.2 The TSF shall be able to [prevent] modifications to the stored audit records in

the audit trail.

Application Note: The assurance activity for this SFR is not intended to imply that the TOE must

support an administrator’s ability to designate individual audit records for

deletion. That level of granularity is not required.

Assurance Activity

The evaluator shall ensure that the TSS describes how the audit records are
protected from unauthorized modification or deletion. The evaluator shall

 24

ensure that the TSS describes the conditions that must be met for authorized
deletion of audit records. The evaluator shall perform the following tests:

 Test 1: The evaluator shall access the audit trail as an unauthorized

Administrator and attempt to modify and delete the audit records.

The evaluator shall verify that these attempts fail.

 Test 2: The evaluator shall access the audit trail as an authorized

Administrator and attempt to delete the audit records. The evaluator

shall verify that these attempts succeed. The evaluator shall verify

that only the records authorized for deletion are deleted.

FAU_STG_EXT.1 Off-Loading of Audit Data
FAU_STG_EXT.1.1 The TSF shall be able to transmit the generated audit data to an external IT

entity using a trusted channel as specified in FTP_ITC_EXT.1.

Assurance Activity

Protocols used for implementing the trusted channel must be selected in
FTP_ITC_EXT.1.

The evaluator shall examine the TSS to ensure it describes the means by which
the audit data are transferred to the external audit server, and how the trusted
channel is provided. Testing of the trusted channel mechanism is to be
performed as specified in the assurance activities for FTP_ITC_EXT.1. The
evaluator shall also examine the operational guidance to ensure it describes
how to establish the trusted channel to the audit server, as well as describe
any requirements on the audit server (particular audit server protocol, version
of the protocol required, etc.), as well as configuration of the TOE needed to
communicate with the audit server.

The evaluator shall perform the following test for this requirement:

 Test 1: The evaluator shall establish a session between the TOE and

the audit server according to the configuration guidance provided.

The evaluator shall then examine the traffic that passes between the

audit server and the TOE during several activities of the evaluator’s

choice designed to generate audit data to be transferred to the audit

server. The evaluator shall observe that these data are not able to be

viewed in the clear during this transfer, and that they are successfully

received by the audit server. The evaluator shall record the particular

software (name, version) used on the audit server during testing.

FAU_STG_EXT.1.2 The TSF shall [selection: drop new audit data, overwrite previous audit records

according to the following rule: [assignment: rule for overwriting previous audit

records], [assignment: other action]] when the local storage space for audit data

is full.

 25

Application Note: An external log server, if available, might be used as alternative storage space in

case the local storage space is full. An ‘other action’ could be defined in this case

as ‘send the new audit data to an external IT entity’.

Assurance Activity

The evaluator shall examine the TSS to ensure it describes what happens when
the local audit data store is full. The evaluator shall also examine the
operational guidance to determine that it describes the relationship between
the local audit data and the audit data that are sent to the audit log server. For
example, when an audit event is generated, is it simultaneously sent to the
external server and the local store, or is the local store used as a buffer and
“cleared” periodically by sending the data to the audit server.

The evaluator shall perform operations that generate audit data and verify that
this data is stored locally. The evaluator shall perform operations that generate
audit data until the local storage space is exceeded and verifies that the TOE
complies with the behavior defined in the ST for FAU_STG_EXT.1.2.

5.1.2 Cryptographic Support (FCS)

FCS_CKM.1 Cryptographic Key Generation
FCS_CKM.1.1 The TSF shall generate asymmetric cryptographic keys in accordance with a

specified cryptographic key generation algorithm [selection:

 RSA schemes using cryptographic key sizes [2048-bit or greater] that meet

the following: [FIPS PUB 186-4, “Digital Signature Standard (DSS)”,

Appendix B.3];

 ECC schemes using [“NIST curves” P-256, P-384, and [selection: P-521, no

other curves] that meet the following: [FIPS PUB 186-4, “Digital Signature

Standard (DSS)”, Appendix B.4]

 FFC schemes using cryptographic key sizes [2048-bit or greater] that meet

the following: [FIPS PUB 186-4, “Digital Signature Standard (DSS)”,

Appendix B.1]].

Application Note: The ST author selects all key generation schemes used for key establishment and

device authentication. When key generation is used for key establishment, the

schemes in FCS_CKM.2.1 and selected cryptographic protocols shall match the

selection. When key generation is used for device authentication, the public key

is expected to be associated with an X.509v3 certificate.

If the TOE acts as a receiver in the RSA key establishment scheme, the TOE does

not need to implement RSA key generation.

Assurance Activity

 26

The evaluator shall ensure that the TSS identifies the key sizes supported by
the TOE. If the ST specifies more than one scheme, the evaluator shall examine
the TSS to verify that it identifies the usage for each scheme.

The evaluator shall verify that the AGD guidance instructs the administrator
how to configure the TOE to use the selected key generation scheme(s) and
key size(s) for all uses defined in this PP.

Note: The following tests require the developer to provide access to a test
platform that provides the evaluator with tools that are typically not found on
factory products.

Key Generation for FIPS PUB 186-4 RSA Schemes

The evaluator shall verify the implementation of RSA Key Generation by the
TOE using the Key Generation test. This test verifies the ability of the TSF to
correctly produce values for the key components including the public
verification exponent e, the private prime factors p and q, the public modulus
n and the calculation of the private signature exponent d.

Key Pair generation specifies 5 ways (or methods) to generate the primes p and
q. These include:

 Random Primes:

 Provable primes

 Probable primes

 Primes with Conditions:

 Primes p1, p2, q1, q2, p and q shall all be
provable primes

 Primes p1, p2, q1, and q2 shall be provable
primes and p and q shall be probable primes

 Primes p1, p2, q1, q2, p and q shall all be
probable primes

To test the key generation method for the Random Provable primes method
and for all the Primes with Conditions methods, the evaluator shall seed the
TSF key generation routine with sufficient data to deterministically generate
the RSA key pair. This includes the random seed(s), the public exponent of the
RSA key, and the desired key length. For each key length supported, the
evaluator shall have the TSF generate 25 key pairs. The evaluator shall verify
the correctness of the TSF’s implementation by comparing values generated by
the TSF with those generated from a known good implementation.

Key Generation for Elliptic Curve Cryptography (ECC)
FIPS 186-4 ECC Key Generation Test

For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall
require the implementation under test (IUT) to generate 10 private/public key

 27

pairs. The private key shall be generated using an approved random bit
generator (RBG). To determine correctness, the evaluator shall submit the
generated key pairs to the public key verification (PKV) function of a known
good implementation.

FIPS 186-4 Public Key Verification (PKV) Test

For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall
generate 10 private/public key pairs using the key generation function of a
known good implementation and modify five of the public key values so that
they are incorrect, leaving five values unchanged (i.e., correct). The evaluator
shall obtain in response a set of 10 PASS/FAIL values.

Key Generation for Finite-Field Cryptography (FFC)

The evaluator shall verify the implementation of the Parameters Generation
and the Key Generation for FFC by the TOE using the Parameter Generation
and Key Generation test. This test verifies the ability of the TSF to correctly
produce values for the field prime p, the cryptographic prime q (dividing p-1),
the cryptographic group generator g, and the calculation of the private key x
and public key y.

The Parameter generation specifies 2 ways (or methods) to generate the
cryptographic prime q and the field prime p:

o Primes q and p shall both be provable primes
o Primes q and field prime p shall both be probable primes

and two ways to generate the cryptographic group generator g:

o Generator g constructed through a verifiable process
o Generator g constructed through an unverifiable process.

The Key generation specifies 2 ways to generate the private key x:

o len(q) bit output of RBG where 1 <=x <= q-1
o len(q) + 64 bit output of RBG, followed by a mod q-1 operation

where 1<= x<=q-1.

The security strength of the RBG shall be at least that of the security offered by
the FFC parameter set.

To test the cryptographic and field prime generation method for the provable
primes method and/or the group generator g for a verifiable process, the
evaluator shall seed the TSF parameter generation routine with sufficient data
to deterministically generate the parameter set.

For each key length supported, the evaluator shall have the TSF generate 25
parameter sets and key pairs. The evaluator shall verify the correctness of the
TSF’s implementation by comparing values generated by the TSF with those
generated from a known good implementation. Verification shall also confirm

o g != 0,1
o q divides p-1

 28

o g^q mod p = 1
o g^x mod p = y

for each FFC parameter set and key pair.

FCS_CKM.2 Cryptographic Key Establishment
FCS_CKM.2.1 The TSF shall perform cryptographic key establishment in accordance with a

specified cryptographic key establishment method: [selection:

 RSA-based key establishment schemes that meets the following: NIST

Special Publication 800-56B, “Recommendation for Pair-Wise Key

Establishment Schemes Using Integer Factorization Cryptography”;

 Elliptic curve-based key establishment schemes that meets the following:

NIST Special Publication 800-56A, “Recommendation for Pair-Wise Key

Establishment Schemes Using Discrete Logarithm Cryptography”;

 Finite field-based key establishment schemes that meets the following:

NIST Special Publication 800-56A, “Recommendation for Pair-Wise Key

Establishment Schemes Using Discrete Logarithm Cryptography”].

Assurance Activity

The evaluator shall ensure that the supported key establishment schemes
correspond to the key generation schemes identified in FCS_CKM.1.1. If the ST
specifies more than one scheme, the evaluator shall examine the TSS to verify
that it identifies the usage for each scheme.

The evaluator shall verify that the AGD guidance instructs the administrator
how to configure the TOE to use the selected key establishment scheme(s).

The evaluator shall verify the implementation of the key establishment
schemes of the supported by the TOE using the applicable tests below.

Key Establishment Schemes

SP800-56A Key Establishment Schemes

The evaluator shall verify a TOE's implementation of SP800-56A key agreement
schemes using the following Function and Validity tests. These validation tests
for each key agreement scheme verify that a TOE has implemented the
components of the key agreement scheme according to the specifications in
the Recommendation. These components include the calculation of the DLC
primitives (the shared secret value Z) and the calculation of the derived keying
material (DKM) via the Key Derivation Function (KDF). If key confirmation is
supported, the evaluator shall also verify that the components of key
confirmation have been implemented correctly, using the test procedures
described below. This includes the parsing of the DKM, the generation of
MACdata and the calculation of MACtag.

Function Test

The Function test verifies the ability of the TOE to implement the key
agreement schemes correctly. To conduct this test, the evaluator shall

 29

generate or obtain test vectors from a known good implementation of the TOE
supported schemes. For each supported key agreement scheme-key
agreement role combination, KDF type, and, if supported, key confirmation
role- key confirmation type combination, the tester shall generate 10 sets of
test vectors. The data set consists of one set of domain parameter values (FFC)
or the NIST approved curve (ECC) per 10 sets of public keys. These keys are
static, ephemeral or both depending on the scheme being tested.

The evaluator shall obtain the DKM, the corresponding TOE’s public keys (static
and/or ephemeral), the MAC tag(s), and any inputs used in the KDF, such as the
Other Information field OI and TOE id fields.

If the TOE does not use a KDF defined in SP 800-56A, the evaluator shall obtain
only the public keys and the hashed value of the shared secret.

The evaluator shall verify the correctness of the TSF’s implementation of a
given scheme by using a known good implementation to calculate the shared
secret value, derive the keying material DKM, and compare hashes or MAC tags
generated from these values.

If key confirmation is supported, the TSF shall perform the above for each
implemented approved MAC algorithm.

Validity Test

The Validity test verifies the ability of the TOE to recognize another party’s valid
and invalid key agreement results with or without key confirmation. To conduct
this test, the evaluator shall obtain a list of the supporting cryptographic
functions included in the SP800-56A key agreement implementation to
determine which errors the TOE should be able to recognize. The evaluator
generates a set of 24 (FFC) or 30 (ECC) test vectors consisting of data sets
including domain parameter values or NIST approved curves, the evaluator’s
public keys, the TOE’s public/private key pairs, MACTag, and any inputs used in
the KDF, such as the other info and TOE id fields.

The evaluator shall inject an error in some of the test vectors to test that the
TOE recognizes invalid key agreement results caused by the following fields
being incorrect: the shared secret value Z, the DKM, the other information field
OI, the data to be MACed, or the generated MACTag. If the TOE contains the
full or partial (only ECC) public key validation, the evaluator will also
individually inject errors in both parties’ static public keys, both parties’
ephemeral public keys and the TOE’s static private key to assure the TOE
detects errors in the public key validation function and/or the partial key
validation function (in ECC only). At least two of the test vectors shall remain
unmodified and therefore should result in valid key agreement results (they
should pass).

The TOE shall use these modified test vectors to emulate the key agreement
scheme using the corresponding parameters. The evaluator shall compare the
TOE’s results with the results using a known good implementation verifying
that the TOE detects these errors.

SP800-56B Key Establishment Schemes

 30

The evaluator shall verify that the TSS describes whether the TOE acts as a
sender, a recipient, or both for RSA-based key establishment schemes.

If the TOE acts as a sender, the following assurance activity shall be performed
to ensure the proper operation of every TOE supported combination of RSA-
based key establishment scheme:

 To conduct this test, the evaluator shall generate or obtain test vectors
from a known good implementation of the TOE supported schemes. For
each combination of supported key establishment scheme and its options
(with or without key confirmation if supported, for each supported key
confirmation MAC function if key confirmation is supported, and for each
supported mask generation function if KTS-OAEP is supported), the tester
shall generate 10 sets of test vectors. Each test vector shall include the RSA
public key, the plaintext keying material, any additional input parameters
if applicable, the MacKey and MacTag if key confirmation is incorporated,
and the outputted ciphertext. For each test vector, the evaluator shall
perform a key establishment encryption operation on the TOE with the
same inputs (in cases where key confirmation is incorporated, the test shall
use the MacKey from the test vector instead of the randomly generated
MacKey used in normal operation) and ensure that the outputted
ciphertext is equivalent to the ciphertext in the test vector.

If the TOE acts as a receiver, the following assurance activities shall be
performed to ensure the proper operation of every TOE supported
combination of RSA-based key establishment scheme:

To conduct this test, the evaluator shall generate or obtain test vectors from a
known good implementation of the TOE supported schemes. For each
combination of supported key establishment scheme and its options (with our
without key confirmation if supported, for each supported key confirmation
MAC function if key confirmation is supported, and for each supported mask
generation function if KTS-OAEP is supported), the tester shall generate 10 sets
of test vectors. Each test vector shall include the RSA private key, the plaintext
keying material (KeyData), any additional input parameters if applicable, the
MacTag in cases where key confirmation is incorporated, and the outputted
ciphertext. For each test vector, the evaluator shall perform the key
establishment decryption operation on the TOE and ensure that the outputted
plaintext keying material (KeyData) is equivalent to the plaintext keying
material in the test vector. In cases where key confirmation is incorporated,
the evaluator shall perform the key confirmation steps and ensure that the
outputted MacTag is equivalent to the MacTag in the test vector.

The evaluator shall ensure that the TSS describes how the TOE handles
decryption errors. In accordance with NIST Special Publication 800-56B, the
TOE shall not reveal the particular error that occurred, either through the
contents of any outputted or logged error message or through timing
variations. If KTS-OAEP is supported, the evaluator shall create separate

 31

contrived ciphertext values that trigger each of the three decryption error
checks described in NIST Special Publication 800-56B section 7.2.2.3, ensure
that each decryption attempt results in an error, and ensure that any outputted
or logged error message is identical for each. If KTS-KEM-KWS is supported, the
evaluator shall create separate contrived ciphertext values that trigger each of
the three decryption error checks described in NIST Special Publication 800-
56B section 7.2.3.3, ensure that each decryption attempt results in an error,
and ensure that any outputted or logged error message is identical for each.

FCS_CKM_EXT.4 Cryptographic Key Destruction
FCS_CKM_EXT.4.1 The TSF shall cause disused cryptographic keys in volatile memory to be

destroyed or rendered unrecoverable.

Application Note: The threat addressed by this element is the recovery of disused cryptographic
keys from volatile memory by unauthorized processes.

The TSF is expected to destroy or cause to be destroyed all copies of
cryptographic keys created and managed by the TOE once the keys are no longer
needed. This requirement is the same for all instances of keys within TOE volatile
memory regardless of whether the memory is controlled by TOE manufacturer
software or by 3rd party TOE modules. The assurance activities are designed with
flexibility to address cases where the TOE manufacturer has limited insight into
the behavior of 3rd party TOE components.

The preferred method for destroying keys in TOE volatile memory is by direct
overwrite of the memory occupied by the keys. The values used for overwriting
can be all zeros, all ones, or any other pattern or combination of values
significantly different than the value of the key itself such that the keys are
rendered inaccessible to running processes.

Some implementations may find that direct overwriting of memory is not
feasible or possible due to programming language constraints. Many memory-
and type-safe languages provide no mechanism for programmers to specify that
a particular memory location be accessed or written. The value of such
languages is that it is much harder for a programming error to result in a buffer
or heap overflow. The downside is that multiple copies of keys might be
scattered throughout language-runtime memory. In such cases, the TOE should
take whatever actions are feasible to cause the keys to become inaccessible—
freeing memory, destroying objects, closing applications, programming using
the minimum possible scope for variables containing keys.

Likewise, if keys reside in memory within the execution context of a third-party
module, then the TOE should take whatever feasible actions it can to cause the
keys to be destroyed.

Cryptographic keys in non-TOE volatile memory are not covered by this
requirement. This expressly includes keys created and used by Guest VMs. The
Guest is responsible for disposing of such keys.

 32

FCS_CKM_EXT.4.2 The TSF shall cause disused cryptographic keys in non-volatile storage to be

destroyed or rendered unrecoverable.

Application Note: The ultimate goal of this element is to ensure that disused cryptographic keys
are inaccessible not only to components of the running system, but are also
unrecoverable through forensic analysis of discarded storage media. The
element is designed to reflect the fact that the latter may not be wholly practical
at this time due to the way some storage technologies are implemented (e.g.,
wear-leveling of flash storage).

Key storage areas in non-volatile storage can be overwritten with any value that
renders the keys unrecoverable. The value used can be all zeros, all ones, or any
other pattern or combination of values significantly different than the value of
the key itself.

The TSF is expected to destroy all copies of cryptographic keys created and
managed by the TOE once the keys are no longer needed. Since this is a
software-only TOE, the hardware controllers that manage non-volatile storage
media are necessarily outside the TOE boundary. Thus, the TOE manufacturer is
likely to have little control over—or insight into—the functioning of these
storage devices. The TOE is expected to make a “best-effort” to destroy disused
cryptographic keys by invoking the appropriate platform interfaces—recognizing
that the specific actions taken by the platform are out of the TOE’s control.

But in cases where the TOE has insight into the non-volatile storage technologies
used by the platform, or where the TOE can specify a preference or method for
destroying keys, the destruction should be executed by a single, direct overwrite

consisting of pseudo-random data or a new key, by a repeating pattern of
any static value, or by a block erase.

For keys stored on encrypted media, it is sufficient for the media encryption keys
to be destroyed for all keys stored on the media to be considered destroyed.

Assurance Activity

83 The evaluator shall check to ensure the TSS lists each type of key and its
origin and location in memory or storage. The evaluator shall verify that the
TSS describes when each type of key is cleared.

84 For each key clearing situation the evaluator shall perform one of the
following activities:

 The evaluator shall use appropriate combinations of specialized
operational or development environments, development tools
(debuggers, emulators, simulators, etc.), or instrumented builds
(developmental, debug, or release) to demonstrate that keys are
cleared correctly, including all intermediate copies of the key that
may have been created internally by the TOE during normal
cryptographic processing.

 In cases where testing reveals that 3rd-party software modules or
programming language run-time environments do not properly
overwrite keys, this fact must be documented. Likewise, it must be

 33

documented if there is no practical way to determine whether such
modules or environments destroy keys properly.

 In cases where it is impossible or impracticable to perform the above
tests, the evaluator shall describe how keys are destroyed in such
cases, to include:

o Which keys are affected,
o The reasons why testing is impossible or impracticable,
o Evidence that keys are destroyed appropriately (e.g., citations

to component documentation, component developer/vendor
attestation, component vendor test results),

o Aggravating and mitigating factors that may affect the
timeliness or execution of key destruction (e.g., caching,
garbage collection, operating system memory management).

Note: using debug or instrumented builds of the TOE and TOE components is
permitted in order to demonstrate that the TOE takes appropriate action to
destroy keys. It is expected that these builds are based on the same source
code as are release builds (of course, with instrumentation and debug-specific
code added).

FCS_COP.1(1) Cryptographic Operation (AES Data Encryption/Decryption)
FCS_COP.1.1(1) The TSF shall perform [encryption and decryption] in accordance with a specified

cryptographic algorithm [selection:

 AES Key Wrap (KW) (as defined in NIST SP 800-38F),

 AES Key Wrap with Padding (KWP) (as defined in NIST SP 800-38F),

 AES-GCM (as defined in NIST SP 800-38D),

 AES-CCM (as defined in NIST SP 800-38C),

 AES-XTS (as defined in NIST SP 800-38E) mode,

 AES-CCMP-256 (as defined in NIST SP800-38C and IEEE 802.11ac-2013),

 AES-GCMP-256 (as defined in NIST SP800-38D and IEEE 802.11ac-2013),

 AES-CCMP (as defined in FIPS PUB 197, NIST SP 800-38C and IEEE 802.11-
2012),

 AES-CBC (as defined in FIPS PUB 197, and NIST SP 800-38A) mode,

 AES-CTR (as defined in NIST SP 800-38A) mode]

and cryptographic key sizes [selection: 128-bit, 256-bit].

Application Note: For the first selection of FCS_COP.1.1(1), the ST author should choose the mode

or modes in which AES operates. For the second selection, the ST author should

choose the key sizes that are supported by this functionality.

Assurance Activity

85 Assurance Activity Note: The following tests require the developer to provide
access to a test platform that provides the evaluator with tools that are
typically not found on factory products.

86 AES-CBC Tests

 34

87 AES-CBC Known Answer Tests

88 There are four Known Answer Tests (KATs), described below. In all KATs, the
plaintext, ciphertext, and IV values shall be 128-bit blocks. The results from
each test may either be obtained by the evaluator directly or by supplying the
inputs to the implementer and receiving the results in response. To
determine correctness, the evaluator shall compare the resulting values to
those obtained by submitting the same inputs to a known good
implementation.

89 KAT-1. To test the encrypt functionality of AES-CBC, the evaluator shall supply
a set of 10 plaintext values and obtain the ciphertext value that results from
AES-CBC encryption of the given plaintext using a key value of all zeros and an
IV of all zeros. Five plaintext values shall be encrypted with a 128-bit all-zeros
key, and the other five shall be encrypted with a 256-bit all-zeros key.

90 To test the decrypt functionality of AES-CBC, the evaluator shall perform the
same test as for encrypt, using 10 ciphertext values as input and AES-CBC
decryption.

91 KAT-2. To test the encrypt functionality of AES-CBC, the evaluator shall supply
a set of 10 key values and obtain the ciphertext value that results from AES-
CBC encryption of an all-zeros plaintext using the given key value and an IV of
all zeros. Five of the keys shall be 128-bit keys, and the other five shall be
256-bit keys.

92 To test the decrypt functionality of AES-CBC, the evaluator shall perform the
same test as for encrypt, using an all-zero ciphertext value as input and AES-
CBC decryption.

93 KAT-3. To test the encrypt functionality of AES-CBC, the evaluator shall supply
the two sets of key values described below and obtain the ciphertext value
that results from AES encryption of an all-zeros plaintext using the given key
value and an IV of all zeros. The first set of keys shall have 128 128-bit keys,
and the second set shall have 256 256-bit keys. Key i in each set shall have the
leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1,N].

94 To test the decrypt functionality of AES-CBC, the evaluator shall supply the
two sets of key and ciphertext value pairs described below and obtain the
plaintext value that results from AES-CBC decryption of the given ciphertext
using the given key and an IV of all zeros. The first set of key/ciphertext pairs
shall have 128 128-bit key/ciphertext pairs, and the second set of
key/ciphertext pairs shall have 256 256-bit key/ciphertext pairs. Key i in each
set shall have the leftmost i bits be ones and the rightmost N-i bits be zeros,
for i in [1,N]. The ciphertext value in each pair shall be the value that results in
an all-zeros plaintext when decrypted with its corresponding key.

95 KAT-4. To test the encrypt functionality of AES-CBC, the evaluator shall supply
the set of 128 plaintext values described below and obtain the two ciphertext
values that result from AES-CBC encryption of the given plaintext using a 128-
bit key value of all zeros with an IV of all zeros and using a 256-bit key value
of all zeros with an IV of all zeros, respectively. Plaintext value i in each set

 35

shall have the leftmost i bits be ones and the rightmost 128-i bits be zeros, for
i in [1,128].

96 To test the decrypt functionality of AES-CBC, the evaluator shall perform the
same test as for encrypt, using ciphertext values of the same form as the
plaintext in the encrypt test as input and AES-CBC decryption.

97 AES-CBC Multi-Block Message Test

98 The evaluator shall test the encrypt functionality by encrypting an i-block
message where 1 < i <=10. The evaluator shall choose a key, an IV and
plaintext message of length i blocks and encrypt the message, using the mode
to be tested, with the chosen key and IV. The ciphertext shall be compared to
the result of encrypting the same plaintext message with the same key and IV
using a known good implementation.

99 The evaluator shall also test the decrypt functionality for each mode by
decrypting an i-block message where 1 < i <=10. The evaluator shall choose a
key, an IV and a ciphertext message of length i blocks and decrypt the
message, using the mode to be tested, with the chosen key and IV. The
plaintext shall be compared to the result of decrypting the same ciphertext
message with the same key and IV using a known good implementation.

100 AES-CBC Monte Carlo Tests

101 The evaluator shall test the encrypt functionality using a set of 200 plaintext,
IV, and key 3-tuples. 100 of these shall use 128 bit keys, and 100 shall use 256
bit keys. The plaintext and IV values shall be 128-bit blocks. For each 3-tuple,
1000 iterations shall be run as follows:

102 # Input: PT, IV, Key

103 for i = 1 to 1000:

104 if i == 1:

105 CT[1] = AES-CBC-Encrypt(Key, IV, PT)

106 PT = IV

107 else:

108 CT[i] = AES-CBC-Encrypt(Key, PT)

109 PT = CT[i-1]

110 The ciphertext computed in the 1000th iteration (i.e., CT[1000]) is the result
for that trial. This result shall be compared to the result of running 1000
iterations with the same values using a known good implementation.

111 The evaluator shall test the decrypt functionality using the same test as for
encrypt, exchanging CT and PT and replacing AES-CBC-Encrypt with AES-CBC-
Decrypt.

112 AES-CCM Tests

 36

113 The evaluator shall test the generation-encryption and decryption-verification
functionality of AES-CCM for the following input parameter and tag lengths:

114 128 bit and 256 bit keys

115 Two payload lengths. One payload length shall be the shortest supported
payload length, greater than or equal to zero bytes. The other payload length
shall be the longest supported payload length, less than or equal to 32 bytes
(256 bits).

116 Two or three associated data lengths. One associated data length shall be 0,
if supported. One associated data length shall be the shortest supported
payload length, greater than or equal to zero bytes. One associated data
length shall be the longest supported payload length, less than or equal to 32
bytes (256 bits). If the implementation supports an associated data length of
216 bytes, an associated data length of 216 bytes shall be tested.

117 Nonce lengths. All supported nonce lengths between 7 and 13 bytes,
inclusive, shall be tested.

118 Tag lengths. All supported tag lengths of 4, 6, 8, 10, 12, 14 and 16 bytes shall
be tested.

119 To test the generation-encryption functionality of AES-CCM, the evaluator
shall perform the following four tests:

120 Test 1. For EACH supported key and associated data length and ANY
supported payload, nonce and tag length, the evaluator shall supply one key
value, one nonce value and 10 pairs of associated data and payload values
and obtain the resulting ciphertext.

121 Test 2. For EACH supported key and payload length and ANY supported
associated data, nonce and tag length, the evaluator shall supply one key
value, one nonce value and 10 pairs of associated data and payload values
and obtain the resulting ciphertext.

122 Test 3. For EACH supported key and nonce length and ANY supported
associated data, payload and tag length, the evaluator shall supply one key
value and 10 associated data, payload and nonce value 3-tuples and obtain
the resulting ciphertext.

123 Test 4. For EACH supported key and tag length and ANY supported associated
data, payload and nonce length, the evaluator shall supply one key value, one
nonce value and 10 pairs of associated data and payload values and obtain
the resulting ciphertext.

124 To determine correctness in each of the above tests, the evaluator shall
compare the ciphertext with the result of generation-encryption of the same
inputs with a known good implementation.

125 To test the decryption-verification functionality of AES-CCM, for EACH
combination of supported associated data length, payload length, nonce
length and tag length, the evaluator shall supply a key value and 15 nonce,
associated data and ciphertext 3-tuples and obtain either a FAIL result or a

 37

PASS result with the decrypted payload. The evaluator shall supply 10 tuples
that should FAIL and 5 that should PASS per set of 15.

126 Additionally, the evaluator shall use tests from the IEEE 802.11-02/362r6
document “Proposed Test vectors for IEEE 802.11 TGi”, dated September 10,
2002, Section 2.1 AES-CCMP Encapsulation Example and Section 2.2
Additional AES CCMP Test Vectors to further verify the IEEE 802.11-2007
implementation of AES-CCMP.

127 AES-GCM Test

128 The evaluator shall test the authenticated encrypt functionality of AES-GCM
for each combination of the following input parameter lengths:

129 128 bit and 256 bit keys

130 Two plaintext lengths. One of the plaintext lengths shall be a non-zero
integer multiple of 128 bits, if supported. The other plaintext length shall not
be an integer multiple of 128 bits, if supported.

131 Three AAD lengths. One AAD length shall be 0, if supported. One AAD length
shall be a non-zero integer multiple of 128 bits, if supported. One AAD length
shall not be an integer multiple of 128 bits, if supported.

132 Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV
lengths tested.

133 The evaluator shall test the encrypt functionality using a set of 10 key,
plaintext, AAD, and IV tuples for each combination of parameter lengths
above and obtain the ciphertext value and tag that results from AES-GCM
authenticated encrypt. Each supported tag length shall be tested at least once
per set of 10. The IV value may be supplied by the evaluator or the
implementation being tested, as long as it is known.

134 The evaluator shall test the decrypt functionality using a set of 10 key,
ciphertext, tag, AAD, and IV 5-tuples for each combination of parameter
lengths above and obtain a Pass/Fail result on authentication and the
decrypted plaintext if Pass. The set shall include five tuples that Pass and five
that Fail.

135 The results from each test may either be obtained by the evaluator directly or
by supplying the inputs to the implementer and receiving the results in
response. To determine correctness, the evaluator shall compare the
resulting values to those obtained by submitting the same inputs to a known
good implementation.

136 XTS-AES Test

137 The evaluator shall test the encrypt functionality of XTS-AES for each
combination of the following input parameter lengths:

 256 bit (for AES-128) and 512 bit (for AES-256) keys

 Three data unit (i.e., plaintext) lengths. One of the data unit lengths
shall be a non-zero integer multiple of 128 bits, if supported. One of the

 38

data unit lengths shall be an integer multiple of 128 bits, if supported.
The third data unit length shall be either the longest supported data unit
length or 216 bits, whichever is smaller.

138 using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples
and obtain the ciphertext that results from XTS-AES encrypt.

139 The evaluator may supply a data unit sequence number instead of the tweak
value if the implementation supports it. The data unit sequence number is a
base-10 number ranging between 0 and 255 that implementations convert to
a tweak value internally.

140 The evaluator shall test the decrypt functionality of XTS-AES using the same
test as for encrypt, replacing plaintext values with ciphertext values and XTS-
AES encrypt with XTS-AES decrypt.

141 AES Key Wrap (AES-KW) and Key Wrap with Padding (AES-KWP) Test

142 The evaluator shall test the authenticated encryption functionality of AES-KW
for EACH combination of the following input parameter lengths:

 128 and 256 bit key encryption keys (KEKs)

 Three plaintext lengths. One of the plaintext lengths shall be two semi-
blocks (128 bits). One of the plaintext lengths shall be three semi-blocks
(192 bits). The third data unit length shall be the longest supported
plaintext length less than or equal to 64 semi-blocks (4096 bits).

143 using a set of 100 key and plaintext pairs and obtain the ciphertext that
results from AES-KW authenticated encryption. To determine correctness, the
evaluator shall use the AES-KW authenticated-encryption function of a known
good implementation.

144 The evaluator shall test the authenticated-decryption functionality of AES-KW
using the same test as for authenticated-encryption, replacing plaintext
values with ciphertext values and AES-KW authenticated-encryption with
AES-KW authenticated-decryption.

145 The evaluator shall test the authenticated-encryption functionality of AES-
KWP using the same test as for AES-KW authenticated-encryption with the
following change in the three plaintext lengths:

146 One plaintext length shall be one octet. One plaintext length shall be 20
octets (160 bits).

147 One plaintext length shall be the longest supported plaintext length less than
or equal to 512 octets (4096 bits).

148 The evaluator shall test the authenticated-decryption functionality of AES-
KWP using the same test as for AES-KWP authenticated-encryption, replacing
plaintext values with ciphertext values and AES-KWP authenticated-
encryption with AES-KWP authenticated-decryption.

 39

FCS_COP.1(2) Cryptographic Operation (Hashing)
FCS_COP.1.1(2) The TSF shall perform [cryptographic hashing] in accordance with a specified

cryptographic algorithm [selection: SHA-1, SHA-256, SHA-384, SHA-512] and

message digest sizes [selection: 160, 256, 384, 512 bits] that meet the

following: [FIPS PUB 180-4, “Secure Hash Standard”].

Application Note: The TSF shall provide the audit records in a manner suitable for the user to

interpret the information. Per NIST SP 800-131A, SHA-1 for generating digital

signatures is no longer allowed, and SHA-1 for verification of digital signatures is

strongly discouraged as there may be risk in accepting these signatures. It is

expected that vendors will implement SHA-2 algorithms in accordance with SP

800-131A.

The intent of this requirement is to specify the hashing function. The hash

selection shall support the message digest size selection. The hash selection

should be consistent with the overall strength of the algorithm used (for

example, SHA 256 for 128-bit keys).

Assurance Activity

The evaluator checks the AGD documents to determine that any configuration
that is required to be done to configure the functionality for the required hash
sizes is present. The evaluator shall check that the association of the hash
function with other TSF cryptographic functions (for example, the digital
signature verification function) is documented in the TSS.

The TSF hashing functions can be implemented in one of two modes. The first
mode is the byte­oriented mode. In this mode the TSF only hashes messages
that are an integral number of bytes in length; i.e., the length (in bits) of the
message to be hashed is divisible by 8. The second mode is the bit­oriented
mode. In this mode the TSF hashes messages of arbitrary length. As there are
different tests for each mode, an indication is given in the following sections
for the bit­oriented vs. the byte­oriented testmacs.

The evaluator shall perform all of the following tests for each hash algorithm
implemented by the TSF and used to satisfy the requirements of this PP.

Assurance Activity Note: The following tests require the developer to provide
access to a test platform that provides the evaluator with tools that are
typically not found on factory products.

Short Messages Test ­ Bit­oriented Mode

The evaluators devise an input set consisting of m+1 messages, where m is the
block length of the hash algorithm. The length of the messages range
sequentially from 0 to m bits. The message text shall be pseudo-randomly
generated. The evaluators compute the message digest for each of the
messages and ensure that the correct result is produced when the messages
are provided to the TSF.

Short Messages Test ­ Byte­oriented Mode

 40

The evaluators devise an input set consisting of m/8+1 messages, where m is
the block length of the hash algorithm. The length of the messages range
sequentially from 0 to m/8 bytes, with each message being an integral number
of bytes. The message text shall be pseudo-randomly generated. The
evaluators compute the message digest for each of the messages and ensure
that the correct result is produced when the messages are provided to the TSF.

Selected Long Messages Test ­ Bit­oriented Mode

The evaluators devise an input set consisting of m messages, where m is the
block length of the hash algorithm. The length of the ith message is 512 + 99*i,
where 1 ≤ i ≤ m. The message text shall be pseudo-randomly generated. The
evaluators compute the message digest for each of the messages and ensure
that the correct result is produced when the messages are provided to the TSF.

Selected Long Messages Test ­ Byte­oriented Mode

The evaluators devise an input set consisting of m/8 messages, where m is the
block length of the hash algorithm. The length of the ith message is 512 +
8*99*i, where 1 ≤ i ≤ m/8. The message text shall be pseudo-randomly
generated. The evaluators compute the message digest for each of the
messages and ensure that the correct result is produced when the messages
are provided to the TSF.

Pseudo-randomly Generated Messages Test

This test is for byte­oriented implementations only. The evaluators randomly
generate a seed that is n bits long, where n is the length of the message digest
produced by the hash function to be tested. The evaluators then formulate a
set of 100 messages and associated digests by following the algorithm provided
in Figure 1 of [SHAVS]. The evaluators then ensure that the correct result is
produced when the messages are provided to the TSF.

FCS_COP.1(3) Cryptographic Operation (Signature Algorithms)
FCS_COP.1.1(3) The TSF shall perform [cryptographic signature services (generation and

verification)] in accordance with a specified cryptographic algorithm [selection:

 RSA schemes using cryptographic key sizes [2048-bit or greater] that meet
the following: [FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Section
4]

 ECDSA schemes using [“NIST curves” P-256, P-384, and [selection: P-521, no
other curves]] that meet the following: [FIPS PUB 186-4, “Digital Signature
Standard (DSS)”, Section 5]].

Application Note: The ST Author should choose the algorithm implemented to perform digital

signatures; if more than one algorithm is available, this requirement should be

iterated to specify the functionality. For the algorithm chosen, the ST author

should make the appropriate assignments/selections to specify the parameters

that are implemented for that algorithm.

Assurance Activity

 41

Assurance Activity Note: The following tests require the developer to provide
access to a test platform that provides the evaluator with tools that are
typically not found on factory products.

ECDSA Algorithm Tests

ECDSA FIPS 186-4 Signature Generation Test

For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function
pair, the evaluator shall generate 10 1024-bit long messages and obtain for
each message a public key and the resulting signature values R and S. To
determine correctness, the evaluator shall use the signature verification
function of a known good implementation.

ECDSA FIPS 186-4 Signature Verification Test

For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function
pair, the evaluator shall generate a set of 10 1024-bit message, public key and
signature tuples and modify one of the values (message, public key or
signature) in five of the 10 tuples. The evaluator shall obtain in response a set
of 10 PASS/FAIL values.

RSA Signature Algorithm Tests

Signature Generation Test

The evaluator shall verify the implementation of RSA Signature Generation by
the TOE using the Signature Generation Test. To conduct this test, the
evaluator shall generate or obtain 10 messages from a trusted reference
implementation for each modulus size/SHA combination supported by the TSF.
The evaluator shall have the TOE use their private key and modulus value to
sign these messages.

The evaluator shall verify the correctness of the TSF’s signature using a known
good implementation and the associated public keys to verify the signatures.

Signature Verification Test

The evaluator shall perform the Signature Verification test to verify the ability
of the TOE to recognize another party’s valid and invalid signatures. The
evaluator shall inject errors into the test vectors produced during the Signature
Verification Test by introducing errors in some of the public keys e, messages,
IR format, and/or signatures. The TOE attempts to verify the signatures and
returns success or failure.

The evaluator shall use these test vectors to emulate the signature verification
test using the corresponding parameters and verify that the TOE detects these
errors.

FCS_COP.1(4) Cryptographic Operation (Keyed Hash Algorithms)
FCS_COP.1.1(4) The TSF shall perform [keyed-hash message authentication] in accordance with

a specified cryptographic algorithm [selection: HMAC-SHA-1, HMAC-SHA-256,

HMAC-SHA-384, HMAC-SHA-512] and cryptographic key sizes [assignment: key

 42

sizes (in bits) used in HMAC] and message digest sizes [selection: 160, 256, 384,

512 bits] that meet the following: [FIPS PUB 198-1, “The Keyed-Hash Message

Authentication Code”, FIPS PUB 180-4, “Secure Hash Standard”].

Application Note: The selection in this requirement must be consistent with the key size specified

for the size of the keys used in conjunction with the keyed-hash message

authentication.

Assurance Activity

The evaluator shall examine the TSS to ensure that it specifies the following
values used by the HMAC function: key length, hash function used, block size,
and output MAC length used.

Assurance Activity Note: The following tests require the developer to provide
access to a test platform that provides the evaluator with tools that are
typically not found on factory products.

For each of the supported parameter sets, the evaluator shall compose 15 sets
of test data. Each set shall consist of a key and message data. The evaluator
shall have the TSF generate HMAC tags for these sets of test data. The resulting
MAC tags shall be compared to the result of generating HMAC tags with the
same key and IV using a known good implementation.

FCS_ENT_EXT.1 Entropy for Virtual Machines
FCS_ENT_EXT.1.1 The TSF shall provide a mechanism to make available to VMs entropy that

meets FCS_RBG_EXT.1 through [selection: Hypercall interface, virtual device

interface, passthrough access to hardware entropy source].

FCS_ENT_EXT.1.2 The TSF shall provide independent entropy across multiple VMs.

Application Note: This requirement ensures that sufficient entropy is available to any VM that

requires it. The entropy need not provide high-quality entropy for every possible

method that a VM might acquire it. The VMM must, however, provide some

means for VMs to get sufficient entropy. For example, the VMM can provide an

interface that returns entropy to a Guest VM. Alternatively, the VMM could

provide pass-through access to entropy sources provided by the host platform.

This requirement allows for three general ways of providing entropy to guests: 1)

The VS can provide a Hypercall accessible to VM-aware guests, 2) access to a

virtualized device that provides entropy, or 3) pass-through access to a hardware

entropy source (including a source of random numbers). In all cases, it is possible

that the guest is made VM-aware through installation of software or drivers. For

the second and third cases, it is possible that the guest could be VM-unaware.

There is no requirement that the TOE provide entropy sources as expected by

VM-unaware guests. That is, the TOE does not have to anticipate every way a

guest might try to acquire entropy as long as it supplies a mechanism that can

be used by VM-aware guests, or provides access to a standard mechanism that a

VM-unaware guest would use.

 43

The ST author should select “Hypercall interface” if the TSF provides an API

function through which guest-resident software can obtain entropy or random

numbers. The ST author should select “virtual device interface” if the TSF

presents a virtual device interface to the Guest OS through which it can obtain

entropy or random numbers. Such an interface could present a virtualized real

device, such as a TPM, that can be accessed by VM-unaware guests, or a

virtualized fictional device that would require the Guest OS to be VM-aware. The

ST author should select “passthrough access to hardware entropy source” if the

TSF permits Guest VMs to have direct access to hardware entropy or random

number source on the platform. The ST author should select all items that are

appropriate.

For FCS_ENT_EXT.1.2, the VMM must ensure that the provision of entropy to

one VM cannot affect the quality of entropy provided to another VM on the

same platform.

Assurance Activity

The evaluator shall verify that the TSS describes how the TOE provides entropy
to Guest VMs, and how to access the interface to acquire entropy or random
numbers. The evaluator shall verify that the TSS describes the mechanisms for
ensuring that one VM does not affect the entropy acquired by another VM. The
evaluator shall perform the following tests:

 Test 1: The evaluator shall invoke entropy from each Guest VM. The

evaluator shall verify that each VM acquires values from the

interface.

 Test 2: The evaluator shall invoke entropy from multiple VMs as

nearly simultaneously as practicable. The evaluator shall verify that

the entropy used in one VM is not identical to that invoked from the

other VMs.

FCS_RBG_EXT.1 Cryptographic Operation (Random Bit Generation)
FCS_RBG_EXT.1.1 The TSF shall perform all deterministic random bit generation services in

accordance with NIST Special Publication 800-90A using [selection: Hash_DRBG

(any), HMAC_DRBG (any), CTR_DRBG (AES)].

FCS_RBG_EXT.1.2 The deterministic RBG shall be seeded by an entropy source that accumulates

entropy from [selection: a software-based noise source, a hardware-based noise

source] with a minimum of [selection: 128 bits, 192 bits, 256 bits] of entropy at

least equal to the greatest security strength according to NIST SP 800-57, of the

keys and hashes that it will generate.

Application Note: NIST SP 800-90A contains three different methods of generating random

numbers; each of these, in turn, depends on underlying cryptographic primitives

(hash functions/ciphers). The ST author will select the function used, and include

the specific underlying cryptographic primitives used in the requirement. While

any of the identified hash functions (SHA-1, SHA-224, SHA-256, SHA-384, SHA-

 44

512) are allowed for Hash_DRBG or HMAC_DRBG, only AES-based

implementations for CTR_DRBG are allowed.

If the key length for the AES implementation used here is different than that

used to encrypt the user data, then FCS_COP.1 may have to be adjusted or

iterated to reflect the different key length. For the selection in FCS_RBG_EXT.1.2,

the ST author selects the minimum number of bits of entropy that is used to seed

the RBG.

Assurance Activity

Documentation shall be produced—and the evaluator shall perform the
activities—in accordance with Annex D, Entropy Documentation and
Assessment.

The evaluator shall also perform the following tests, depending on the
standard to which the RBG conforms.

The evaluator shall perform 15 trials for the RBG implementation. If the RBG is
configurable, the evaluator shall perform 15 trials for each configuration. The
evaluator shall also confirm that the operational guidance contains appropriate
instructions for configuring the RBG functionality.

If the RBG has prediction resistance enabled, each trial consists of (1)
instantiate drbg, (2) generate the first block of random bits (3) generate a
second block of random bits (4) uninstantiate. The evaluator verifies that the
second block of random bits is the expected value. The evaluator shall generate
eight input values for each trial. The first is a count (0 – 14). The next three are
entropy input, nonce, and personalization string for the instantiate operation.
The next two are additional input and entropy input for the first call to
generate. The final two are additional input and entropy input for the second
call to generate. These values are randomly generated. “generate one block of
random bits” means to generate random bits with number of returned bits
equal to the Output Block Length (as defined in NIST SP 800-90A).

If the RBG does not have prediction resistance, each trial consists of (1)
instantiate drbg, (2) generate the first block of random bits (3) reseed, (4)
generate a second block of random bits (5) uninstantiate. The evaluator verifies
that the second block of random bits is the expected value. The evaluator shall
generate eight input values for each trial. The first is a count (0 – 14). The next
three are entropy input, nonce, and personalization string for the instantiate
operation. The fifth value is additional input to the first call to generate. The
sixth and seventh are additional input and entropy input to the call to re-seed.
The final value is additional input to the second generate call.

The following paragraphs contain more information on some of the input
values to be generated/selected by the evaluator.

 Entropy input: the length of the entropy input value must equal the
seed length.

 Nonce: If a nonce is supported (CTR_DRBG with no df does not use a
nonce), the nonce bit length is one-half the seed length.

 45

 Personalization string: The length of the personalization string must
be <= seed length. If the implementation only supports one
personalization string length, then the same length can be used for
both values. If more than one string length is support, the evaluator
shall use personalization strings of two different lengths. If the
implementation does not use a personalization string, no value needs
to be supplied.

 Additional input: the additional input bit lengths have the same
defaults and restrictions as the personalization string lengths.

5.1.3 User Data Protection (FDP)

FDP_HBI_EXT.1 Hardware-Based Isolation Mechanisms

FDP_HBI_EXT.1.1 The TSF shall use [selection: no mechanism, [assignment: list of platform-
provided, hardware-based mechanisms]] to constrain a Guest VM’s direct access
to the following physical devices: [selection: no devices, [assignment: physical
devices to which the VMM allows Guest VMs physical access]].

Application Note: The TSF must use available hardware-based isolation mechanisms to constrain

VMs when VMs have direct access to physical devices. “Direct access” in this

context means that the VM can read or write device memory or access device

I/O ports without the VMM being able to intercept and validate every

transaction.

Assurance Activity

4 The evaluator shall verify that the operational guidance contains instructions
on how to ensure that the platform-provided, hardware-based mechanisms
are enabled.

5 The evaluator shall ensure that the TSS provides evidence that hardware-based
isolation mechanisms are used to constrain VMs when VMs have direct access
to physical devices, including an explanation of the conditions under which the
TSF invokes these protections.

FDP_PPR_EXT.1 Physical Platform Resource Controls
FDP_PPR_EXT.1.1 The TSF shall allow an authorized administrator to control Guest VM access to

the following physical platform resources: [assignment: list of physical platform

resources the VMM is able to control access to].

FDP_PPR_EXT.1.2 The TSF shall explicitly deny all Guest VMs access to the following physical

platform resources: [selection: no physical platform resources, [assignment: list

of physical platform resources to which access is explicitly denied]].

FDP_PPR_EXT.1.3 The TSF shall explicitly allow all Guest VMs access to the following physical

platform resources: [selection: no physical platform resources, [assignment: list

of physical platform resources to which access is always allowed]].

 46

Application Note: This requirement specifies that the VMM controls access to physical platform
resources, and indicates that it must be configurable, but does not specify the
means by which that is done. The ST author should list the physical platform
resources that can be configured for Guest VM access by the administrator.
Guest VMs may not be allowed direct access to certain physical resources; those
resources are listed in the second element. If there are no such resources, the ST
author selects "no physical platform resources". Likewise, any resources to which
all Guest VMs automatically have access to are listed in the third element; if
there are no such resources, then "no physical platform resources" is selected.

Assurance Activity

The evaluator shall examine the TSS to determine that it describes the
mechanism by which the VMM controls a Guest VM's access to physical
platform resources is described. This description shall cover all of the physical
platforms allowed in the evaluated configuration by the ST. This description
shall include how the VMM distinguishes among Guest VMs, and how each
physical platform resource that is controllable (that is, listed in the assignment
statement in the first element) is identified. The evaluator shall ensure that the
TSS describes how the Guest VM is associated with each physical resources,
and how other Guest VMs cannot access a physical resource without being
granted explicit access. For TOEs that implement a robust interface (other than
just "allow access" or "deny access"), the evaluator shall ensure that the TSS
describes the possible operations or modes of access between a Guest VMs
and physical platform resources.

If physical resources are listed in the second element, the evaluator shall
examine the TSS and operational guidance to determine that there appears to
be no way to configure those resources for access by a Guest VM. The evaluator
shall document in the evaluation report their analysis of why the controls
offered to configure access to physical resources can't be used to specify access
to the resources identified in the second element (for example, if the interface
offers a drop-down list of resources to assign, and the denied resources are not
included on that list, that would be sufficient justification in the evaluation
report).

The evaluator shall examine the operational guidance to determine that it
describes how an administrator is able to configure access to physical platform
resources for Guest VMs for each platform allowed in the evaluated
configuration according to the ST. The evaluator shall also determine that the
operational guidance identifies those resources listed in the second and third
elements of the component and notes that access to these resources is
explicitly denied/allowed, respectively.

Using the operational guidance, the evaluator shall perform the following tests
for each physical platform identified in the ST:

 Test 1: For each physical platform resource identified in the first

element, the evaluator shall configure a Guest VM to have access to

 47

that resource and show that the Guest VM is able to successfully

access that resource.

 Test 2: For each physical platform resource identified in the first

element, the evaluator shall configure the system such that a Guest

VM does not have access to that resource and show that the Guest

VM is unable to successfully access that resource.

 Test 3 [conditional]: For TOEs that have a robust control interface, the

evaluator shall exercise each element of the interface as described in

the TSS and the operational guidance to ensure that the behavior

described in the operational guidance is exhibited.

 Test 4 [conditional]: If the TOE explicitly denies access to certain

physical resources, the evaluator shall attempt to access each listed

(in FDP_PPR_EXT.1.2) physical resource from a Guest VM and observe

that access is denied.

 Test 5 [conditional]: If the TOE explicitly allows access to certain

physical resources, the evaluator shall attempt to access each listed

(in FDP_PPR_EXT.1.3) physical resource from a Guest VM and observe

that the access is allowed. If the operational guidance specifies that

access is allowed simultaneously by more than one Guest VM, the

evaluator shall attempt to access each resource listed from more

than one Guest VM and show that access is allowed.

FDP_RIP_EXT.1 Residual Information in Memory
FDP_RIP_EXT.1.1 The TSF shall ensure that any previous information content of physical memory

is cleared prior to allocation to a Guest VM.

Application Note: Physical memory must be zeroed before it is made accessible to a VM for general
use by a Guest OS.

The purpose of this requirement is to ensure that a VM does not receive memory
containing data previously used by another VM or the host.

“For general use” means for use by the Guest OS in its page tables for running
applications or system software.

This does not apply to pages shared by design or policy between VMs or between
the VMMs and VMs, such as read-only OS pages or pages used for virtual device
buffers.

Assurance Activity

6 The evaluator shall ensure that the TSS documents the process used for
clearing physical memory prior to allocation to a Guest VM, providing details
on when and how this is performed. Additionally, the evaluator shall ensure
that the TSS documents the conditions under which physical memory is not
cleared prior to allocation to a Guest VM, and describes when and how the
memory is cleared.

 48

FDP_RIP_EXT.2 Residual Information on Disk
FDP_RIP_EXT.2.1 The TSF shall ensure that any previous information content of physical disk

storage is cleared prior to allocation to a Guest VM.

Application Note: Disk storage must be zeroed before it is made accessible to a VM for use by a
Guest OS.

The purpose of this requirement is to ensure that a VM does not receive disk
storage containing data previously used by another VM or the host.

This does not apply to disk-resident files shared by design or policy between VMs
or between the VMMs and VMs, such as read-only data files or files used for inter-
VM data transfers permitted by policy.

Assurance Activity

The evaluator shall ensure that the TSS documents the conditions under
which physical disk storage is not cleared prior to allocation to a Guest VM.

The evaluator shall perform the following tests:

1. The evaluator (as an unprivileged VM user) must create a new, large

file (10MB) in the VM’s file system. The test is to read each location in

the file to ensure that every location contains a value of 0. This can be

done using a custom tool or a binary file editor or viewer.

2. The evaluator (as VS Administrator) must create a virtual disk and
connect it to a VM. As an unprivileged VM user, the evaluator must
then create a large (10 MB) memory-mapped file on the virtual disk.
The test is to read each location in the file to ensure that every
location contains a value of 0. This can be done using a custom tool or
a binary file editor or viewer.

FDP_VMS_EXT.1 VM Separation

FDP_VMS_EXT.1.1 The VS shall provide the following mechanisms for transferring data between
Guest VMs: [selection: no mechanism, virtual networking, [assignment: other
inter-VM data sharing mechanisms]].

FDP_VMS_EXT.1.2 The TSF shall allow Administrators to configure these mechanisms to [selection:
enable, disable] the transfer of data between Guest VMs.

FDP_VMS_EXT.1.3 The VS shall ensure that no Guest VM is able to read or transfer data to or from
another Guest VM except through the mechanisms listed in FDP_VMS_EXT.1.1.

Application Note: The fundamental requirement of a Virtualization System is the ability to enforce

separation between information domains implemented as Virtual Machines and

Virtual Networks. The intent of this requirement is to ensure that VMs, VMMs,

and the Virtualization System as a whole is implemented with this fundamental

requirement in mind.

The ST author should select “no mechanism” in the unlikely event that the VS
implements no mechanisms for transferring data between Guest VMs. Otherwise,

 49

the ST author should select “virtual networking” and identify all other mechanisms
through which data can be transferred between Guest VMs. This should be the
same list of mechanisms supplied for FMT_MSA_EXT.1.

Examples of non-network inter-VM sharing mechanisms are:

 User interface-based mechanisms, such as copy-paste and drag-and-drop,

 Shared virtual or physical devices,

 API-based mechanisms such as Hypercalls.

For data transfer mechanisms implemented in terms of Hypercall functions,

FDP_VMS_EXT.1.2 is met if FPT_HCL_EXT.1.2 is met for those Hypercall functions

(VM access to Hypercall functions is configurable).

For data transfer mechanisms that use shared physical devices,

FDP_VMS_EXT.1.2 is met if the device is listed in and meets FDP_PPR_EXT.1.1

(VM access to the physical device is configurable).

For data transfer mechanisms that use virtual networking, FDP_VMS_EXT.1.2 is

met if FDP_VNC_EXT.1.1 is met (VM access to virtual networks is configurable).

FDP_VMS_EXT.1.3 is an attestation requirement. The vendor must attest that

data cannot be transferred between Guest VMs except through the configurable

mechanisms documented in FDP_VMS_EXT.1.1. The vendor must attest that

there are no design or implementation flaws that permit the above mechanisms

to be bypassed or defeated, or for data to be transferred through a different,

undocumented mechanism.

Assurance Activity

The evaluator shall examine the TSS to verify that it documents all inter-VM
communications mechanisms (as defined above), including how the
mechanisms are configured, how they are invoked, and how they are
disabled.

The evaluator shall perform the following tests for each documented inter-
VM communications channel:

a. Create two VMs, the first with the inter-VM communications
channel currently being tested enabled, and the second with
the inter-VM communications channel currently being tested
disabled.

b. Test that communications cannot be passed between the
VMs through the channel.

c. As an Administrator, enable inter-VM communications
between the VMs on the second VM.

 50

d. Test that communications can be passed through the inter-
VM channel.

e. As an Administrator again, disable inter-VM communications
between the two VMs.

f. Test that communications can no longer be passed through
the channel.

FDP_VMS_EXT.1.2 is met if communication is successful in step (d) and
unsuccessful in step (f).

FMT_MSA_EXT.1.1 is met if communication is unsuccessful in step
(b). FMT_MSA_EXT.1.2 is met if communication is successful in step
(d). Additionally, FMT_MSA_EXT.1 requires that the evaluator verifies
that the TSS documents the inter-VM communications mechanisms as
described above.

The evaluator must ensure that the ST includes the following statement
attesting that there are no other ways for data to be transferred between
VMs other than those listed in FDP_VMS_EXT.1.1:

A Guest VM cannot access the data of another Guest VM, or transfer data to
another Guest VM other than through the mechanisms described in
FDP_VMS_EXT.1.1 when expressly enabled by an authorized Administrator.
There are no design or implementation flaws that permit the above
mechanisms to be bypassed or defeated, or for data to be transferred through
undocumented mechanisms. This claim does not apply to covert channels or
architectural side-channels.

FDP_VNC_EXT.1 Virtual Networking Components

FDP_VNC_EXT.1.1 The TSF shall allow Administrators to configure virtual networking components
to connect VMs to each other, and to physical networks.

FDP_VNC_EXT.1.2 The TSF shall ensure that network traffic visible to a Guest VM on a virtual
network--or virtual segment of a physical network--is visible only to Guest VMs
configured to be on that virtual network or segment.

Application Note: Virtual networks must be isolated from one another to provide assurance

commensurate with that provided by physically separate networks. It must not

be possible for data to cross between properly configured virtual networks

regardless of whether the traffic originated from a local Guest VM or a remote

host.

Unprivileged users must not be able to connect VMs to each other or to external

networks.

FDP_VNC_EXT.1.2 is an attestation requirement. The vendor must attest that

traffic traversing a virtual network is visible only to Guest VMs that are

configured by an Administrator to be members of that virtual network, and that

 51

there are no design or implementation flaws that permit the virtual networking

configuration to be bypassed or defeated, or for data to be transferred through

undocumented mechanisms.

Assurance Activity

The evaluator must ensure that the TSS and Operational Guidance describes
how to create virtualized networks and connect VMs to each other and to
physical networks.

 Test 1: The evaluator shall assume the role of the
Administrator and attempt to configure a VM to connect to a
network component. The evaluator shall verify that the
attempt is successful. The evaluator shall then assume the role
of an unprivileged user and attempt the same connection. If
the attempt fails, or there is no way for an unprivileged user to
configure VM network connections, the requirement is met.

 Test 2: The evaluator shall assume the role of the
Administrator and attempt to configure a VM to connect to a
physical network. The evaluator shall verify that the attempt is
successful. The evaluator shall then assume the role of an
unprivileged user and make the same attempt. If the attempt
fails, or there is no way for an unprivileged user to configure
VM network connections, the requirement is met.

The evaluator must ensure that the ST includes the following statement
attesting that virtual network traffic is visible only to VMs configured to be on
that virtual network:

“Traffic traversing a virtual network is visible only to Guest VMs that are
configured by an Administrator to be members of that virtual network. There
are no design or implementation flaws that permit the virtual networking
configuration to be bypassed or defeated, or for data to be transferred
through undocumented mechanisms. This claim does not apply to covert
channels or architectural side-channels.”

5.1.4 Identification and Authentication (FIA)

FIA_AFL_EXT.1 Authentication Failure Handling
FIA_AFL_EXT.1.1 The TSF shall detect when [selection:

 [assignment: a positive integer number],

 an administrator configurable positive integer within a [assignment: range of
acceptable values]]

unsuccessful authentication attempts for [selection:

 authentication based on username and password,

 authentication based on username and a PIN that releases an asymmetric key
stored in OE-protected storage,

 52

 authentication based on X.509 certificates,

 authentication based on an SSH public key credential]

occur related to [assignment: list of authentication events].

Assurance Activity

The evaluator will set an administrator-configurable threshold for failed
attempts, or note the ST-specified assignment. The evaluator will then (per
selection) repeatedly attempt to authenticate with an incorrect password,
PIN, or certificate until the number of attempts reaches the threshold. Note
that the authentication attempts and lockouts must also be logged as
specified in FAU_GEN.1.

FIA_AFL_EXT.1.2 When the defined number of unsuccessful authentication attempts for an

account has been met, the TSF shall: [selection: Account Lockout, Account
Disablement, Mandatory Credential Reset, [assignment: list of actions]]

Application Note: The action to be taken shall be populated in the assignment of the ST and

defined in the administrator guidance.

Assurance Activity

The evaluator shall perform the following tests:

1. The evaluator will attempt to authenticate repeatedly to the system
with a known bad password. Once the defined number of failed
authentication attempts has been reached the evaluator will ensure
that the account that was being used for testing has had the actions
detailed in the assignment list above applied to it. The evaluator will
ensure that an event has been logged to the security event log
detailing that the account has had these actions applied.

2. The evaluator will attempt to authenticate repeatedly to the system

with a known bad certificate. Once the defined number of failed
authentication attempts has been reached the evaluator will ensure
that the account that was being used for testing has had the actions
detailed in the assignment list above applied to it. The evaluator will
ensure that an event has been logged to the security event log
detailing that the account has had these actions applied.

3. The evaluator will attempt to authenticate repeatedly to the system

using both a bad password and a bad certificate. Once the defined
number of failed authentication attempts has been reached the
evaluator will ensure that the account that was being used for testing
has had the actions detailed in the assignment list above applied to it.
The evaluator will ensure that an event has been logged to the
security event log detailing that the account has had these actions
applied.

 53

FIA_UAU.5 Multiple Authentication Mechanisms

FIA_UAU.5.1 The TSF shall provide the following authentication mechanisms: [selection:

 authentication based on username and password,

 authentication based on username and a PIN that releases an asymmetric
key stored in OE-protected storage,

 authentication based on X.509 certificates,

 authentication based on an SSH public key credential]

to support Administrator authentication.

Application Note: Selection of ‘authentication based on username and password’ requires that
FIA_PMG_EXT.1 be included in the ST. This also requires that the ST include a
management function for password management. If the ST author selects
‘authentication based on an SSH public-key credential’, the TSF shall be validated
against the Extended Package for Secure Shell.

PINs used to access OE-protected storage are set and managed by the OE-
protected storage mechanism. Thus requirements on PIN management are
outside the scope of the TOE.

FIA_UAU.5.2 The TSF shall authenticate any Administrator’s claimed identity according to the
[assignment: rules describing how the multiple authentication mechanisms
provide authentication].

Assurance Activity

If ‘username and password authentication‘ is selected, the evaluator will
configure the VS with a known username and password and conduct the
following tests:

 Test 1: The evaluator will attempt to authenticate to the VS using the
known username and password. The evaluator will ensure that the
authentication attempt is successful.

 Test 2: The evaluator will attempt to authenticate to the VS using the
known username but an incorrect password. The evaluator will
ensure that the authentication attempt is unsuccessful.

If ‘username and PIN that releases an asymmetric key‘ is selected, the
evaluator will examine the TSS for guidance on supported protected storage
and will then configure the TOE or OE to establish a PIN which enables release
of the asymmetric key from the protected storage (such as a TPM, a hardware
token, or isolated execution environment) with which the VS can interface.
The evaluator will then conduct the following tests:

 Test 1: The evaluator will attempt to authenticate to the VS using the
known user name and PIN. The evaluator will ensure that the
authentication attempt is successful.

 Test 2: The evaluator will attempt to authenticate to the VS using the
known user name but an incorrect PIN. The evaluator will ensure that
the authentication attempt is unsuccessful.

 54

If ‘X.509 certificate authentication‘ is selected, the evaluator will generate an
X.509v3 certificate for an Administrator user with the Client Authentication
Enhanced Key Usage field set. The evaluator will provision the VS for
authentication with the X.509v3 certificate. The evaluator will ensure that the
certificates are validated by the VS as per FIA_X509_EXT.1.1 and then conduct
the following tests:

 Test 1: The evaluator will attempt to authenticate to the VS using the
X.509v3 certificate. The evaluator will ensure that the authentication
attempt is successful.

 Test 2: The evaluator will generate a second certificate identical to
the first except for the public key and any values derived from the
public key. The evaluator will attempt to authenticate to the VS with
this certificate. The evaluator will ensure that the authentication
attempt is unsuccessful.

If ‘SSH public-key credential authentication‘ is selected, the evaluator shall
generate a public-private host key pair on the TOE using RSA or ECDSA, and a
second public-private key pair on a remote client. The evaluator shall
provision the VS with the client public key for authentication over SSH, and
conduct the following tests:

 Test 1: The evaluator will attempt to authenticate to the VS using a
message signed by the client private key that corresponds to
provisioned client public key. The evaluator will ensure that the
authentication attempt is successful.

 Test 2: The evaluator will generate a second client key pair and will
attempt to authenticate to the VS with the private key over SSH
without first provisioning the VS to support the new key pair. The
evaluator will ensure that the authentication attempt is unsuccessful.

FIA_UIA_EXT.1 Administrator Identification and Authentication

FIA_UIA_EXT.1.1 The TSF shall require Administrators to be successfully identified and
authenticated using one of the methods in FIA_UAU.5 before allowing any TSF-
mediated management function to be performed by that Administrator.

Application Note: Users do not have to authenticate, only Administrators need to authenticate.

Assurance Activity

7 The evaluator shall examine the TSS to determine that it describes the logon
process for each logon method (local, remote (HTTPS, SSH, etc.)) supported for
the product. This description shall contain information pertaining to the
credentials allowed/used, any protocol transactions that take place, and what
constitutes a “successful logon”. The evaluator shall examine the operational
guidance to determine that any necessary preparatory steps (e.g., establishing
credential material such as pre-shared keys, tunnels, certificates, etc.) to
logging in are described. For each supported the login method, the evaluator
shall ensure the operational guidance provides clear instructions for
successfully logging on. If configuration is necessary to ensure the services

 55

provided before login are limited, the evaluator shall determine that the
operational guidance provides sufficient instruction on limiting the allowed
services.

5.1.5 Security Management (FMT)

FMT_MSA_EXT.1 Default Data Sharing Configuration
FMT_MSA_EXT.1.1 The TSF shall by default enforce a policy prohibiting sharing of data between

Guest VMs using [selection: no mechanism, virtual networking, [assignment:

other inter-VM data sharing mechanisms]].

FMT_MSA_EXT.1.2 The TSF shall allow Administrators to specify alternative initial configuration

values to override the default values when a Guest VM is created.

Application Note: By default, the VMM must enforce a policy prohibiting sharing of data between
VMs. The default policy applies to all mechanisms for sharing data between VMs,
including inter-VM communication channels, shared physical devices, shared
virtual devices, and virtual networks. The default policy does not apply to covert
channels and architectural side-channels.

The ST author should select “no mechanism” in the unlikely event that the VS
implements no mechanisms for transferring data between Guest VMs. Otherwise,
the ST author should select “virtual networking” and all other mechanisms
through which data can be transferred between Guest VMs. This should be the
same list of mechanisms supplied in FDP_VMS_EXT.1.

Examples of non-network inter-VM sharing mechanisms are:

 User interface-based mechanisms, such as copy-paste and drag-and-drop,

 Shared virtual or physical devices,

 API-based mechanisms such as Hypercalls.

Assurance Activity

This requirement is met if FDP_VMS_EXT.1 is met.

FMT_SMO_EXT.1 Separation of Management and Operational Networks
FMT_SMO_EXT.1.1 The TSF shall support the configuration of separate management and

operational networks through [selection: physical means, logical means, trusted

channel].

Application Note: Management communications must be separate from user workloads.

Administrative communications—including communications between physical

hosts concerning load balancing, audit data, VM startup and shutdown—must

be separate from guest operational networks.

“Physical means” refers to using separate physical networks for management

and operational networks. For example, the machines in the management

 56

network are connected by separate cables plugged into separate and dedicated

physical ports on each physical host.

“Logical means” refers to using separate network cables to connect physical

hosts together using general-purpose networking ports. The management and

operational networks are kept separate within the hosts using separate

virtualized networking components.

If the ST author selects “trusted channel”, then the protocols used for network

separation must be selected in FTP_ITC_EXT.1.

Assurance Activity

The evaluator shall examine the TSS to verify that it describes how
management and operational networks may be separated.

The evaluator shall examine the operational guidance to verify that it details
how to configure the VS with separate Management and Operational
Networks.

The evaluator shall configure the management network as documented. If
separation is cryptographic or logical, then the evaluator shall capture packets
on the management network. If Guest network traffic is detected, the
requirement is not met.

5.1.6 Protection of the TSF (FPT)

FPT_DVD_EXT.1 Non-Existence of Disconnected Virtual Devices
FPT_DVD_EXT.1.1 The TSF shall limit a Guest VM’s access to virtual devices to those that are

present in the VM’s current virtual hardware configuration.

Application Note: The virtualized hardware abstraction implemented by a particular VS might

include the virtualized interfaces for many different devices. Sometimes these

devices are not present in a particular instantiation of a VM. The interface for

devices not present must not accessible by the VM.

Such interfaces include memory buffers and processor I/O ports.

The purpose of this requirement is to reduce the attack surface of the VMM by

closing unused interfaces.

Assurance Activity

The evaluator shall verify that the audit records provide all of the information
specified in FAU_GEN.1 and that this information is suitable for human
interpretation. The evaluator shall review the operational guidance for the
procedure on how to review the audit records. The assurance activity for this
requirement is performed in conjunction with the assurance activity for
FAU_GEN.1.

 57

FPT_EEM_EXT.1 Execution Environment Mitigations
FPT_EEM_EXT.1.1 The TSF shall take advantage of execution environment-based vulnerability

mitigation mechanisms supported by the Platform such as: [selection:

a. Address space randomization,

b. Memory execution protection (e.g., DEP),

c. Stack buffer overflow protection,

d. Heap corruption detection,

e. [assignment: other mechanisms],

f. No mechanisms].

Application Note: Processor manufacturers, compiler developers, and operating system vendors

have developed execution environment-based mitigations that increase the cost

to attackers by adding complexity to the task of compromising systems.

Software can often take advantage of these mechanisms by using APIs provided

by the operating system or by enabling the mechanism through compiler or

linker options.

This requirement does not mandate that these protections be enabled

throughout the Virtualization System—only that they be enabled where they

have likely impact. For example, code that receives and processes user input

should take advantage of these mechanisms.

For the selection, the ST author selects the supported mechanism(s) and uses the

assignment to include mechanisms not listed in the selection, if any.

Assurance Activity

The evaluator shall examine the TSS to ensure that it states, for each platform
listed in the ST, the execution environment-based vulnerability mitigation
mechanisms used by the TOE on that platform. The evaluator shall ensure that
the lists correspond to what is specified in FPT_EEM_EXT.1.1.

FPT_HAS_EXT.1 Hardware Assists
FPT_HAS_EXT.1.1 The VMM shall use [assignment: list of hardware-based virtualization assists] to

reduce or eliminate the need for binary translation.

FPT_HAS_EXT.1.2 The VMM shall use [assignment: list of hardware-based virtualization memory-

handling assists] to reduce or eliminate the need for shadow page tables.

Application Note: These hardware-assists help reduce the size and complexity of the VMM, and

thus, of the trusted computing base, by eliminating or reducing the need for

paravirtualization or binary translation. Paravirtualization involves modifying

guest software so that instructions that cannot be properly virtualized are never

executed on the physical processor.

For the assignment in FPT_HAS_EXT.1, the ST author lists the hardware-based

virtualization assists on all platforms included in the ST that are used by the

 58

VMM to reduce or eliminate the need for software-based binary translation.

Examples for the x86 platform are Intel VT-x and AMD-V. “None” is an

acceptable assignment for platforms that do not require virtualization assists in

order to eliminate the need for binary translation. This must be documented in

the TSS.

For the assignment in FPT_HAS_EXT.1.2, the ST author lists the set of hardware-

based virtualization memory-handling extensions for all platforms listed in the

ST that are used by the VMM to reduce or eliminate the need for shadow page

tables. Examples for the x86 platform are Intel EPT and AMD RVI. “None” is an

acceptable assignment for platforms that do not require memory-handling

assists in order to eliminate the need for shadow page tables. This must be

documented in the TSS.

Assurance Activity

The evaluator shall examine the TSS to ensure that it states, for each platform
listed in the ST, the hardware assists and memory-handling extensions used by
the TOE on that platform. The evaluator shall ensure that these lists correspond
to what is specified in the applicable FPT_HAS_EXT component.

FPT_HCL_EXT.1 Hypercall Controls
FPT_HCL_EXT.1.1 The TSF shall provide a Hypercall interface for Guest VMs to use to invoke

functionality provided by the VMM.

FPT_HCL_EXT.1.2 The TSF shall allow administrators to configure any VM’s Hypercall interface to

[selection: enable, disable] access to Hypercall functions.

FPT_HCL_EXT.1.3 The TSF shall permit exceptions to the configuration of the following Hypercall

interface functions: [assignment: list of functions that are not subject to the

configuration controls in FPT_HCL_EXT.1.2].

FPT_HCL_EXT.1.4 The TSF shall validate the parameters passed to the hypercall interface prior to

execution of the VMM functionality exposed by that interface.

Application Note: The purpose of this requirement is to help ensure the integrity of the VMM by

documenting the attack surface exposed to Guest VMs, and to ensure that

Hypercall parameters supplied by software running in the untrusted Guest VM

are properly validated prior to use by the VMM.

A Hypercall interface allows a set of VMM functions to be invoked by software

running within a VM. Hypercall interfaces are used by virtualization-aware VMs

to communicate and exchange data with the VMM. For example, a VM could

use a hypercall interface to get information about the real world, such as the

time of day or the underlying hardware of the host system. A hypercall could

also be used to transfer data between VMs through a copy-paste mechanism.

Because hypercall interfaces expose the VMM to Guest VMs, these interfaces

 59

constitute attack surface. In order to minimize attack surface, these interfaces

must be limited to the minimum needed to support VM functionality.

For the selection in FPT_HCL_EXT.1.2, the ST author selects the applicable

actions that administrators can perform to configure functions supported by the

interface.

For the assignment in FPT_HCL_EXT.1.3, the ST author lists the interface

functions that cannot be configured per FPT_HCL_EXT.1.2.

A vendor-provided test harness may reduce evaluation time.

Assurance Activity

149 The evaluator shall examine the TSS or operational guidance to ensure it
includes the documentation of the interface, including all possible functions
available via the interface. Documentation must include, for each function,
how to call the function, function parameters and legal values, configuration
settings for enabling/disabling the function, and conditions under which the
function can be disabled. The TSS must also specify those functions that
cannot be disabled.

150 The evaluator shall examine the operational guidance to ensure it contains
instructions for how to configure interface functions per FPT_HCL_EXT.1.2.

The evaluator shall perform the following tests:

1. For each configurable function that meets FPT_HCL_EXT.1.2, the
evaluator shall follow the operational guidance to enable the
function. The evaluator shall then attempt to call each function from
within the VM. If the call is allowed, then the test succeeds.

2. For each configurable function, the evaluator shall configure the TSF
to disable the function. The evaluator shall then attempt to call the
function from within the VM. If the call is blocked, then the test
succeeds.

FPT_RDM_EXT.1 Removable Devices and Media
FPT_RDM_EXT.1.1 The TSF shall implement controls for handling the transfer of virtual and physical

removable media and virtual and physical removable media devices between

information domains.

FPT_RDM_EXT.1.2 The TSF shall enforce the following rules when [assignment: virtual or physical

removable media and virtual or physical removable media devices] are switched

between information domains, then [selection:

a. the Administrator has granted explicit access for the media or device to be

connected to the receiving domain,

b. the media in a device that is being transferred is ejected prior to the

receiving domain being allowed access to the device,

c. the user of the receiving domain expressly authorizes the connection,

 60

d. the device or media that is being transferred is prevented from being

accessed by the receiving domain].

Application Note: The purpose of these requirements is to ensure that VMs are not given

inadvertent access to information from different domains because of media or

removable media devices left connected to physical machines.

Removable media is media that can be ejected from a device, such as a compact

disc, floppy disk, SD, or compact flash memory card.

Removable media devices are removable devices that include media, such as

USB flash drives and USB hard drives. Removable media devices can themselves

contain removable media (e.g., USB CDROM drives).

For purposes of this requirement, an Information Domain is:

a. A VM or collection of VMs,

b. The Virtualization System,

c. Host OS, or

d. Management Subsystem.

These requirements also apply to virtualized removable media—such as virtual

CD drives that connect to ISO images—as well as physical media—such as

CDROMs and USB flash drives. In the case of virtual CDROMs, virtual ejection of

the virtual media is sufficient.

In the first assignment, the ST author lists all removable media and removable

media devices (both virtual and real) that are supported by the TOE. The ST

author then selects actions that are appropriate for all removable media and

removable media devices (both virtual and real) that are being claimed in the

assignment.

For clarity, the ST author may iterate this requirement so that like actions are

grouped with the removable media or devices to which they apply (e.g., the first

iteration could contain all devices for which media is ejected on a switch; the

second iteration could contain all devices for which access is prevented on

switch, etc.).

Assurance Activity

The evaluator shall examine the TSS to ensure it describes the association
between the media or devices supported by the TOE and the actions that can
occur when switching information domains. The evaluator shall examine the
operational guidance to ensure it documents how an administrator or user
configures the behavior of each media or device.

The evaluator shall perform the following test for each listed media or device:

 Test 1: The evaluator shall configure two VMs that are members of
different information domains, with the media or device connected
to one of the VMs. The evaluator shall disconnect the media or device

 61

from the VM and connect it to the other VM. The evaluator shall
verify that the action performed is consistent with the action
assigned in the TSS.

FPT_TUD_EXT.1 Trusted Updates to the Virtualization System
FPT_TUD_EXT.1.1 The TSF shall provide administrators the ability to query the currently executed

version of the TOE firmware/software as well as the most recently installed

version of the TOE firmware/software.

Application Note: The version currently running (being executed) may not be the version most

recently installed. For instance, maybe the update was installed but the system

requires a reboot before this update will run. Therefore, it needs to be clear that

the query should indicate both the most recently executed version as well as the

most recently installed update.

FPT_TUD_EXT.1.2 The TSF shall provide administrators the ability to manually initiate updates to

TOE firmware/software and [selection: automatic updates, no other update

mechanism].

FPT_TUD_EXT.1.3 The TSF shall provide means to authenticate firmware/software updates to the

TOE using a [selection: digital signature mechanism, published hash] prior to

installing those updates.

Application Note: The digital signature mechanism referenced in FPT_TUD_EXT.1.3 is one of the

algorithms specified in FCS_COP.1(3).

If certificates are used by the update verification mechanism, certificates are

validated in accordance with FIA_X509_EXT.1 and should be selected in

FIA_X509_EXT.2.1. Additionally, FPT_TUD_EXT.2 must be included in the ST.

“Update” in the context of this SFR refers to the process of replacing a non-

volatile, system resident software component with another. The former is

referred to as the NV image, and the latter is the update image. While the

update image is typically newer than the NV image, this is not a requirement.

There are legitimate cases where the system owner may want to rollback a

component to an older version (e.g., when the component manufacturer

releases a faulty update, or when the system relies on an undocumented feature

no longer present in the update). Likewise, the owner may want to update with

the same version as the NV image to recover from faulty storage.

All discrete software components (e.g., applications, drivers, kernel, firmware) of

the TSF, should be digitally signed by the corresponding manufacturer and

subsequently verified by the mechanism performing the update. Since it is

recognized that components may be signed by different manufacturers, it is

essential that the update process verify that both the update and NV images

were produced by the same manufacturer (e.g., by comparing public keys) or

 62

signed by legitimate signing keys (e.g., successful verification of certificates

when using X.509 certificates).

The Digital Signature option is the preferred mechanism for authenticating

updates. The Published Hash option will be removed from a future version of this

PP.

Assurance Activity

The evaluator shall verify that the TSS describes all TSF software update
mechanisms for updating the system software. Updates to the TOE either have
a hash associated with them, or are signed by an authorized source. The
evaluator shall verify that the description includes either a digital signature or
published hash verification of the software before installation and that
installation fails if the verification fails. The evaluator shall verify that the TSS
describes the method by which the digital signature or published hash is
verified to include how the candidate updates are obtained, the processing
associated with verifying the update, and the actions that take place for both
successful and unsuccessful verification. If digital signatures are used, the
evaluator shall also ensure the definition of an authorized source is contained
in the TSS.

If the ST author indicates that a certificate-based mechanism is used for
software update digital signature verification, the evaluator shall verify that the
TSS contains a description of how the certificates are contained on the device.
The evaluator also ensures that the TSS (or administrator guidance) describes
how the certificates are installed/updated/selected, if necessary.

The evaluator shall perform the following tests:

 Test 1: The evaluator performs the version verification activity to
determine the current version of the product. The evaluator obtains a
legitimate update using procedures described in the operational
guidance and verifies that it is successfully installed on the TOE. After
the update, the evaluator performs the version verification activity
again to verify the version correctly corresponds to that of the update.

Test 2: The evaluator performs the version verification activity to
determine the current version of the product. The evaluator obtains or
produces illegitimate updates as defined below, and attempts to install
them on the TOE. The evaluator verifies that the TOE rejects all of the
illegitimate updates. The evaluator performs this test using all of the
following forms of illegitimate updates:

1) A modified version (e.g., using a hex editor) of a legitimately signed
or hashed update

2) An image that has not been signed/hashed

 63

3) An image signed with an invalid hash or invalid signature (e.g., by
using a different key as expected for creating the signature or by
manual modification of a legitimate hash/signature)

FPT_VDP_EXT.1 Virtual Device Parameters
FPT_VDP_EXT.1.1 The TSF shall provide interfaces for virtual devices implemented by the VMM as

part of the virtual hardware abstraction.

FPT_VDP_EXT.1.2 The TSF shall validate the parameters passed to the virtual device interface prior

to execution of the VMM functionality exposed by those interfaces.

Application Note: The purpose of this requirement is to ensure that the VMM is not vulnerable to

compromise through the processing of malformed data passed to the virtual

device interface from a Guest OS. The VMM cannot assume that any data

coming from a VM is well-formed—even if the virtual device interface is unique

to the Virtualization System and the data comes from a virtual device driver

supplied by the Virtualization Vendor.

FPT_VDP_EXT.1.2 is an attestation requirement. The vendor must attest that

parameters passed from a VM to a virtual device interface are not able to

degrade or disrupt the functioning of other VMs, the VMM, or the Platform. The

vendor must attest that there are no design or implementation flaws that permit

the above.

Assurance Activity

The evaluator shall examine the TSS to ensure it documents all virtual device
interfaces, including I/O ports, protocols, and data formats.

The evaluator ensures that the ST includes the following statement attesting
that parameters passed from a Guest VM to virtual device interfaces are
thoroughly validated, that all values outside the legal values specified in the
TSS are rejected, and that any data passed to the virtual device interfaces is
unable to degrade or disrupt the functioning of other VMs, the VMM, or the
Platform:

“Parameters passed from Guest VMs to virtual device interfaces are
thoroughly validated and all illegal values (as specified in the TSS) are
rejected. Additionally, parameters passed from Guest VMs to virtual device
interfaces are not able to degrade or disrupt the functioning of other VMs,
the VMM, or the Platform. Thorough testing and architectural design reviews
have been conducted to ensure the accuracy of these claims, and there are
no design or implementation flaws that bypass or defeat the security of the
virtual device interfaces.”

FPT_VIV_EXT.1 VMM Isolation from VMs
FPT_VIV_EXT.1.1 The TSF must ensure that software running in a VM is not able to degrade or

disrupt the functioning of other VMs, the VMM, or the Platform.

 64

FPT_VIV_EXT.1.2 The TSF must ensure that a Guest VM is unable to invoke platform code that

runs at a privilege level equal to or exceeding that of the VMM without

involvement of the VMM.

Application Note: This requirement is intended to ensure that software running within a Guest

VM cannot compromise other VMs, the VMM, or the platform. This

requirement is not met if Guest VM software—whatever its privilege level—

can crash the Virtualization System or the Platform, or breakout of its virtual

hardware abstraction to gain execution on the platform, within or outside of

the context of the VMM.

This requirement is not violated if software running within a VM can crash

the Guest OS and there is no way for an attacker to gain execution in the

VMM or outside of the virtualized domain.

FPT_VIV_EXT.1.2 addresses several specific mechanisms that must not be

permitted to bypass the VMM and invoke privileged code on the Platform.

At a minimum, the TSF should enforce the following:

a) On the x86 platform, a virtual System Management Interrupt (SMI)
cannot invoke platform System Management Mode (SMM).

b) An attempt to update virtual firmware or virtual BIOS cannot cause
physical platform firmware or physical platform BIOS to be modified.

c) An attempt to update virtual firmware or virtual BIOS cannot cause the
VMM to be modified.

Of the above, (a) does not apply to platforms that do not support SMM. The

rationale behind activity (c) is that a firmware update of a single VM must

not affect other VMs. So if multiple VMs share the same firmware image as

part of a common hardware abstraction, then the update of a single

machine’s BIOS must not be allowed to change the common abstraction. The

virtual hardware abstraction is part of the VMM.

This is an attestation requirement. The vendor must attest that software

running in a VM is not able to degrade or disrupt the functioning of other

VMs, the VMM, or the Platform. The vendor must attest that there are no

design or implementation flaws that permit the above.

Assurance Activity

The evaluator ensures that the ST includes the following statement
attesting that software running in a VM is not able to degrade or disrupt
the functioning of other VMs, the VMM, or the Platform:

“Software running in a VM is not able to degrade or disrupt the functioning
of other VMs, the VMM, or the Platform. There are no design or
implementation flaws that bypass or defeat VM isolation.”

 65

5.1.7 TOE Access (FTA)

FTA_TAB.1 TOE Access Banner
FTA_TAB.1.1 Before establishing an Administrator session, the TSF shall display an advisory

warning message regarding unauthorized use of the TOE.

Assurance Activity

8 The evaluator shall configure the TOE to display the advisory warning message
“TEST TEST Warning Message TEST TEST”. The evaluator shall then log out and
confirm that the advisory message is displayed before logging can occur.

5.1.8 Trusted Path/Channel (FTP)

FTP_ITC_EXT.1 Trusted Channel Communications
FTP_ITC_EXT.1.1 The TSF shall use [selection:

 TLS as conforming to [selection: FCS_TLSC_EXT.1, FCS_TLSS_EXT.1,

FCS_TLSS_EXT.2],

 TLS/HTTPS as conforming to FCS_HTTPS_EXT.1,

 IPsec as conforming to FCS_IPSEC_EXT.1,

 SSH as conforming to the Extended Package for Secure Shell]

to provide a trusted communication channel between itself, external IT entities,

and remote users that is logically distinct from other communication paths and

provides assured identification of its endpoints and protection of the

communicated data from disclosure and detection of modification of the

communicated data.

Application Note: This PP does not mandate that a product implement TLS with mutual

authentication; either FCS_TLSS_EXT.1 or FCS_TLSS_EXT.2 can be selected if the

TOE provides TLS server capabilities. However, if the product itself does include

the capability to perform TLS with mutual authentication, it is expected that it be

included within the TOE boundary.

If the ST author selects SSH, the TSF shall be validated against the Extended

Package for Secure Shell. The ST author must include the security functional

requirements for the trusted channel protocol selected in FTP_ITC_EXT.1 in the

main body of the ST.

If any trusted communication channels used by the TOE rely on digital

certificates and the certificate validation mechanism is implemented by the TOE,

FIA_X509_EXT.1 must be claimed in the ST. Likewise, FIA_X509_EXT.2 must be

claimed and should include the relevant selections for the authentication

methods used based on the communication channels that are implemented by

the TSF.

Assurance Activity

 66

The evaluator will review the TSS to determine that it lists all trusted channels
the TOE uses for remote communications, including both the external entities
and/or remote users used for the channel as well as the protocol that is used
for each.

The evaluator will configure the TOE to communicate with each external IT
entity and/or type of remote user identified in the TSS. The evaluator will
monitor network traffic while the VS performs communication with each of
these destinations. The evaluator will ensure that for each session a trusted
channel was established in conformance with the protocols identified in the
selection.

FTP_UIF_EXT.1 User Interface: I/O Focus
FTP_UIF_EXT.1.1 The TSF shall indicate to users which VM, if any, has the current input focus.

Application Note: This requirement applies to all users—whether User or Administrator.

In environments where multiple VMs run at the same time, the user must have a
way of knowing which VM user input is directed to at any given moment. This is
especially important in multiple-domain environments.

 In the case of a human user, this is usually a visual indicator. In the case of
headless VMs, the user is considered to be a program, but this program still needs
to know which VM it is sending input to; this would typically be accomplished
through programmatic means.

Assurance Activity

9 1. The evaluator shall ensure that the TSS lists the supported user input
devices.

10 2. The evaluator shall ensure that the operational guidance specifies how the
current input focus is indicated to the user.

11 3. For each supported input device, the evaluator shall demonstrate that the
input from each device listed in the TSS is directed to the VM that is indicated
to have the input focus.

FTP_UIF_EXT.2 User Interface: Identification of VM
FTP_UIF_EXT.2.1 The TSF shall support the unique identification of a VM’s output display to users.

Application Note: In environments where a user has access to more than one VM at the same time,
the user must be able to determine the identity of each VM displayed in order to
avoid inadvertent cross-domain data entry.

There must be a mechanism for associating an identifier with a VM so that an
application or program displaying the VM can identify the VM to users. This is
generally indicated visually for human users (e.g., a border around a VM’s screen
display) and programmatically for headless VMs (e.g., an API function). The
identification must be unique to the VS, but does not need to be universally
unique.

 67

Assurance Activity

The evaluator shall ensure that the TSS describes the mechanism for
identifying VMs to the user, how identities are assigned to VMs, and how
conflicts are prevented.

The evaluator shall perform the following test:

12 The evaluator shall attempt to create and start at least three Guest VMs on a
single display device where the evaluator attempts to assign two of the VMs
the same identifier. If the user interface displays different identifiers for each
VM, then the requirement is met. Likewise, the requirement is met if the
system refuses to create or start a VM when there is already a VM with the
same identifier.

5.2 TOE Security Assurance Requirements
The Security Objectives for the TOE in Section 4 were constructed to address threats identified in

Section 3.1. The Security Functional Requirements (SFRs) in Section 5.1 are a formal instantiation of the

Security Objectives. The PP identifies the Security Assurance Requirements (SARs) to frame the extent to

which the evaluator assesses the documentation applicable for the evaluation and performs

independent testing.

This section lists the set of Security Assurance Requirements (SARs) from Part 3 of the Common Criteria

for Information Technology Security Evaluation, Version 3.1, Revision 4 that are required in evaluations

against this PP. Individual assurance activities to be performed are specified in both Section 5.1 as well

as in this section.

After the ST has been approved for evaluation, the Information Technology Security Evaluation Facility

(ITSEF) will obtain the TOE, supporting environmental IT, and the administrative/user guides for the TOE.

The ITSEF is expected to perform actions mandated by the Common Evaluation Methodology (CEM) for

the ASE and ALC SARs. The ITSEF also performs the assurance activities contained within Section 5,

which are intended to be an interpretation of the other CEM assurance requirements as they apply to

the specific technology instantiated in the TOE. The assurance activities that are captured in Section 5

also provide clarification as to what the developer needs to provide to demonstrate the TOE is

compliant with the PP.

5.2.1 Class ASE: Security Target Evaluation
As per ASE activities defined in [CEM] plus the TSS assurance activities defined for any SFRs claimed by

the TOE.

5.2.2 Class ADV: Development

The information about the TOE is contained in the guidance documentation available to the end user as
well as the TOE Summary Specification (TSS) portion of the ST. The TOE developer must concur with the
description of the product that is contained in the TSS as it relates to the functional requirements. The
Assurance Activities contained in Section 5.2 should provide the ST authors with sufficient information to
determine the appropriate content for the TSS section.

 68

ADV_FSP.1 Basic Functional Specification
 Developer action elements:

ADV_FSP.1.1D The developer shall provide a functional specification.

ADV_FSP.1.2D The developer shall provide a tracing from the functional

specification to the SFRs.

Developer Note: As indicated in the introduction to this section, the functional
specification is composed of the information contained in the
AGD_OPR and AGD_PRE documentation, coupled with the
information provided in the TSS of the ST. The assurance activities
in the functional requirements point to evidence that should exist in
the documentation and TSS section; since these are directly
associated with the SFRs, the tracing in element ADV_FSP.1.2D is
implicitly already done and no additional documentation is
necessary.

 Content and presentation elements:

ADV_FSP.1.1C The functional specification shall describe the purpose and method

of use for each SFR-enforcing and SFR-supporting TSFI.

ADV_FSP.1.2C The functional specification shall identify all parameters associated

with each SFR-enforcing and SFR-supporting TSFI.

ADV_FSP.1.3C The functional specification shall provide rationale for the implicit

categorization of interfaces as SFR-non-interfering.

ADV_FSP.1.4C

The tracing shall demonstrate that the SFRs trace to TSFIs in the

functional specification.

 Evaluator action elements:

ADV_ FSP.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ADV_ FSP.1.2E The evaluator shall determine that the functional specification is an

accurate and complete instantiation of the SFRs.

Application Note: There are no specific assurance activities associated with these SARs. The

functional specification documentation is provided to support the evaluation

activities described in Section 5.2, and other activities described for AGD, ATE,

and AVA SARs. The requirements on the content of the functional specification

information is implicitly assessed by virtue of the other assurance activities being

performed; if the evaluator is unable to perform an activity because the there is

 69

insufficient interface information, then an adequate functional specification has

not been provided.

5.2.3 Class AGD: Guidance Documents

The guidance documents will be provided with the developer’s security target. Guidance must include a
description of how the authorized user verifies that the Operational Environment can fulfill its role for the
security functionality. The documentation should be in an informal style and readable by an authorized
user.

Guidance must be provided for every operational environment that the product supports as claimed in
the ST. This guidance includes

 instructions to successfully install the TOE in that environment; and

 instructions to manage the security of the TOE as a product and as a component of the larger
operational environment.

Guidance pertaining to particular security functionality is also provided; specific requirements on such
guidance are contained in the assurance activities specified with individual SFRs where applicable.

AGD_OPE.1 Operational User Guidance
 Developer action elements:

AGD_OPE.1.1D The developer shall provide operational user guidance.

Developer Note: Rather than repeat information here, the developer should review the
assurance activities for this component to ascertain the specifics of the
guidance that the evaluators will be checking for. This will provide the
necessary information for the preparation of acceptable guidance.

 Content and presentation elements:

AGD_OPE.1.1C The operational user guidance shall describe what the authorized user-

accessible functions and privileges that should be controlled in a secure

processing environment, including appropriate warnings.

AGD_OPE.1.2C The operational user guidance shall describe, for the authorized user, how to

use the available interfaces provided by the TOE in a secure manner.

AGD_OPE.1.3C The operational user guidance shall describe, for the authorized user, the

available functions and interfaces, in particular all security parameters under

the control of the user, indicating secure values as appropriate.

AGD_OPE.1.4C The operational user guidance shall, for the authorized user, clearly present

each type of security-relevant event relative to the user-accessible functions

that need to be performed, including changing the security characteristics of

entities under the control of the TSF.

AGD_OPE.1.5C The operational user guidance shall identify all possible modes of operation

of the TOE (including operation following failure or operational error), their

consequences and implications for maintaining secure operation.

 70

AGD_OPE.1.6C The operational user guidance shall, for the authorized user, describe the

security measures to be followed in order to fulfill the security objectives for

the operational environment as described in the ST.

AGD_OPE.1.7C The operational user guidance shall be clear and reasonable.

 Evaluator action elements:

AGD_OPE.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Assurance Activity

Some of the contents of the operational guidance will be verified by the
assurance activities in Section 5.2 and evaluation of the TOE according to the
CEM. The following additional information is also required.

The operational guidance shall contain instructions for configuring the
password characteristics, number of allowed authentication attempt failures,
the lockout period times for inactivity, and the notice and consent warning
that is to be provided when authenticating.

The operational guidance shall contain step-by-step instructions suitable for
use by an end-user of the Virtualization System to configure a new, out-of-
the-box system into the configuration evaluated under this Protection Profile.

The documentation shall describe the process for verifying updates to the
TOE, either by checking the hash or by verifying a digital signature. The
evaluator shall verify that this process includes the following steps:

 Instructions for querying the current version of the TOE software.

 For hashes, a description of where the hash for a given update can
be obtained. For digital signatures, instructions for obtaining the
certificate that will be used by the FCS_COP.1(2) mechanism to
ensure that a signed update has been received from the certificate
owner. This may be supplied with the product initially, or may be
obtained by some other means.

 Instructions for obtaining the update itself. This should include
instructions for making the update accessible to the TOE (e.g.,
placement in a specific directory).

 Instructions for initiating the update process, as well as discerning
whether the process was successful or unsuccessful. This includes
generation of the hash/digital signature.

AGD_PRE.1 Preparative Procedures
 Developer action elements:

AGD_PRE.1.1D The developer shall provide the TOE including its preparative procedures.

 71

Developer Note: As with the operational guidance, the developer should look to the assurance
activities to determine the required content with respect to preparative
procedures.

 Content and presentation elements:

AGD_PRE.1.1C The preparative procedures shall describe all the steps necessary for secure

acceptance of the delivered TOE in accordance with the developer’s delivery

procedures.

AGD_PRE.1.2C The preparative procedures shall describe all the steps necessary for secure

installation of the TOE and for the secure preparation of the operational

environment in accordance with the security objectives for the operational

environment as described in the ST.

 Evaluator action elements:

AGD_PRE.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

AGD_PRE.1.2E The evaluator shall apply the preparative procedures to confirm that the TOE

can be prepared securely for operation.

Assurance Activity

As indicated in the introduction above, there are significant expectations with
respect to the documentation—especially when configuring the operational
environment to support TOE functional requirements. The evaluator shall
check to ensure that the guidance provided for the TOE adequately addresses
all platforms (that is, combination of hardware and operating system) claimed
for the TOE in the ST.

The operational guidance shall contain step-by-step instructions suitable for
use by an end-user of the Virtualization System to configure a new, out-of-
the-box system into the configuration evaluated under this Protection Profile.

5.2.4 Class ALC: Life-Cycle Support

At the assurance level specified for TOEs conformant to this PP, life-cycle support is limited to an
examination of the TOE vendor’s development and configuration management process in order to provide
a baseline level of assurance that the TOE itself is developed in a secure manner and that the developer
has a well-defined process in place to deliver updates to mitigate known security flaws. This is a result of
the critical role that a developer’s practices play in contributing to the overall trustworthiness of a product.

ALC_CMC.1 Labeling of the TOE
 Developer action elements:

ALC_CMC.1.1D The developer shall provide the TOE and a reference for the TOE.

 Content and presentation elements:

 72

ALC_CMC.1.1C The TOE shall be labeled with its unique reference.

 Evaluator action elements:

ALC_CMC.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Assurance Activity

 The evaluator shall verify that the TOE has been provided with its unique
reference labeled. The evaluator shall verify that the CM documentation has
been provided and that it describes the method used to uniquely identify
each configuration item. The evaluator shall verify that the developer has
used a CM system and that this system uniquely identifies each configuration
item.

ALS_CMS.1 TOE CM Coverage
 Developer action elements:

ALC_CMS.1.1D The developer shall provide a configuration list for the TOE.

 Content and presentation elements:

ALC_CMS.1.1C The configuration list shall include the following: the TOE itself; and the

evaluation evidence required by the SARs.

ALC_CMS.1.2C The configuration list shall uniquely identify the configuration items.

 Evaluator action elements:

ALC_CMS.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

Assurance Activity

The evaluator shall verify that the developer has provided a configuration list
for the TOE that contains each item highlighted above. The evaluator shall
verify that each item in the configuration list is uniquely identified and its
developer is indicated.

ALC_TSU_EXT.1 Timely Security Updates

This component requires the TOE developer, in conjunction with any other necessary parties, to provide
information as to how the Virtualization System is updated to address security issues in a timely manner.
The documentation describes the process of providing updates to the public from the time a security flaw
is reported/discovered, to the time an update is released. This description includes the parties involved
(e.g., the developer, hardware vendors) and the steps that are performed (e.g., developer testing),
including worst case time periods, before an update is made available to the public.

 Developer action elements:

 73

ALC_TSU_EXT.1.1D The developer shall provide a description in the TSS of how timely security

updates are made to the TOE.

 Content and presentation elements:

ALC_TSU_EXT.1.1C The description shall include the process for creating and deploying security

updates for the TOE software/firmware.

ALC_TSU_EXT.1.2C
The description shall express the time window as the length of time, in days,
between public disclosure of a vulnerability and the public availability of
security updates to the TOE.

Developer Note:
The total length of time may be presented as a summation of the periods of
time that each party (e.g., TOE developer, hardware vendor) on the critical
path consumes. The time period until public availability per deployment
mechanism may differ; each is described.

ALC_TSU_EXT.1.3C
The description shall include the mechanisms publicly available for reporting
security issues pertaining to the TOE.

Developer Note:
The reporting mechanism could include web sites, email addresses, and a
means to protect the sensitive nature of the report (e.g., public keys that could
be used to encrypt the details of a proof-of-concept exploit).

 Evaluator action elements:

ALC_TSU_EXT.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

5.2.5 Class ATE: Tests

Testing is specified for functional aspects of the system as well as aspects that take advantage of design
or implementation weaknesses. The former is done through ATE_IND family, while the latter is through
the AVA_VAN family. At the assurance level specified in this PP, testing is based on advertised functionality
and interfaces with dependency on the availability of design information. One of the primary outputs of
the evaluation process is the test report as specified in the following requirements.

ATE_IND.1 Independent Testing – Sample
Testing is performed to confirm the functionality described in the TSS as well as the administrative

(including configuration and operation) documentation provided. The focus of the testing is to confirm

that the requirements specified in Section 5.1 are being met, although some additional testing is

specified for SARs in Section 5.2. The Assurance Activities identify the additional testing activities

associated with these components. The evaluator produces a test report documenting the plan for and

results of testing, as well as coverage arguments focused on the platform/TOE combinations that are

claiming conformance to this PP.

 Developer action elements:

ATE_IND.1.1D The developer shall provide the TOE for testing.

 74

 Content and presentation elements:

ATE_IND.1.1C The TOE shall be suitable for testing.

 Evaluator action elements:

ATE_IND.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

ATE_IND.1.2E The evaluator shall test a subset of the TSF to confirm that the TSF operates

as specified.

Assurance Activity

The evaluator shall prepare a test plan and report documenting the testing
aspects of the system. While it is not necessary to have one test case per test
listed in an Assurance Activity, the evaluators must document in the test plan
that each applicable testing requirement in the ST is covered.

The Test Plan identifies the platforms to be tested, and for those platforms
not included in the test plan but included in the ST, the test plan provides a
justification for not testing the platforms. This justification must address the
differences between the tested platforms and the untested platforms, and
make an argument that the differences do not affect the testing to be
performed. It is not sufficient to merely assert that the differences have no
affect; rationale must be provided. If all platforms claimed in the ST are tested,
then no rationale is necessary.

The test plan describes the composition of each platform to be tested, and
any setup that is necessary beyond what is contained in the AGD
documentation. It should be noted that the evaluators are expected to follow
the AGD documentation for installation and setup of each platform either as
part of a test or as a standard pre-test condition. This may include special test
drivers or tools. For each driver or tool, an argument (not just an assertion) is
provided that the driver or tool will not adversely affect the performance of
the functionality by the TOE and its platform. This also includes the
configuration of cryptographic engines to be used. The cryptographic
algorithms implemented by these engines are those specified by this PP and
used by the cryptographic protocols being evaluated (IPsec, TLS/HTTPS, SSH).

The test plan identifies high-level test objectives as well as the test procedures
to be followed to achieve those objectives. These procedures include
expected results. The test report (which could just be an annotated version of
the test plan) details the activities that took place when the test procedures
were executed, and includes the actual results of the tests. This shall be a
cumulative account, so if there was a test run that resulted in a failure; a fix
installed; and then a successful re-run of the test, the report would show a
“fail” and “pass” result (and the supporting details), and not just the “pass”
result.

 75

5.2.6 Class AVA: Vulnerability Assessment

For the first generation of this Protection Profile, the evaluation lab is expected to survey open sources to
learn what vulnerabilities have been discovered in these types of products. In most cases, these
vulnerabilities will require sophistication beyond that of a basic attacker. Until penetration tools are
created and uniformly distributed to the evaluation labs, evaluators will not be expected to test for these
vulnerabilities in the TOE. The labs will be expected to comment on the likelihood of these vulnerabilities
given the documentation provided by the vendor. This information will be used in the development of
penetration testing tools and for the development of future PPs.

AVA_VAN.1 Vulnerability Survey
 Developer action elements:

AVA_VAN.1.1D The developer shall provide the TOE for testing.

 Content and presentation elements:

AVA_VAN.1.1C The TOE shall be suitable for testing.

 Evaluator action elements:

AVA_VAN.1.1E The evaluator shall confirm that the information provided meets all

requirements for content and presentation of evidence.

AVA_VAN.1.2E The evaluator shall perform a search of public domain sources to

identify potential vulnerabilities in the TOE.

AVA_VAN.1.3E The evaluator shall conduct penetration testing, based on the

identified potential vulnerabilities, to determine that the TOE is

resistant to attacks performed by an attacker possessing Basic attack

potential.

Assurance Activity

As with ATE_IND the evaluator shall generate a report to document their
findings with respect to this requirement. This report could physically be part
of the overall test report mentioned in ATE_IND, or a separate document.
The evaluator performs a search of public information to determine the
vulnerabilities that have been found in virtualization in general, as well as
those that pertain to the particular TOE. The evaluator documents the
sources consulted and the vulnerabilities found in the report. For each
vulnerability found, the evaluator either provides a rationale with respect to
its non-applicability or the evaluator formulates a test (using the guidelines
provided in ATE_IND) to confirm the vulnerability, if suitable. Suitability is
determined by assessing the attack vector needed to take advantage of the
vulnerability. For example, if the vulnerability can be detected by pressing a
key combination on boot-up, a test would be suitable at the assurance level
of this PP. If exploiting the vulnerability requires expert skills and an electron
microscope, for instance, then a test would not be suitable and an
appropriate justification would be formulated.

 76

 77

Annex A. Optional Requirements

As indicated in Section 2, the baseline requirements (those that must be performed by the TOE) are
contained in the body of this PP. Additionally, there are three other types of requirements specified in
Appendix A, Appendix B, and Appendix C. The first type (in this Appendix) are requirements that can be
included in the ST, but are not required in order for a TOE to claim conformance to this PP. The second
type (in Appendix B) are requirements based on selections in the body of the PP: if certain selections are
made, then additional requirements in that appendix must be included. The third type (in Appendix C)
are components that are not required in order to conform to this PP, but will be included in the baseline
requirements in future versions of this PP, so adoption by vendors is encouraged. Note that the ST
author is responsible for ensuring that requirements that may be associated with those in Appendix A,
Appendix B, and Appendix C but are not listed (e.g., FMT-type requirements) are also included in the ST.

FAU_ARP.1 Security Audit Automatic Response
FAU_ARP.1.1 The TSF shall take [assignment: list of actions] upon detection of a potential

security violation.

Application Note: In certain cases, it may be useful for Virtualization Systems to perform

automated responses to certain security events. An example may include halting

a VM which has taken some action to violate a key system security policy. This

may be especially useful with headless endpoints when there is no human user in

the loop.

The potential security violation mentioned in FAU_ARP.1.1 refers to FAU_SAA.1.

Assurance Activity

The evaluator shall generate a potential security violation as defined in
FAU_SAA.1 and verify that each action in the assignment in FAU_ARP.1.1 is
performed by the TSF as a result. The evaluator shall perform this action for
each security violation that is defined in FAU_SAA.1.

FAU_SAA.1 Security Audit Analysis
FAU_SAA.1.1 The TSF shall be able to apply a set of rules in monitoring the audited events and

based upon these rules indicate a potential violation of the enforcement of the

SFRs.

FAU_SAA.1.2 The TSF shall enforce the following rules for monitoring audited events:

a) accumulation or combination of [assignment: subset of defined

auditable events] known to indicate a potential security violation,

b) [assignment: any other rules]

Application Note: The potential security violation described in FAU_SAA.1 can be used as a trigger

for automated responses as defined in FAU_ARP.1.

Assurance Activity

 78

The evaluator shall cause each combination of auditable events defined in
FAU_SAA.1.2 to occur, and verify that a potential security violation is
indicated by the TSF.

FPT_GVI_EXT.1 Guest VM Integrity
FPT_GVI_EXT.1.1 The TSF shall verify the integrity of Guest VMs through the following

mechanisms: [assignment: list of Guest VM integrity mechanisms].

Application Note: The primary purpose of this requirement is to identify and describe the
mechanisms used to verify the integrity of Guest VMs that have been 'imported'
in some fashion, though these mechanisms could also be applied to all Guest
VMs, depending on the mechanism used. Importation for this requirement could
include VM migration (live or otherwise), the importation of virtual disk files that
were previously exported, VMs in shared storage, etc. It is possible that a
trusted VM could have been modified during the migration or import/export
process, or VMs could have been obtained from untrusted sources in the first
place, so integrity checks on these VMs can be a prudent measure to take. These
integrity checks could be as thorough as making sure the entire VM exactly
matches a previously known VM (by hash for example), or by simply checking
certain configuration settings to ensure that the VM's configuration will not
violate the security model of the VS.

Assurance Activity

For each mechanism listed in the assignment, the evaluator shall ensure that
the TSS documents the mechanism, including how it verifies VM integrity,
which set of Guest VMs it will check (all Guest VMs, only migrated VMs, etc.),
when such checks occur (before VM startup, immediately following
importation/migration, on demand, etc.), and which actions are taken if a VM
fails the integrity check (or which range of actions are possible if the action is
configurable).

Auditable Events
Depending on the specific requirements selected by the ST author, the ST/TOE should include the

appropriate auditable events from the table below in the ST as part of the FAU_GEN.1 claim.

Table 2: Auditable Events

Requirement Auditable Events Additional Audit Record Contents

FAU_ARP.1 151 Actions taken due to potential security
violations

152 None.

FAU_SAA.1 153 Enabling and disabling of any of the
analysis mechanisms

154 Automated responses performed by the
TSF

155 None.

 79

FPT_GVI.1 156 Actions taken due to failed integrity
check.

157 None.

 80

Annex B. Selection-Based Requirements

As indicated in the introduction to this PP, the baseline requirements (those that must be performed by
the TOE or its underlying platform) are contained in the body of the PP. There are additional
requirements based on selections in the body of the PP: if certain selections are made, then additional
requirements below will need to be included.

FAU_GEN.1 Auditable Events Table (Optional)
The following additional auditable events shall be claimed by the ST author if “additional information

defined in Table 3” is selected in FAU_GEN.1:

Table 3: Auditable Events

Requirement Auditable Events Additional Audit Record Contents

FIA_UIA_EXT.1 158 Administrator session start time and end
time

159 None.

FCS_HTTPS_EXT.1 HTTPS Protocol
FCS_HTTPS_EXT.1.1 The TSF shall implement the HTTPS protocol that complies with RFC 2818.

Application Note: The ST author must provide enough detail to determine how the implementation

is complying with the standard(s) identified; this can be done either by adding

elements to this component, or by additional detail in the TSS.

FCS_HTTPS_EXT.1.2 The TSF shall implement HTTPS using TLS.

Assurance Activity

The evaluator shall check the TSS to ensure that it is clear on how HTTPS uses
TLS to establish an administrative session, focusing on any client authentication
required by the TLS protocol vs. security administrator authentication which
may be done at a different level of the processing stack. Testing for this activity
is done as part of the TLS testing; this may result in additional testing if the TLS
tests are done at the TLS protocol level.

FCS_IPSEC_EXT.1 IPsec Protocol
FCS_IPSEC_EXT.1.1 The TSF shall implement the IPsec architecture as specified in RFC 4301.

Application Note: RFC 4301 calls for an IPsec implementation to protect IP traffic through the use

of a Security Policy Database (SPD). The SPD is used to define how IP packets are

to be handled: PROTECT the packet (e.g., encrypt the packet), BYPASS the IPsec

services (e.g., no encryption), or DISCARD the packet (e.g., drop the packet). The

SPD can be implemented in various ways, including router access control lists,

firewall rulesets, a “traditional” SPD, etc. Regardless of the implementation

details, there is a notion of a “rule” that a packet is “matched” against and a

resulting action that takes place.

While there must be a means to order the rules, a general approach to ordering

is not mandated, as long as the SPD can distinguish the IP packets and apply the

 81

rules accordingly. There may be multiple SPDs (one for each network interface),

but this is not required.

Assurance Activity

The evaluator shall examine the TSS and determine that it describes what takes
place when a packet is processed by the TOE, e.g., the algorithm used to
process the packet. The TSS describes how the SPD is implemented and the
rules for processing both inbound and outbound packets in terms of the IPsec
policy. The TSS describes the rules that are available and the resulting actions
available after matching a rule. The TSS describes how those rules and actions
form the SPD in terms of the BYPASS (e.g., no encryption), DISCARD (e.g., drop
the packet), and PROTECT (e.g., encrypt the packet) actions defined in RFC
4301.

As noted in section 4.4.1 of RFC 4301, the processing of entries in the SPD is
non-trivial and the evaluator shall determine that the description in the TSS is
sufficient to determine which rules will be applied given the rule structure
implemented by the TOE. For example, if the TOE allows specification of
ranges, conditional rules, etc., the evaluator shall determine that the
description of rule processing (for both inbound and outbound packets) is
sufficient to determine the action that will be applied, especially in the case
where two different rules may apply. This description shall cover both the
initial packets (that is, no SA is established on the interface or for that particular
packet) as well as packets that are part of an established SA.

Operational Guidance

The evaluator shall examine the operational guidance to verify it instructs the
Administrator how to construct entries into the SPD that specify a rule for
processing a packet. The description includes all three cases – a rule that
ensures packets are encrypted/decrypted, dropped, and flow through the TOE
without being encrypted. The evaluator shall determine that the description
in the operational guidance is consistent with the description in the TSS, and
that the level of detail in the operational guidance is sufficient to allow the
administrator to set up the SPD in an unambiguous fashion. This includes a
discussion of how ordering of rules impacts the processing of an IP packet.

Tests

The evaluator uses the operational guidance to configure the TOE to carry out
the following tests:

 Test 1: The evaluator shall configure the SPD such that there is a rule
for dropping a packet, encrypting a packet, and allowing a packet to
flow in plaintext. The selectors used in the construction of the rule shall
be different such that the evaluator can generate a packet and send
packets to the gateway with the appropriate fields (fields that are used
by the rule - e.g., the IP addresses, TCP/UDP ports) in the packet
header. The evaluator performs both positive and negative test cases
for each type of rule (e.g., a packet that matches the rule and another
that does not match the rule). The evaluator observes via the audit

 82

trail, and packet captures that the TOE exhibited the expected
behavior: appropriate packets were dropped, allowed to flow without
modification, encrypted by the IPsec implementation.

 Test 2: The evaluator shall devise several tests that cover a variety of
scenarios for packet processing. As with Test 1, the evaluator ensures
both positive and negative test cases are constructed. These scenarios
shall exercise the range of possibilities for SPD entries and processing
modes as outlined in the TSS and operational guidance. Potential areas
to cover include rules with overlapping ranges and conflicting entries,
inbound and outbound packets, and packets that establish SAs as well
as packets that belong to established SAs. The evaluator shall verify, via
the audit trail and packet captures, for each scenario that the expected
behavior is exhibited, and is consistent with both the TSS and the
operational guidance.

FCS_IPSEC_EXT.1.2 The TSF shall have a nominal, final entry in the SPD that matches anything that

is otherwise unmatched, and discards it.

Assurance Activity

The assurance activity for this element is performed in conjunction with the
activities for FCS_IPSEC_EXT.1.1.

Tests

The evaluator uses the operational guidance to configure the TOE to carry out
the following tests:

 Test 1: The evaluator shall configure the SPD such that there is a rule
for dropping a packet, encrypting a packet, and allowing a packet to
flow in plaintext. The evaluator may use the SPD that was created for
verification of FCS_IPSEC_EXT.1.1. The evaluator shall construct a
network packet that matches the rule to allow the packet to flow in
plaintext and send that packet. The evaluator should observe that the
network packet is passed to the proper destination interface with no
modification. The evaluator shall then modify a field in the packet
header; such that it no longer matches the evaluator-created entries
(there may be a “TOE/platform created” final entry that discards
packets that do not match any previous entries). The evaluator sends
the packet, and observes that the packet was dropped.

FCS_IPSEC_EXT.1.3 The TSF shall implement transport mode and [selection: tunnel mode, no other

mode].

Assurance Activity

The evaluator checks the TSS to ensure it states that the VPN can be established
to operate in tunnel mode and/or transport mode (as identified in
FCS_IPSEC_EXT.1.3).

 83

Operational Guidance

The evaluator shall confirm that the operational guidance contains instructions
on how to configure the connection in each mode selected.

Tests

The evaluator shall perform the following test(s) based on the selections
chosen:

 Test 1 (conditional): If tunnel mode is selected, the evaluator uses the
operational guidance to configure the TOE/platform to operate in
tunnel mode and also configures a VPN peer to operate in tunnel
mode. The evaluator configures the TOE/platform and the VPN peer to
use any of the allowable cryptographic algorithms, authentication
methods, etc. to ensure an allowable SA can be negotiated. The
evaluator shall then initiate a connection from the TOE/Platform to the
VPN peer. The evaluator observes (for example, in the audit trail and
the captured packets) that a successful connection was established
using the tunnel mode.

 Test 2: The evaluator uses the operational guidance to configure the
TOE/platform to operate in transport mode and also configures a VPN
peer to operate in transport mode. The evaluator configures the
TOE/platform and the VPN peer to use any of the allowed
cryptographic algorithms, authentication methods, etc. to ensure an
allowable SA can be negotiated. The evaluator then initiates a
connection from the TOE/platform to connect to the VPN peer. The
evaluator observes (for example, in the audit trail and the captured
packets) that a successful connection was established using the
transport mode.

FCS_IPSEC_EXT.1.4 The TSF shall implement the IPsec protocol ESP as defined by RFC 4303 using

the cryptographic algorithms AES-CBC-128, AES-CBC-256 (both specified by RFC

3602) and [selection: AES-GCM-128 (specified in RFC 4106), AES-GCM-256

(specified in RFC 4106), no other algorithms] together with a Secure Hash

Algorithm (SHA)-based HMAC.

Assurance Activity

The evaluator shall examine the TSS to verify that the algorithms AES-CBC-128
and AES-CBC-256 are implemented. If the ST author has selected either AES-
GCM-128 or AES-GCM-256 in the requirement, then the evaluator verifies the
TSS describes these as well. In addition, the evaluator ensures that the SHA-
based HMAC algorithm conforms to the algorithms specified in FCS_COP.1(4)
Cryptographic Operations (for keyed-hash message authentication).

Operational Guidance

The evaluator checks the operational guidance to ensure it provides
instructions on how to configure the TOE/platform to use the algorithms, and

 84

if either AES-GCM-128 or AES-GCM-256 have been selected the guidance
instructs how to use these as well.

Tests

The evaluator shall configure the TOE/platform as indicated in the operational
guidance configuring the TOE/platform to use each of the supported
algorithms, attempt to establish a connection using ESP, and verify that the
attempt succeeds.

FCS_IPSEC_EXT.1.5 The TSF shall implement the protocol: [selection:

 IKEv1, using Main Mode for Phase 1 exchanges, as defined in RFCs 2407,

2408, 2409, RFC 4109, [selection: no other RFCs for extended sequence

numbers, RFC 4304 for extended sequence numbers], and [selection: no

other RFCs for hash functions, RFC 4868 for hash functions];

 IKEv2 as defined in RFC 5996 and [selection: with no support for NAT

traversal, with mandatory support for NAT traversal as specified in RFC

5996, section 2.23)], and [selection: no other RFCs for hash functions, RFC

4868 for hash functions].

Application Note: If the TOE implements SHA-2 hash algorithms for IKEv1 or IKEv2, the ST author

shall select RFC 4868. If the ST author selects IKEv1, FCS_IPSEC_EXT.1.15 must

also be included in the ST.

Assurance Activity

TSS

The evaluator shall examine the TSS to verify that IKEv1 and/or IKEv2 are
implemented. If IKEv1 is claimed, the evaluator shall examine the TSS to ensure
that, in the description of the IPsec protocol, it states that aggressive mode is
not used for IKEv1 Phase 1 exchanges, and that only main mode is used. It may
be that this is a configurable option.

Operational Guidance

The evaluator shall check the operational guidance to ensure it instructs the
administrator how to configure the TOE/platform to use IKEv1 and/or IKEv2 (as
selected), and uses the guidance to configure the TOE/platform to perform
NAT traversal for the following test (if selected). If IKEv1 is claimed and the use
of main mode requires configuration of the TOE/platform prior to its operation,
the evaluator shall check the operational guidance to ensure that instructions
for this configuration are contained within that guidance.

Tests

Tests are performed in conjunction with the other IPsec evaluation activities
with the exception of the activities below:

 (conditional): If the TOE claims IKEv1, the evaluator shall configure the
TOE/platform as indicated in the operational guidance (if applicable) and
attempt to establish a connection using an IKEv1 Phase 1 connection in

 85

aggressive mode. This attempt should fail. The evaluator should then show
that main mode exchanges are supported.

 (conditional): The evaluator shall configure the TOE/platform so that it will
perform NAT traversal processing as described in the TSS and RFC 5996,
section 2.23. The evaluator shall initiate an IPsec connection and
determine that the NAT is successfully traversed.

FCS_IPSEC_EXT.1.6 The TSF shall ensure the encrypted payload in the [selection: IKEv1, IKEv2]

protocol uses the cryptographic algorithms AES-CBC-128, AES-CBC-256 as

specified in RFC 3602 and [selection: AES-GCM-128, AES-GCM-256 as specified

in RFC 5282, no other algorithm].

Application Note: AES-GCM-128 and AES-GCM-256 may only be selected if IKEv2 is also selected,

as there is no RFC defining AES-GCM for IKEv1.

Assurance Activity

The evaluator shall ensure the TSS identifies the algorithms used for encrypting
the IKEv1 and/or IKEv2 payload, and that the algorithms AES-CBC-128, AES-
CBC-256 are specified, and if others are chosen in the selection of the
requirement, those are included in the TSS discussion.

Operational Guidance

The evaluator ensures that the operational guidance describes the
configuration of the mandated algorithms, as well as any additional algorithms
selected in the requirement. The guidance is then used to configure the
TOE/platform to perform the following test for each ciphersuite selected.

Tests

The evaluator shall configure the TOE/platform to use the ciphersuite under
test to encrypt the IKEv1 and/or IKEv2 payload and establish a connection with
a peer device, which is configured to only accept the payload encrypted using
the indicated ciphersuite. The evaluator will confirm the algorithm was that
used in the negotiation.

FCS_IPSEC_EXT.1.7 The TSF shall ensure that [selection:

 IKEv1 Phase 1 SA lifetimes can be configured by an Administrator based on

[selection:

o number of packets/bytes;

o length of time, where the time values can be configured within

[assignment: integer range including 24] hours

];

 IKEv2 SA lifetimes can be configured by an Administrator based on

[selection:

o number of packets/bytes;

 86

o length of time, where the time values can be configured within

[assignment: integer range including 24] hours

]

].

Application Note: The ST author chooses either the IKEv1 requirements or IKEv2 requirements (or

both, depending on the selection in FCS_IPSEC_EXT.1.5). The ST author chooses

either packet/volume-based lifetimes or time-based lifetimes. This requirement

must be accomplished by providing Security Administrator-configurable lifetimes

(with appropriate instructions in documents mandated by AGD_OPE).

Hardcoded limits are not acceptable. In general, instructions for setting the

parameters of the implementation, including lifetime of the SAs, should be

included in the operational guidance generated for AGD_OPE.

Assurance Activity

Operational Guidance

The evaluator shall verify that the values for SA lifetimes can be configured and
that the instructions for doing so are located in the operational guidance. If
time-based limits are supported, the evaluator ensures that the Administrator
is able to configure Phase 1 SA values for 24 hours. Currently there are no
values mandated for the number of packets or number of bytes, the evaluator
just ensures that this can be configured if selected in the requirement.

Tests

When testing this functionality, the evaluator needs to ensure that both sides
are configured appropriately. From the RFC “A difference between IKEv1 and
IKEv2 is that in IKEv1 SA lifetimes were negotiated. In IKEv2, each end of the SA
is responsible for enforcing its own lifetime policy on the SA and rekeying the
SA when necessary. If the two ends have different lifetime policies, the end
with the shorter lifetime will end up always being the one to request the
rekeying. If the two ends have the same lifetime policies, it is possible that both
will initiate a rekeying at the same time (which will result in redundant SAs). To
reduce the probability of this happening, the timing of rekeying requests
SHOULD be jittered.”

Each of the following tests shall be performed for each version of IKE selected
in the FCS_IPSEC_EXT.1.5 protocol selection:

 Test 1 (Conditional): The evaluator shall configure a maximum lifetime
in terms of the number of packets (or bytes) allowed following the
operational guidance. The evaluator shall configure a test peer with a
packet/byte lifetime that exceeds the lifetime of the TOE. The
evaluator shall establish an SA between the TOE and the test peer, and
determine that once the allowed number of packets (or bytes) through
this SA is exceeded, a new SA is negotiated. The evaluator shall verify
that the TOE initiates a Phase 1 negotiation.

 87

 Test 2 (Conditional): The evaluator shall configure a maximum lifetime
of 24 hours for the Phase 1 SA following the operational guidance. The
evaluator shall configure a test peer with a lifetime that exceeds the
lifetime of the TOE. The evaluator shall establish an SA between the
TOE and the test peer, maintain the Phase 1 SA for 24 hours, and
determine that once 24 hours has elapsed, a new Phase 1 SA is
negotiated. The evaluator shall verify that the TOE initiates a Phase 1
negotiation.

FCS_IPSEC_EXT.1.8 The TSF shall ensure that [selection:

 IKEv1 Phase 2 SA lifetimes can be configured by an Administrator based on

[selection:

o number of packets/bytes;

o length of time, where the time values can be configured within

[assignment: integer range including 8] hours

];

 IKEv2 Child SA lifetimes can be configured by an Administrator based on

[selection:

o number of packets/bytes;

o length of time, where the time values can be configured within

[assignment: integer range including 8] hours

]

].

Application Note: The ST author chooses either the IKEv1 requirements or IKEv2 requirements (or

both, depending on the selection in FCS_IPSEC_EXT.1.5). The ST author chooses

either packet/volume-based lifetimes or time-based lifetimes. This requirement

must be accomplished by providing Security Administrator-configurable lifetimes

(with appropriate instructions in documents mandated by AGD_OPE).

Hardcoded limits are not acceptable. In general, instructions for setting the

parameters of the implementation, including lifetime of the SAs, should be

included in the operational guidance generated for AGD_OPE.

Assurance Activity

Operational Guidance

The evaluator shall verify that the values for SA lifetimes can be configured and
that the instructions for doing so are located in the operational guidance. If
time-based limits are supported, the evaluator ensures that the Administrator
is able to configure Phase 2 SA values for 8 hours. Currently there are no values
mandated for the number of packets or number of bytes, the evaluator just
ensures that this can be configured if selected in the requirement.

Tests

 88

When testing this functionality, the evaluator needs to ensure that both sides
are configured appropriately. From the RFC “A difference between IKEv1 and
IKEv2 is that in IKEv1 SA lifetimes were negotiated. In IKEv2, each end of the SA
is responsible for enforcing its own lifetime policy on the SA and rekeying the
SA when necessary. If the two ends have different lifetime policies, the end
with the shorter lifetime will end up always being the one to request the
rekeying. If the two ends have the same lifetime policies, it is possible that both
will initiate a rekeying at the same time (which will result in redundant SAs). To
reduce the probability of this happening, the timing of rekeying requests
SHOULD be jittered.”

Each of the following tests shall be performed for each version of IKE selected
in the FCS_IPSEC_EXT.1.5 protocol selection:

 Test 1 (Conditional): The evaluator shall configure a maximum lifetime
in terms of the number of packets (or bytes) allowed following the
operational guidance. The evaluator shall configure a test peer with a
packet/byte lifetime that exceeds the lifetime of the TOE. The
evaluator shall establish an SA between the TOE and the test peer, and
determine that once the allowed number of packets (or bytes) through
this SA is exceeded, a new SA is negotiated. The evaluator shall verify
that the TOE initiates a Phase 2 negotiation.

 Test 2 (Conditional): The evaluator shall configure a maximum lifetime
of 8 hours for the Phase 2 SA following the operational guidance. The
evaluator shall configure a test peer with a lifetime that exceeds the
lifetime of the TOE. The evaluator shall establish an SA between the
TOE and the test peer, maintain the Phase 1 SA for 8 hours, and
determine that once 8 hours has elapsed, a new Phase 2 SA is
negotiated. The evaluator shall verify that the TOE initiates a Phase 2
negotiation.

FCS_IPSEC_EXT.1.9 The TSF shall generate the secret value x used in the IKE Diffie-Hellman key

exchange (“x” in g^x mod p) using the random bit generator specified in

FCS_RBG_EXT.1, and having a length of at least [assignment: (one or more)

number(s) of bits that is at least twice the security strength of the negotiated

Diffie-Hellman group] bits.

Application Note: For DH groups 19 and 20, the "x" value is the point multiplier for the generator

point G.

Since the implementation may allow different Diffie-Hellman groups to be

negotiated for use in forming the SAs, the assignment in FCS_IPSEC_EXT.1.9 may

contain multiple values. For each DH group supported, the ST author consults

Table 2 in NIST SP 800-57 “Recommendation for Key Management –Part 1:

General” to determine the security strength (“bits of security”) associated with

the DH group. Each unique value is then used to fill in the assignment. For

example, suppose the implementation supports DH group 14 (2048-bit MODP)

 89

and group 20 (ECDH using NIST curve P-384). From Table 2, the bits of security

value for group 14 is 112, and for group 20 it is 192.

Assurance Activity

The evaluator shall check to ensure that, for each DH group supported, the TSS
describes the process for generating "x" (as defined in FCS_IPSEC_EXT.1.). The
evaluator shall verify that the TSS indicates that the random number generated
that meets the requirements in this PP is used, and that the length of "x" meets
the stipulations in the requirement.

FCS_IPSEC_EXT.1.10 The TSF shall generate nonces used in [selection: IKEv1, IKEv2] exchanges of

length [selection:

 [assignment: security strength associated with the negotiated Diffie-Hellman

group];

 at least 128 bits in size and at least half the output size of the negotiated

pseudorandom function (PRF) hash].

Application Note: The ST author must select the second option for nonce lengths if IKEv2 is also

selected (as this is mandated in RFC 5996). The ST author may select either

option for IKEv1.

For the first option for nonce lengths, since the implementation may allow

different Diffie-Hellman groups to be negotiated for use in forming the SAs, the

assignment in FCS_IPSEC_EXT.1. may contain multiple values. For each DH group

supported, the ST author consults Table 2 in NIST SP 800-57 “Recommendation

for Key Management –Part 1: General” to determine the security strength (“bits

of security”) associated with the DH group. Each unique value is then used to fill

in the assignment. For example, suppose the implementation supports DH group

14 (2048-bit MODP) and group 20 (ECDH using NIST curve P-384). From Table 2,

the bits of security value for group 14 is 112, and for group 20 it is 192.

Because nonces may be exchanged before the DH group is negotiated, the nonce

used should be large enough to support all TOE-chosen proposals in the

exchange.

Assurance Activity

Tests

 (conditional) If the first selection is chosen, the evaluator shall check
to ensure that, for each DH group supported, the TSS describes the
process for generating each nonce. The evaluator shall verify that the
TSS indicates that the random number generated that meets the
requirements in this PP is used, and that the length of the nonces meet
the stipulations in the requirement.

 (conditional) If the second selection is chosen, the evaluator shall
check to ensure that, for each PRF hash supported, the TSS describes

 90

the process for generating each nonce. The evaluator shall verify that
the TSS indicates that the random number generated that meets the
requirements in this PP is used, and that the length of the nonces meet
the stipulations in the requirement.

FCS_IPSEC_EXT.1.11 The TSF shall ensure that all IKE protocols implement DH Groups 14 (2048-bit

MODP), and [selection: 19 (256-bit Random ECP), 5 (1536-bit MODP), 24 (2048-

bit MODP with 256-bit POS), 20 (384-bit Random ECP), no other DH groups].

Application Note: The selection is used to specify additional DH groups supported. This applies to

IKEv1 and IKEv2 exchanges. It should be noted that if any additional DH groups

are specified, they must comply with the requirements (in terms of the

ephemeral keys that are established) listed in FCS_CKM.1.

Assurance Activity

The evaluator shall check to ensure that the DH groups specified in the
requirement are listed as being supported in the TSS. If there is more than one
DH group supported, the evaluator checks to ensure the TSS describes how a
particular DH group is specified/negotiated with a peer.

Tests

For each supported DH group, the evaluator shall test to ensure that all
supported IKE protocols can be successfully completed using that particular DH
group.

FCS_IPSEC_EXT.1.12 The TSF shall be able to ensure by default that the strength of the symmetric

algorithm (in terms of the number of bits in the key) negotiated to protect the

[selection: IKEv1 Phase 1, IKEv2 IKE_SA] connection is greater than or equal to

the strength of the symmetric algorithm (in terms of the number of bits in the

key) negotiated to protect the [selection: IKEv1 Phase 2, IKEv2 CHILD_SA]

connection.

Application Note: The ST author chooses either or both of the IKE selections based on what is

implemented by the TOE. Obviously, the IKE version(s) chosen should be

consistent not only in this element, but with other choices for other elements in

this component. While it is acceptable for this capability to be configurable, the

default configuration in the evaluated configuration (either "out of the box" or

by configuration guidance in the AGD documentation) must enable this

functionality.

Assurance Activity

The evaluator shall check that the TSS describes the potential strengths (in
terms of the number of bits in the symmetric key) of the algorithms that are
allowed for the IKE and ESP exchanges. The TSS shall also describe the checks
that are done when negotiating IKEv1 Phase 2 and/or IKEv2 CHILD_SA suites to
ensure that the strength (in terms of the number of bits of key in the symmetric

 91

algorithm) of the negotiated algorithm is less than or equal to that of the IKE
SA this is protecting the negotiation.

Tests

The evaluator simply follows the guidance to configure the TOE/platform to
perform the following tests.

 Test 1: This test shall be performed for each version of IKE supported.
The evaluator shall successfully negotiate an IPsec connection using
each of the supported algorithms and hash functions identified in the
requirements.

 Test 2: This test shall be performed for each version of IKE supported.
The evaluator shall attempt to establish an SA for ESP that selects an
encryption algorithm with more strength than that being used for the
IKE SA (i.e., symmetric algorithm with a key size larger than that being
used for the IKE SA). Such attempts should fail.

 Test 3: This test shall be performed for each version of IKE supported.
The evaluator shall attempt to establish an IKE SA using an algorithm
that is not one of the supported algorithms and hash functions
identified in the requirements. Such an attempt should fail.

 Test 4: This test shall be performed for each version of IKE supported.
The evaluator shall attempt to establish an SA for ESP (assumes the
proper parameters where used to establish the IKE SA) that selects an
encryption algorithm that is not identified in FCS_IPSEC_EXT.1.4. Such
an attempt should fail.

FCS_IPSEC_EXT.1.13 The TSF shall ensure that all IKE protocols perform peer authentication using a

[selection: RSA, ECDSA] that use X.509v3 certificates that conform to RFC 4945

and [selection: Pre-shared Keys, no other method].

Application Note: At least one public-key-based Peer Authentication method is required in order to

conform to this PP; one or more of the public key schemes is chosen by the ST

author to reflect what is implemented. The ST author also ensures that

appropriate FCS requirements reflecting the algorithms used (and key

generation capabilities, if provided) are listed to support those methods. Note

that the TSS will elaborate on the way in which these algorithms are to be used

(for example, 2409 specifies three authentication methods using public keys;

each one supported will be described in the TSS).

Assurance Activity

The evaluator ensures that the TSS identifies RSA and/or ECDSA as being used
to perform peer authentication. The description shall be consistent with the
algorithms as specified in FCS_COP.1(2) Cryptographic Operations (for
cryptographic signature).

If pre-shared keys are chosen in the selection, the evaluator shall check to
ensure that the TSS describes how pre-shared keys are established and used in

 92

authentication of IPsec connections. The evaluator shall check that the
operational guidance describes how pre-shared keys are to be generated and
established. The description in the TSS and the operational guidance shall also
indicate how pre-shared key establishment is accomplished for TOEs that can
generate a pre-shared key as well as TOEs that simply use a pre-shared key.

Operational Guidance

The evaluator ensures the operational guidance describes how to set up the
TOE to use certificates with RSA and/or ECDSA signatures and public keys.

In order to construct the environment and configure the TOE for the following
tests, the evaluator will ensure that the operational guidance describes how to
configure the TOE to connect to a trusted CA, and ensure a valid certificate for
that CA is loaded into the TOE and marked “trusted”.

Tests

For efficiency sake, the testing that is performed may be combined with the
testing for FIA_X509_EXT.1, FIA_X509_EXT.2 (for IPsec connections), and
FCS_IPSEC_EXT.1.1. The following tests shall be repeated for each peer
authentication selected in the FCS_IPSEC_EXT.1.1 selection above:

 Test 1: The evaluator shall configure the TOE to use a private key and
associated certificate signed by a trusted CA and shall establish an
IPsec connection with the peer.

 Test 2 [conditional]: The evaluator shall generate a pre-shared key off-
TOE and use it, as indicated in the operational guidance, to establish
an IPsec connection with the peer.

FCS_IPSEC_EXT.1.14 The TSF shall support peer identifiers of the following types: [selection: IP

address, Fully Qualified Domain Name (FQDN), user FQDN, Distinguished Name

(DN)] and [selection: no other reference identifier type, [assignment: other

supported reference identifier types]].

Application Note: The TOE must support at least one of the following identifier types: IP address,

Fully Qualified Domain Name (FQDN), user FQDN, or Distinguished Name (DN).

In the future, the TOE will be required to support all of these identifier types. The

TOE is expected to support as many IP address formats (IPv4 and IPv6) as IP

versions supported by the TOE in general. The ST author may assign additional

supported identifier types in the second selection.

Assurance Activity

13 The assurance activities for this element are performed in conjunction with
the assurance activities for the next element.

FCS_IPSEC_EXT.1.15 The TSF shall not establish an SA if the presented identifier does not match the

configured reference identifier of the peer.

 93

Application Note: At this time, only the comparison between the presented identifier in the peer’s

certificate and the peer’s reference identifier is mandated by the testing below.

However, in the future, this requirement will address two aspects of the peer

certificate validation: 1) comparison of the peer’s ID payload to the peer’s

certificate which are both presented identifiers, as required by RFC 4945 and 2)

verification that the peer identified by the ID payload and the certificate is the

peer expected by the TOE (per the reference identifier). At that time, the TOE will

be required to demonstrate both aspects (i.e. that the TOE enforces that the

peer’s ID payload matches the peer’s certificate which both match configured

peer reference identifiers).

Excluding the DN identifier type (which is necessarily the Subject DN in the peer

certificate), the TOE may support the identifier in either the Common Name or

Subject Alternative Name (SAN) or both. If both are supported, the preferred

logic is to compare the reference identifier to a presented SAN, and only if the

peer’s certificate does not contain a SAN, to fall back to a comparison against

the Common Name. In the future, the TOE will be required to compare the

reference identifier to the presented identifier in the SAN only, ignoring the

Common Name.

The configuration of the peer reference identifier is addressed by FMT_SMF.1.1.

Assurance Activity

14 TSS

15 The evaluator shall ensure that the TSS describes how the TOE compares the
peer’s presented identifier to the reference identifier. This description shall
include whether the certificate presented identifier is compared to the ID
payload presented identifier, which field(s) of the certificate are used as the
presented identifier (DN, Common Name, or SAN), and, if multiple fields are
supported, the logical order comparison. If the ST author assigned an
additional identifier type, the TSS description shall also include a description
of that type and the method by which that type is compared to the peer’s
presented certificate.

16 Guidance

17 The evaluator shall ensure that the operational guidance includes the
configuration of the reference identifier(s) for the peer.

18 Tests

19 For each supported identifier type (excluding DNs), the evaluator shall repeat
the following tests:

20 Test 1: For each field of the certificate supported for comparison, the
evaluator shall configure the peer’s reference identifier on the TOE (per the
administrative guidance) to match the field in the peer’s presented certificate
and shall verify that the IKE authentication succeeds.

 94

21 Test 2: For each field of the certificate support for comparison, the evaluator
shall configure the peer’s reference identifier on the TOE (per the
administrative guidance) to not match the field in the peer’s presented
certificate and shall verify that the IKE authentication fails.

22 The following tests are conditional:

23 Test 3: (conditional) If, according to the TSS, the TOE supports both Common
Name and SAN certificate fields and uses the preferred logic outlined in the
Application Note, the tests above with the Common Name field shall be
performed using peer certificates with no SAN extension. Additionally, the
evaluator shall configure the peer’s reference identifier on the TOE to not
match the SAN in the peer’s presented certificate but to match the Common
Name in the peer’s presented certificate, and verify that the IKE
authentication fails.

24 Test 4: (conditional) If the TOE supports DN identifier types, the evaluator
shall configure the peer’s reference identifier on the TOE (per the
administrative guidance) to match the subject DN in the peer’s presented
certificate and shall verify that the IKE authentication succeeds. To
demonstrate a bit-wise comparison of the DN, the evaluator shall change a
single bit in the DN (preferably, in an Object Identifier (OID) in the DN) and
verify that the IKE authentication fails.

25 Test 5: (conditional) If the TOE supports both IPv4 and IPv6 and supports IP
address identifier types, the evaluator must repeat test 1 and 2 with both
IPv4 address identifiers and IPv6 identifiers. Additionally, the evaluator shall
verify that the TOE verifies that the IP header matches the identifiers by
setting the presented identifiers and the reference identifier with the same IP
address that differs from the actual IP address of the peer in the IP headers
and verifying that the IKE authentication fails.

26 Test 6: (conditional) If, according to the TSS, the TOE performs comparisons
between the peer’s ID payload and the peer’s certificate, the evaluator shall
repeat the following test for each combination of supported identifier types
and supported certificate fields (as above). The evaluator shall configure the
peer to present a different ID payload than the field in the peer’s presented
certificate and verify that the TOE fails to authenticate the IKE peer.

FCS_TLSC_EXT.1 TLS Client Protocol
FCS_TLSC_EXT.1.1 The TSF shall implement [selection: TLS 1.2 (RFC 5246), TLS 1.1 (RFC 4346)]

supporting the following ciphersuites:

● Mandatory Ciphersuites:

o TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 3268

● Optional Ciphersuites: [selection:

o TLS_RSA_WITH_AES_256_CBC_SHA as defined in RFC 3268

o TLS_DHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC 3268

o TLS_DHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC 3268

 95

o TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC 4492

o TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC 4492

o TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA as defined in RFC 4492

o TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA as defined in RFC 4492

o TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246

o TLS_RSA_WITH_AES_256_CBC_ SHA256 as defined in RFC 5246

o TLS_DHE_RSA_WITH_AES_128_CBC_ SHA256 as defined in RFC 5246

o TLS_DHE_RSA_WITH_AES_256_CBC_ SHA256 as defined in RFC 5246

o TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC

5289

o TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC

5289

o TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC

5289

o TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC

5289

o TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289

o TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

o no other ciphersuite].

Application Note: The ciphersuites to be tested in the evaluated configuration are limited by this
requirement. The ST author should select the optional ciphersuites that are
supported; if there are no ciphersuites supported other than the mandatory suites,
then “None” should be selected. It is necessary to limit the ciphersuites that can
be used in an evaluated configuration administratively on the server in the test
environment. The Suite B algorithms listed above (RFC 6460) are the preferred
algorithms for implementation. TLS_RSA_WITH_AES_128_CBC_SHA is required in
order to ensure compliance with RFC 5246.

These requirements will be revisited as new TLS versions are standardized by the
IETF.

If any ciphersuites are selected using ECDHE, then FCS_TLSC_EXT.1.5 is required.

In a future version of this PP TLS v1.2 will be required for all TOEs.

Assurance Activity

The evaluator shall check the description of the implementation of this
protocol in the TSS to ensure that the ciphersuites supported are specified. The
evaluator shall check the TSS to ensure that the ciphersuites specified include
those listed for this component.

Tests

Test 1: The evaluator shall establish a TLS connection using each of the
ciphersuites specified by the requirement. This connection may be established
as part of the establishment of a higher-level protocol, e.g., as part of an EAP

 96

session. It is sufficient to observe the successful negotiation of a ciphersuite to
satisfy the intent of the test; it is not necessary to examine the characteristics
of the encrypted traffic in an attempt to discern the ciphersuite being used (for
example, that the cryptographic algorithm is 128-bit AES and not 256-bit AES).

Test 2: The evaluator shall attempt to establish the connection using a server
with a server certificate that contains the Server Authentication purpose in the
extendedKeyUsage field and verify that a connection is established. The
evaluator will then verify that the client rejects an otherwise valid server
certificate that lacks the Server Authentication purpose in the
extendedKeyUsage field and a connection is not established. Ideally, the two
certificates should be identical except for the extendedKeyUsage field.

Test 3: The evaluator shall send a server certificate in the TLS connection that
the does not match the server-selected ciphersuite (for example, send a ECDSA
certificate while using the TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite or
send a RSA certificate while using one of the ECDSA ciphersuites.) The
evaluator shall verify that the TOE disconnects after receiving the server’s
Certificate handshake message.

Test 4: The evaluator shall configure the server to select the
TLS_NULL_WITH_NULL_NULL ciphersuite and verify that the client denies the
connection.

Test 5: The evaluator shall perform the following modifications to the traffic:

 Change the TLS version selected by the server in the Server Hello to a
non-supported TLS version (for example 1.3 represented by the two
bytes 03 04) and verify that the client rejects the connection.

 Modify at least one byte in the server’s nonce in the Server Hello
handshake message, and verify that the client rejects the Server Key
Exchange handshake message (if using a DHE or ECDHE ciphersuite) or
that the server denies the client’s Finished handshake message.

 Modify the server’s selected ciphersuite in the Server Hello handshake
message to be a ciphersuite not presented in the Client Hello
handshake message. The evaluator shall verify that the client rejects
the connection after receiving the Server Hello.

 Modify the signature block in the Server’s Key Exchange handshake
message, and verify that the client rejects the connection after
receiving the Server Key Exchange message.

 Modify a byte in the Server Finished handshake message, and verify
that the client sends a fatal alert upon receipt and does not send any
application data.

 Send a garbled message from the Server after the Server has issued the
ChangeCipherSpec message and verify that the client denies the
connection.

 97

FCS_TLSC_EXT.1.2 The TSF shall verify that the presented identifier matches the reference

identifier according to RFC 6125.

Application Note: The rules for verification of identity are described in Section 6 of RFC 6125. The
reference identifier is established by the user (e.g., entering a URL into a web
browser or clicking a link), by configuration (e.g., configuring the name of a mail
server or authentication server), or by an application (e.g., a parameter of an API)
depending on the application service. Based on a singular reference identifier’s
source domain and application service type (e.g., HTTP, SIP, LDAP), the client
establishes all reference identifiers which are acceptable, such as a Common
Name for the Subject Name field of the certificate and a (case-insensitive) DNS
name, URI name, and Service Name for the Subject Alternative Name field. The
client then compares this list of all acceptable reference identifiers to the
presented identifiers in the TLS server’s certificate.

The preferred method for verification is the Subject Alternative Name using DNS
names, URI names, or Service Names. Verification using the Common Name is
required for the purposes of backwards compatibility. Additionally, support for
use of IP addresses in the Subject Name or Subject Alternative name is
discouraged as against best practices but may be implemented. Finally, the client
should avoid constructing reference identifiers using wildcards. However, if the
presented identifiers include wildcards, the client must follow the best practices
regarding matching; these best practices are captured in the assurance activity.

Assurance Activity

The evaluator shall ensure that the TSS describes the client’s method of
establishing all reference identifiers from the administrator/application-
configured reference identifier, including which types of reference identifiers
are supported (e.g., Common Name, DNS Name, URI Name, Service Name, or
other application-specific Subject Alternative Names) and whether IP
addresses and wildcards are supported. The evaluator shall ensure that this
description identifies whether and the manner in which certificate pinning is
supported or used by the TOE.

Tests

The evaluator shall configure the reference identifier according to the AGD
guidance and perform the following tests during a TLS connection:

Test 1: The evaluator shall present a server certificate that does not contain an
identifier in either the Subject Alternative Name (SAN) or Common Name (CN)
that matches the reference identifier. The evaluator shall verify that the
connection fails.

Test 2: The evaluator shall present a server certificate that contains a CN that
matches the reference identifier, contains the SAN extension, but does not
contain an identifier in the SAN that matches the reference identifier. The
evaluator shall verify that the connection fails. The evaluator shall repeat this
test for each supported SAN type.

 98

Test 3: The evaluator shall present a server certificate that contains a CN that
matches the reference identifier and does not contain the SAN extension. The
evaluator shall verify that the connection succeeds.

Test 4: The evaluator shall present a server certificate that contains a CN that
does not match the reference identifier but does contain an identifier in the
SAN that matches. The evaluator shall verify that the connection succeeds.

Test 5: The evaluator shall perform the following wildcard tests with each
supported type of reference identifier:

 The evaluator shall present a server certificate containing a wildcard
that is not in the left-most label of the presented identifier (e.g.,
foo.*.example.com) and verify that the connection fails.

 The evaluator shall present a server certificate containing a wildcard in
the left-most label (e.g., *.example.com). The evaluator shall configure
the reference identifier with a single left-most label (e.g.,
foo.example.com) and verify that the connection succeeds. The
evaluator shall configure the reference identifier without a left-most
label as in the certificate (e.g., example.com) and verify that the
connection fails. The evaluator shall configure the reference identifier
with two left-most labels (e.g., bar.foo.example.come) and verify that
the connection fails.

Test 6: [conditional] If URI or Service name reference identifiers are supported,
the evaluator shall configure the DNS name and the service identifier. The
evaluator shall present a server certificate containing the correct DNS name
and service identifier in the URIName or SRVName fields of the SAN and verify
that the connection succeeds. The evaluator shall repeat this test with the
wrong service identifier (but correct DNS name) and verify that the connection
fails.

Test 7: [conditional] If pinned certificates are supported the evaluator shall
present a certificate that does not match the pinned certificate and verify that
the connection fails.

FCS_TLSC_EXT.1.3 The TSF shall establish a trusted channel only if the peer certificate is valid.

Application Note: Validity is determined by the identifier verification, certificate path, the expiration
date, and the revocation status in accordance with RFC 5280. Certificate validity
shall be tested in accordance with testing performed for FIA_X509_EXT.1.

Assurance Activity

Tests

Test 1: The evaluator shall demonstrate that using a certificate without a valid
certification path results in the function failing. Using the administrative
guidance, the evaluator shall then load a certificate or certificates needed to
validate the certificate to be used in the function, and demonstrate that the

 99

function succeeds. The evaluator then shall delete one of the certificates, and
show that the function fails.

FCS_TLSC_EXT.1.4 The TSF shall support mutual authentication using X.509v3 certificates.

Application Note: If TLS is used for FTP_ITC_EXT.1, then this component is required.

The use of X.509v3 certificates for TLS is addressed in FIA_X509_EXT.2.1. This
requirement adds that this use must include the client must be capable of
presenting a certificate to a TLS server for TLS mutual authentication.

Assurance Activity

The evaluator shall ensure that the TSS description required per
FIA_X509_EXT.2.1 includes the use of client-side certificates for TLS mutual
authentication.

Tests

Test 1: The evaluator shall perform the following modification to the traffic:

 Configure the server to require mutual authentication and then modify
a byte in a CA field in the Server’s Certificate Request handshake
message. The modified CA field shall not be the CA used to sign the
client’s certificate. The evaluator shall verify the connection is
unsuccessful.

FCS_TLSC_EXT.1.5 The TSF shall present the Supported Elliptic Curves Extension in the Client Hello

with the following NIST curves: [selection: secp256r1, secp384r1, secp521r1]

and no other curves.

Application Note: If ciphersuites with elliptic curves were selected in FCS_TLSC_EXT.1.1, this
component is required.

This requirement limits the elliptic curves allowed for authentication and key
agreement to the NIST curves from FCS_COP.1(2) and FCS_CKM.1 and FCS_CKM.2.
This extension is required for clients supporting Elliptic Curve ciphersuites.

Assurance Activity

The evaluator shall verify that TSS describes the Supported Elliptic Curves
Extension and whether the required behavior is performed by default or may
be configured.

Tests

Test 1: The evaluator shall configure the server to perform an ECDHE key
exchange in the TLS connection using a non-supported curve (for example P-
192) and shall verify that the TOE disconnects after receiving the server’s Key
Exchange handshake message.

 100

FCS_TLSS_EXT.1 TLS Server Protocol
FCS_TLSS_EXT.1.1 The TSF shall implement [selection: TLS 1.2 (RFC 5246), TLS 1.1 (RFC 4346)]

supporting the following ciphersuites:

● Mandatory Ciphersuites:

o TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 3268

● Optional Ciphersuites: [selection:

o TLS_RSA_WITH_AES_256_CBC_SHA as defined in RFC 3268

o TLS_DHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC 3268

o TLS_DHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC 3268

o TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC 4492

o TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC 4492

o TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA as defined in RFC 4492

o TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA as defined in RFC 4492

o TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246

o TLS_RSA_WITH_AES_256_CBC_ SHA256 as defined in RFC 5246

o TLS_DHE_RSA_WITH_AES_128_CBC_ SHA256 as defined in RFC 5246

o TLS_DHE_RSA_WITH_AES_256_CBC_ SHA256 as defined in RFC 5246

o TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC

5289

o TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC

5289

o TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC

5289

o TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC

5289

o TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289

o TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

o no other ciphersuite].

Application Note: The ciphersuites to be tested in the evaluated configuration are limited by this
requirement. The ST author should select the optional ciphersuites that are
supported; if there are no ciphersuites supported other than the mandatory suites,
then “None” should be selected. It is necessary to limit the ciphersuites that can
be used in an evaluated configuration administratively on the server in the test
environment. The Suite B algorithms listed above (RFC 6460) are the preferred
algorithms for implementation. TLS_RSA_WITH_AES_128_CBC_SHA is required in
order to ensure compliance with RFC 5246.

These requirements will be revisited as new TLS versions are standardized by the
IETF.

If any ciphersuites are selected using ECDHE, then FCS_TLSS_EXT.1.5 is required.

In a future version of this PP TLS v1.2 will be required for all TOEs.

 101

Assurance Activity

The evaluator shall check the description of the implementation of this
protocol in the TSS to ensure that the ciphersuites supported are specified. The
evaluator shall check the TSS to ensure that the ciphersuites specified are
identical to those listed for this component.

Operational Guidance

The evaluator shall also check the operational guidance to ensure that it
contains instructions on configuring the TOE so that TLS conforms to the
description in the TSS (for instance, the set of ciphersuites advertised by the
TOE may have to be restricted to meet the requirements).

Tests

Test 1: The evaluator shall establish a TLS connection using each of the
ciphersuites specified by the requirement. This connection may be established
as part of the establishment of a higher-level protocol, e.g., as part of an EAP
session. It is sufficient to observe the successful negotiation of a ciphersuite to
satisfy the intent of the test; it is not necessary to examine the characteristics
of the encrypted traffic in an attempt to discern the ciphersuite being used (for
example, that the cryptographic algorithm is 128-bit AES and not 256-bit AES).

Test 2: The evaluator shall send a Client Hello to the server with a list of
ciphersuites that does not contain any of the ciphersuites in the server’s ST and
verify that the server denies the connection. Additionally, the evaluator shall
send a Client Hello to the server containing only the
TLS_NULL_WITH_NULL_NULL ciphersuite and verify that the server denies the
connection.

Test 3: The evaluator shall use a client to send a key exchange message in the
TLS connection that the does not match the server-selected ciphersuite (for
example, send an ECDHE key exchange while using the
TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite or send a RSA key exchange
while using one of the ECDSA ciphersuites.) The evaluator shall verify that the
TOE disconnects after the receiving the key exchange message.

Test 4: The evaluator shall perform the following modifications to the traffic:

 Modify at a byte in the client’s nonce in the Client Hello handshake
message, and verify that the server rejects the client’s Certificate Verify
handshake message (if using mutual authentication) or that the server
denies the client’s Finished handshake message.

 Modify the signature block in the Client’s Key Exchange handshake
message, and verify that the server rejects the client’s Certificate Verify
handshake message (if using mutual authentication) or that the server
denies the client’s Finished handshake message.

 Modify a byte in the Client Finished handshake message, and verify
that the server rejects the connection and does not send any
application data.

 102

 After generating a fatal alert by sending a Finished message from the
client before the client sends a ChangeCipherSpec message, send a
Client Hello with the session identifier from the previous test, and
verify that the server denies the connection.

 Send a garbled message from the client after the client has issued the
ChangeCipherSpec message and verify that the Server denies the
connection.

FCS_TLSS_EXT.1.2 The TSF shall deny connections from clients requesting SSL 1.0, SSL 2.0, SSL 3.0,

TLS 1.0, and [selection: TLS 1.1, none].

Application Note: All SSL versions and TLS v1.0 shall be denied. Any TLS versions not selected in
FCS_TLSS_EXT.1.1 should be selected here.

Assurance Activity

The evaluator shall verify that the TSS contains a description of the denial of
old SSL and TLS versions.

Operational Guidance

The evaluator shall verify that any configuration necessary to meet the
requirement are contained in the AGD guidance.

Tests

The evaluator shall send a Client Hello requesting a connection with version
SSL 1.0 and verify that the server denies the connection. The evaluator shall
repeat this test with SSL 2.0, SSL 3.0, TLS 1.0, and any selected TLS versions.

FCS_TLSS_EXT.1.3 The TSF shall generate key agreement parameters using RSA with key size 2048

bits and [selection: 3072 bits, 4096 bits, no other size] and [selection: over NIST

curves [selection: secp256r1, secp384r1] and no other curves; Diffie-Hellman

parameters of size 2048 bits and [selection: 3072 bits, no other size]; no other].

Application Note: If the ST lists a DHE or ECDHE ciphersuite in FCS_TLSS_EXT.1.1, the ST must include
the Diffie-Hellman or NIST curves selection in the requirement. FMT_SMF.1
requires the configuration of the key agreement parameters in order to establish
the security strength of the TLS connection.

Assurance Activity

The evaluator shall verify that the TSS describes the key agreement parameters
of the server key exchange message.

Operational Guidance

The evaluator shall verify that any configuration necessary to meet the
requirement is contained in the AGD guidance.

Tests

If the second selection includes any choice other than “no other”, the evaluator
shall attempt a connection using an ECDHE ciphersuite and a configured curve

 103

and, using a packet analyzer, verify that the key agreement parameters in the
Key Exchange message are the ones configured. (Determining that the size
matches the expected size for the configured curve is sufficient.) The evaluator
shall repeat this test for each supported NIST Elliptic Curve and each supported
Diffie-Hellman key size.

FCS_TLSS_EXT.2 TLS Server Protocol with Mutual Authentication
FCS_TLSS_EXT.2.1 The TSF shall implement [selection: TLS 1.2 (RFC 5246), TLS 1.1 (RFC 4346)]

supporting the following ciphersuites:

● Mandatory Ciphersuites:

o TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 3268

● Optional Ciphersuites: [selection:

o TLS_RSA_WITH_AES_256_CBC_SHA as defined in RFC 3268

o TLS_DHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC 3268

o TLS_DHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC 3268

o TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC 4492

o TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC 4492

o TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA as defined in RFC 4492

o TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA as defined in RFC 4492

o TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246

o TLS_RSA_WITH_AES_256_CBC_ SHA256 as defined in RFC 5246

o TLS_DHE_RSA_WITH_AES_128_CBC_ SHA256 as defined in RFC 5246

o TLS_DHE_RSA_WITH_AES_256_CBC_ SHA256 as defined in RFC 5246

o TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC

5289

o TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC

5289

o TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC

5289

o TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC

5289

o TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289

o TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

o no other ciphersuite].

Application Note: The ciphersuites to be tested in the evaluated configuration are limited by this
requirement. The ST author should select the optional ciphersuites that are
supported; if there are no ciphersuites supported other than the mandatory suites,
then “None” should be selected. It is necessary to limit the ciphersuites that can
be used in an evaluated configuration administratively on the server in the test
environment. The Suite B algorithms listed above (RFC 6460) are the preferred
algorithms for implementation. TLS_RSA_WITH_AES_128_CBC_SHA is required in
order to ensure compliance with RFC 5246.

 104

These requirements will be revisited as new TLS versions are standardized by the
IETF.

If any ciphersuites are selected using ECDHE, then FCS_TLSS_EXT.1.5 is required.

In a future version of this PP TLS v1.2 will be required for all TOEs.

Assurance Activity

The evaluator shall check the description of the implementation of this
protocol in the TSS to ensure that the ciphersuites supported are specified. The
evaluator shall check the TSS to ensure that the ciphersuites specified are
identical to those listed for this component.

Operational Guidance

The evaluator shall also check the operational guidance to ensure that it
contains instructions on configuring the TOE so that TLS conforms to the
description in the TSS (for instance, the set of ciphersuites advertised by the
TOE may have to be restricted to meet the requirements).

Tests

Test 1: The evaluator shall establish a TLS connection using each of the
ciphersuites specified by the requirement. This connection may be established
as part of the establishment of a higher-level protocol, e.g., as part of an EAP
session. It is sufficient to observe the successful negotiation of a ciphersuite to
satisfy the intent of the test; it is not necessary to examine the characteristics
of the encrypted traffic in an attempt to discern the ciphersuite being used (for
example, that the cryptographic algorithm is 128-bit AES and not 256-bit AES).

Test 2: The evaluator shall send a Client Hello to the server with a list of
ciphersuites that does not contain any of the ciphersuites in the server’s ST and
verify that the server denies the connection. Additionally, the evaluator shall
send a Client Hello to the server containing only the
TLS_NULL_WITH_NULL_NULL ciphersuite and verify that the server denies the
connection.

Test 3: The evaluator shall use a client to send a key exchange message in the
TLS connection that the does not match the server-selected ciphersuite (for
example, send an ECDHE key exchange while using the
TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite or send a RSA key exchange
while using one of the ECDSA ciphersuites.) The evaluator shall verify that the
TOE disconnects after the receiving the key exchange message.

Test 4: The evaluator shall perform the following modifications to the traffic:

 Modify at a byte in the client’s nonce in the Client Hello handshake
message, and verify that the server rejects the client’s Certificate Verify
handshake message (if using mutual authentication) or that the server
denies the client’s Finished handshake message.

 Modify the signature block in the Client’s Key Exchange handshake
message, and verify that the server rejects the client’s Certificate Verify

 105

handshake message (if using mutual authentication) or that the server
denies the client’s Finished handshake message.

 Modify a byte in the Client Finished handshake message, and verify
that the server rejects the connection and does not send any
application data.

 After generating a fatal alert by sending a Finished message from the
client before the client sends a ChangeCipherSpec message, send a
Client Hello with the session identifier from the previous test, and
verify that the server denies the connection.

 Send a garbled message from the client after the client has issued the
ChangeCipherSpec message and verify that the Server denies the
connection.

FCS_TLSS_EXT.2.2 The TSF shall deny connections from clients requesting SSL 1.0, SSL 2.0, SSL 3.0,

TLS 1.0, and [selection: TLS 1.1, none].

Application Note: All SSL versions and TLS v1.0 shall be denied. Any TLS versions not selected in
FCS_TLSS_EXT.1.1 should be selected here.

Assurance Activity

The evaluator shall verify that the TSS contains a description of the denial of
old SSL and TLS versions.

Operational Guidance

The evaluator shall verify that any configuration necessary to meet the
requirement are contained in the AGD guidance.

Tests

The evaluator shall send a Client Hello requesting a connection with version
SSL 1.0 and verify that the server denies the connection. The evaluator shall
repeat this test with SSL 2.0, SSL 3.0, TLS 1.0, and any selected TLS versions.

FCS_TLSS_EXT.2.3 The TSF shall generate key agreement parameters using RSA with key size 2048

bits and [selection: 3072 bits, 4096 bits, no other size] and [selection: over NIST

curves [selection: secp256r1, secp384r1] and no other curves; Diffie-Hellman

parameters of size 2048 bits and [selection: 3072 bits, no other size]; no other].

Application Note: If the ST lists a DHE or ECDHE ciphersuite in FCS_TLSS_EXT.1.1, the ST must include
the Diffie-Hellman or NIST curves selection in the requirement. FMT_SMF.1
requires the configuration of the key agreement parameters in order to establish
the security strength of the TLS connection.

Assurance Activity

The evaluator shall verify that the TSS describes the key agreement parameters
of the server key exchange message.

 106

Operational Guidance

The evaluator shall verify that any configuration necessary to meet the
requirement is contained in the AGD guidance.

Tests

If the second selection includes any choice other than “no other”, the evaluator
shall attempt a connection using an ECDHE ciphersuite and a configured curve
and, using a packet analyzer, verify that the key agreement parameters in the
Key Exchange message are the ones configured. (Determining that the size
matches the expected size for the configured curve is sufficient.) The evaluator
shall repeat this test for each supported NIST Elliptic Curve and each supported
Diffie-Hellman key size.

FCS_TLSS_EXT.2.4 The TSF shall support mutual authentication of TLS clients using X.509v3

certificates.

Assurance Activity

The evaluator shall ensure that the TSS description required per
FIA_X509_EXT.2.1 includes the use of client-side certificates for TLS mutual
authentication.

Operational Guidance

The evaluator shall verify that the AGD guidance required per
FIA_X509_EXT.2.1 includes instructions for configuring the client-side
certificates for TLS mutual authentication.

Tests

Test 1: The evaluator shall configure the server to send a certificate request to
the client and shall attempt a connection without sending a certificate from
the client. The evaluator shall verify that the connection is denied.

Test 2: The evaluator shall configure the server to send a certificate request to
the client without the supported_signature_algorithm used by the client’s
certificate. The evaluator shall attempt a connection using the client certificate
and verify that the connection is denied.

Test 3: The evaluator shall demonstrate that using a certificate without a valid
certification path results in the function failing. Using the administrative
guidance, the evaluator shall then load a certificate or certificates needed to
validate the certificate to be used in the function, and demonstrate that the
function succeeds. The evaluator then shall delete one of the certificates, and
show that the function fails.

Test 4: The evaluator shall configure the client to send a certificate that does
not chain to one of the Certificate Authorities (either a Root or Intermediate
CA) in the server’s Certificate Request message. The evaluator shall verify that
the attempted connection is denied.

 107

Test 5: The evaluator shall configure the client to send a certificate with the
Client Authentication purpose in the extendedKeyUsage field and verify that
the server accepts the attempted connection. The evaluator shall repeat this
test without the Client Authentication purpose and shall verify that the server
denies the connection. Ideally, the two certificates should be identical except
for the Client Authentication purpose.

Test 6: The evaluator shall perform the following modifications to the traffic:

 Configure the server to require mutual authentication and then modify
a byte in the client’s certificate. The evaluator shall verify that the
server rejects the connection.

 Configure the server to require mutual authentication and then modify
a byte in the client’s Certificate Verify handshake message. The
evaluator shall verify that the server rejects the connection.

FCS_TLSS_EXT.2.5 The TSF shall not establish a trusted channel if the peer certificate is invalid.

Application Note: The use of X.509v3 certificates for TLS is addressed in FIA_X509_EXT.2.1. This
requirement adds that this use must include support for client-side certificates for
TLS mutual authentication.

Validity is determined by the certificate path, the expiration date, and the
revocation status in accordance with RFC 5280. Certificate validity shall be tested
in accordance with testing performed for FIA_X509_EXT.1.

Assurance Activity

The evaluator shall ensure that the TSS description required per
FIA_X509_EXT.2.1 includes the use of client-side certificates for TLS mutual
authentication.

Operational Guidance

The evaluator shall verify that the AGD guidance required per
FIA_X509_EXT.2.1 includes instructions for configuring the client-side
certificates for TLS mutual authentication.

Tests

Test 1: The evaluator shall configure the server to send a certificate request to
the client and shall attempt a connection without sending a certificate from
the client. The evaluator shall verify that the connection is denied.

Test 2: The evaluator shall configure the server to send a certificate request to
the client without the supported_signature_algorithm used by the client’s
certificate. The evaluator shall attempt a connection using the client certificate
and verify that the connection is denied.

Test 3: The evaluator shall demonstrate that using a certificate without a valid
certification path results in the function failing. Using the administrative
guidance, the evaluator shall then load a certificate or certificates needed to
validate the certificate to be used in the function, and demonstrate that the

 108

function succeeds. The evaluator then shall delete one of the certificates, and
show that the function fails.

Test 4: The evaluator shall configure the client to send a certificate that does
not chain to one of the Certificate Authorities (either a Root or Intermediate
CA) in the server’s Certificate Request message. The evaluator shall verify that
the attempted connection is denied.

Test 5: The evaluator shall configure the client to send a certificate with the
Client Authentication purpose in the extendedKeyUsage field and verify that
the server accepts the attempted connection. The evaluator shall repeat this
test without the Client Authentication purpose and shall verify that the server
denies the connection. Ideally, the two certificates should be identical except
for the Client Authentication purpose.

Test 6: The evaluator shall perform the following modifications to the traffic:

 Configure the server to require mutual authentication and then modify
a byte in the client’s certificate. The evaluator shall verify that the
server rejects the connection.

 Configure the server to require mutual authentication and then modify
a byte in the client’s Certificate Verify handshake message. The
evaluator shall verify that the server rejects the connection.

FCS_TLSS_EXT.2.6 The TSF shall not establish a trusted channel if the distinguished name (DN) or

Subject Alternative Name (SAN) contained in a certificate does not match the

expected identifier for the peer.

Application Note: The peer identifier may be in the Subject field or the Subject Alternative Name
extension of the certificate. The expected identifier may either be configured, may
be compared to the Domain Name, IP address, username, or email address used
by the peer, or may be passed to a directory server for comparison. Matching
should be performed by a bit-wise comparison.

Assurance Activity

The evaluator shall verify that the TSS describes how the DN or SAN in the
certificate is compared to the expected identifier.

Operational Guidance

If the TOE implements mutual authentication such that the DN is not compared
automatically to the Domain Name or IP address, username, or email address,
then the evaluator shall ensure that the AGD guidance includes configuration
of the expected DN or the directory server for the connection.

Tests

The evaluator shall send a client certificate with an identifier that does not
match an expected identifier and verify that the server denies the connection.

 109

FIA_PMG_EXT.1 Password Management
FIA_PMG_EXT.1.1 The TSF shall provide the following password management capabilities for

administrative passwords:

a. Passwords shall be able to be composed of any combination of upper and
lower case characters, digits, and the following special characters:
[selection: “!”, “@”, “#”, “$”, “%”, “^”, “&”, “*”, “(“, “)”, [assignment: other
characters]];

b. Minimum password length shall be configurable;

c. Passwords of at least 15 characters in length shall be supported.

Application Note: The ST author selects the special characters that are supported by the TOE; they
may optionally list additional special characters supported using the assignment.
“Administrative passwords” refers to passwords used by administrators to gain
access to the Management Subsystem.

Assurance Activity

The evaluator shall examine the operational guidelines to determine that it
provides guidance to security administrators in the composition of strong
passwords, and that it provides instructions on setting the minimum password
length. The evaluator shall also perform the following tests. Note that one or
more of these tests may be performed with a single test case.

 Test 1: The evaluator shall compose passwords that either meet the

requirements, or fail to meet the requirements, in some way. For

each password, the evaluator shall verify that the TOE supports the

password. While the evaluator is not required (nor is it feasible) to

test all possible combinations of passwords, the evaluator shall

ensure that all characters, rule characteristics, and a minimum length

listed in the requirement are supported, and justify the subset of

those characters chosen for testing.

FIA_X509_EXT.1 X.509 Certificate Validation
FIA_X509_EXT.1.1 The TSF shall validate certificates in accordance with the following rules:

 RFC 5280 certificate validation and certificate path validation.

 The certificate path must terminate with a trusted certificate.

 The TSF shall validate a certificate path by ensuring the presence of the
basicConstraints extension and that the CA flag is set to TRUE for all CA
certificates.

 The TSF shall validate the revocation status of the certificate using
[selection: the Online Certificate Status Protocol (OCSP) as specified in RFC
2560, a Certificate Revocation List (CRL) as specified in RFC 5759].

 The TSF shall validate the extendedKeyUsage field according to the
following rules:

 110

o Certificates used for trusted updates and executable code integrity
verification shall have the Code Signing purpose (id-kp 3 with OID
1.3.6.1.5.5.7.3.3) in the extendedKeyUsage field.

o Server certificates presented for TLS shall have the Server
Authentication purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in the
extendedKeyUsage field.

o Client certificates presented for TLS shall have the Client Authentication
purpose (id-kp 2 with OID 1.3.6.1.5.5.7.3.2) in the extendedKeyUsage
field.

o OCSP certificates presented for OCSP responses shall have the OCSP
Signing purpose (id-kp 9 with OID 1.3.6.1.5.5.7.3.9) in the
extendedKeyUsage field.

Application Note: This SFR must be included in the ST if the selection for FPT_TUD_EXT.1.3 is

“digital signature mechanism,” or if the selection for FTP_ITC_EXT.1 includes

“IPsec,” “TLS,” or “TLS/HTTPS.”

FIA_X509_EXT.1.1 lists the rules for validating certificates. The ST author shall

select whether revocation status is verified using OCSP or CRLs. FIA_X509_EXT.2

requires that certificates are used for IPsec; this use requires that the

extendedKeyUsage rules are verified. Certificates may optionally be used for

SSH, TLS and HTTPS and, if implemented, must be validated to contain the

corresponding extendedKeyUsage.

Regardless of the selection of TSF or TOE platform, the validation is expected to

end in a trusted root CA certificate in a root store managed by the platform.

FIA_X509_EXT.1.2 The TSF shall only treat a certificate as a CA certificate if the basicConstraints

extension is present and the CA flag is set to TRUE.

Application Note: This requirement applies to certificates that are used and processed by the TSF

and restricts the certificates that may be added as trusted CA certificates.

Assurance Activity

The evaluator shall ensure the TSS describes where the check of validity of the
certificates takes place. The evaluator ensures the TSS also provides a
description of the certificate path validation algorithm.

The evaluator shall examine the TSS to confirm that it describes the behavior
of the TOE when a connection cannot be established during the validity check
of a certificate used in establishing a trusted channel. If the requirement that
the administrator is able to specify the default action, then the evaluator shall
ensure that the operational guidance contains instructions on how this
configuration action is performed.

The tests described must be performed in conjunction with the other
Certificate Services assurance activities, including the use cases in
FIA_X509_EXT.2.1. The tests for the extendedKeyUsage rules are performed in
conjunction with the uses that require those rules.

 111

 Test 1: The evaluator shall demonstrate that validating a certificate
without a valid certification path results in the function (application
validation, trusted channel setup, or trusted software update) failing.
The evaluator shall then load a certificate or certificates needed to
validate the certificate to be used in the function, and demonstrate
that the function succeeds. The evaluator then shall delete one of the
certificates, and show that the function fails.

 Test 2: The evaluator shall demonstrate that validating an expired
certificate results in the function failing.

 Test 3: The evaluator shall test that the TOE can properly handle
revoked certificates –conditional on whether CRL or OCSP is selected;
if both are selected, and then a test is performed for each method.
The evaluator has to only test one up in the trust chain (future
revisions may require to ensure the validation is done up the entire
chain). The evaluator shall ensure that a valid certificate is used, and
that the validation function succeeds. The evaluator then attempts
the test with a certificate that will be revoked (for each method
chosen in the selection) to ensure when the certificate is no longer
valid that the validation function fails.

 Test 4: The evaluator shall construct a certificate path, such that the
certificate of the CA issuing the TOE’s certificate does not contain the
basicConstraints extension. The validation of the certificate path fails.

 Test 5: The evaluator shall construct a certificate path, such that the
certificate of the CA issuing the TOE’s certificate has the cA flag in the
basicConstraints extension not set. The validation of the certificate
path fails.

 Test 6: The evaluator shall construct a certificate path, such that the
certificate of the CA issuing the TOE’s certificate has the cA flag in the
basicConstraints extension set to TRUE. The validation of the
certificate path succeeds.

FIA_X509_EXT.2 X.509 Certificate Authentication
FIA_X509_EXT.2.1 The TSF shall use X.509v3 certificates as defined by RFC 5280 to support

authentication for [selection: IPsec, TLS, HTTPS, SSH], and [selection: code

signing for system software updates, code signing for integrity verification,

[assignment: other uses], no additional uses].

Application Note: This SFR must be included in the ST if the selection for FPT_TUD_EXT.1.3 is

“digital signature mechanism,” or if the selection for FTP_ITC_EXT.1 includes

“IPsec,” “TLS,” or “TLS/HTTPS.”

FIA_X509_EXT.2.2 When the TSF cannot establish a connection to determine the validity of a

certificate, the TSF shall [selection: allow the administrator to choose whether

to accept the certificate in these cases, accept the certificate, not accept the

certificate].

 112

Application Note: Often a connection must be established to check the revocation status of a

certificate - either to download a CRL or to perform a lookup using OCSP. The

selection is used to describe the behavior in the event that such a connection

cannot be established (for example, due to a network error). If the TOE has

determined the certificate valid according to all other rules in FIA_X509_EXT.1,

the behavior indicated in the selection shall determine the validity. The TOE must

not accept the certificate if it fails any of the other validation rules in

FIA_X509_EXT.1. If the administrator-configured option is selected by the ST

Author, the ST Author must ensure that this is also defined as a management

function that is provided by the TOE.

Assurance Activity

The evaluator shall check the TSS to ensure that it describes how the TOE
chooses which certificates to use, and any necessary instructions in the
administrative guidance for configuring the operating environment so that the
TOE can use the certificates.

The evaluator shall examine the TSS to confirm that it describes the behavior
of the TOE when a connection cannot be established during the validity check
of a certificate used in establishing a trusted channel. If the requirement that
the administrator is able to specify the default action, then the evaluator shall
ensure that the operational guidance contains instructions on how this
configuration action is performed.

The evaluator shall perform Test 1 for each function listed in FIA_X509_EXT.2.1
that requires the use of certificates:

 Test 1: The evaluator shall demonstrate that using a certificate
without a valid certification path results in the function failing. Using
the administrative guidance, the evaluator shall then load a
certificate or certificates needed to validate the certificate to be used
in the function, and demonstrate that the function succeeds. The
evaluator then shall delete one of the certificates, and show that the
function fails.

 Test 2: The evaluator shall demonstrate that using a valid certificate
that requires certificate validation checking to be performed in at
least some part by communicating with a non-TOE IT entity. The
evaluator shall then manipulate the environment so that the TOE is
unable to verify the validity of the certificate, and observe that the
action selected in FIA_X509_EXT.2.2 is performed. If the selected
action is administrator-configurable, then the evaluator shall follow
the operational guidance to determine that all supported
administrator-configurable options behave in their documented
manner.

FPT_TUD_EXT.2 Trusted Update Based on Certificates
FPT_TUD_EXT.2.1 The TSF shall not install an update if the code signing certificate is deemed invalid.

 113

Application Note: Certificates may optionally be used for code signing of system software updates

(FPT_TUD_EXT.1.3). This element must be included in the ST if certificates are

used for validating updates. If “code signing for system software updates” is

selected in FIA_X509_EXT.2.1, FPT_TUD_EXT.2 must be included in the ST.

Validity is determined by the certificate path, the expiration date, and the

revocation status in accordance with FIA_X509_EXT.1.

Assurance Activity

The assurance activity for this requirement is performed in conjunction with
the assurance activity for FIA_X509_EXT.1 and FIA_X509_EXT.2.

FTP_TRP.1 Trusted Path
FTP_TRP.1.1 The TSF shall use a trusted channel as specified in FTP_ITC_EXT.1 to provide a

trusted communication path between itself and [remote] administrators that is

logically distinct from other communication paths and provides assured

identification of its end points and protection of the communicated data from

[modification, disclosure].

FTP_TRP.1.2 The TSF shall permit remote administrators to initiate communication via the

trusted path.

FTP_TRP.1.3 The TSF shall require the use of the trusted path for [all remote administration

actions].

Application Note: Protocols used to implement the remote administration trusted channel must be

selected in FTP_ITC_EXT.1.

This requirement ensures that authorized remote administrators initiate all

communication with the TOE via a trusted path, and that all communications

with the TOE by remote administrators is performed over this path. The data

passed in this trusted communication channel are encrypted as defined the

protocol chosen in the first selection. The ST author chooses the mechanism or

mechanisms supported by the TOE, and then ensures that the detailed

requirements in Annex B corresponding to their selection are copied to the ST if

not already present.

Assurance Activity

The evaluator shall examine the TSS to determine that the methods of remote
TOE administration are indicated, along with how those communications are
protected. The evaluator shall also confirm that all protocols listed in the TSS
in support of TOE administration are consistent with those specified in the
requirement, and are included in the requirements in the ST. The evaluator
shall confirm that the operational guidance contains instructions for
establishing the remote administrative sessions for each supported method.
The evaluator shall also perform the following tests:

 114

 Test 1: The evaluators shall ensure that communications using each
specified (in the operational guidance) remote administration
method is tested during the course of the evaluation, setting up the
connections as described in the operational guidance and ensuring
that communication is successful.

 Test 2: For each method of remote administration supported, the
evaluator shall follow the operational guidance to ensure that there is
no available interface that can be used by a remote user to establish
remote administrative sessions without invoking the trusted path.

 Test 3: The evaluator shall ensure, for each method of remote
administration, the channel data is not sent in plaintext.

 Test 4: The evaluator shall ensure, for each method of remote
administration, modification of the channel data is detected by the
TOE.

Further assurance activities are associated with the specific protocols.

Auditable Events
Depending on the specific requirements selected by the ST author, the ST/TOE should include the

appropriate auditable events from the table below in the ST as part of the FAU_GEN.1 claim.

Table 4: Auditable Events

Requirement Auditable Events Additional Audit Record Contents

FCS_HTTPS_EXT.1 160 Failure to establish a HTTPS Session.
Establishment/Termination of a HTTPS
session.

161 Reason for failure.
Non-TOE endpoint of connection (IP
address) for both successes and
failures.

FCS_IPSEC_EXT.1 162 Failure to establish an IPsec SA.
Establishment/Termination of an IPsec
SA.

163 Reason for failure.
Non-TOE endpoint of connection (IP
address) for both successes and
failures.

FCS_TLSC_EXT.1 164 Failure to establish a TLS Session.
Establishment/Termination of a TLS
session.

165 Reason for failure.
Non-TOE endpoint of connection (IP
address).

FCS_TLSS_EXT.2 166 Failure to establish a TLS Session.
Establishment/Termination of a TLS
session.

167 Reason for failure.
Non-TOE endpoint of connection (IP
address).

FIA_X509_EXT.1 168 Failure to validate a certificate. 169 Reason for failure.

FIA_X509_EXT.2 170 None. 171 None.

FIA_PMG_EXT.1 None. 172 None.

FPT_TUD_EXT.2 173 None. 174 None.

FTP_TRP.1 Initiation of the trusted channel.
Termination of the trusted channel.
Failure of the trusted channel functions.

175 User ID and remote source (IP
address) if feasible.

 115

Annex C. Objective Requirements

This Annex includes requirements that specify security functionality which also addresses threats. The
requirements are not currently mandated in the body of this PP as they describe security functionality
not yet widely available in commercial technology. However, these requirements may be included in the
ST such that the TOE is still conformant to this PP, and it is expected that they be included as soon as
possible.

FPT_DDI_EXT.1 Device Driver Isolation
FPT_DDI_EXT.1.1 The TSF shall ensure that device drivers for physical devices are isolated from

the VMM and all other domains.

Application Note: In order to function on physical hardware, the VMM must have access to the
device drivers for the physical platform on which it runs. These drivers are often
written by third parties, and yet are effectively a part of the VMM. Thus the
integrity of the VMM in part depends on the quality of third party code that the
virtualization vendor has no control over. By encapsulating these drivers within
one or more dedicated driver domains (e.g., Service VM or VMs) the damage of a
driver failure or vulnerability can be contained within the domain, and would not
compromise the VMM. When driver domains have exclusive access to a physical
device, hardware isolation mechanisms, such as Intel's VT-d, AMD's Input/Output
Memory Management Unit (IOMMU), or ARM's System Memory Management
Unit (MMU) should be used to ensure that operations performed by Direct
Memory Access (DMA) hardware are properly constrained.

Assurance Activity

The evaluator shall examine the TSS documentation to verify that it describes
the mechanism used for device driver isolation. If the TSS document indicates
that a hardware isolation mechanism is used, the evaluator shall verify that
the TSS documentation enumerates the hardware-isolated DMA-capable
devices, and that it also provides a complete list of the accessible targets for
memory transactions for each of those DMA-capable devices. (An example of
information that might be included in the TSS documentation: a listing of all
pages belonging to the driver domain, the identification of a subset of the
driver domain's pages that the driver domain has permitted the device access
to, or the identification of a dedicated area of memory reserved for the
device or driver domain).

FPT_IDV_EXT.1 Software Identification and Versions
FPT_IDV_EXT.1.1 The TSF shall include software identification (SWID) tags that contain a

SoftwareIdentity element and an Entity element as defined in ISO/IEC 19770-

2:2009.

FPT_IDV_EXT.1.1 The TSF shall store SWIDs in a .swidtag file as defined in ISO/IEC 19770-2:2009.

Application Note: SWID tags are XML files embedded within software that provide a standard
method for IT departments to track and manage the software. The presence of

 116

SWIDs can greatly simplify the software management process and improve
security by enhancing the ability of IT departments to manage updates.

Assurance Activity

The evaluator shall examine the TSS to ensure it describes how SWID tags are
implemented and the format of the tags. The evaluator shall verify that the
format complies with FPT_IDV_EXT.1.1 and that SWIDs are stored in
accordance with FPT_IDV_EXT.1.2.

The evaluator shall perform the following test:

 Test 1: The evaluator shall check for the existence of SWID tags in a
.swidtag file. The evaluator shall open the file and verify that each
SWID contains at least a SoftwareIdentity element and an Entity
element.

FPT_INT_EXT.1 Support for Introspection
FPT_INT_EXT.1.1 The TSF shall support a mechanism for permitting the VMM or privileged VMs to

access the internals of another VM for purposes of introspection.

Application Note: Introspection can be used to support malware and anomaly detection from

outside of the guest environment. This not only helps protect the Guest OS, it

also protects the VS by providing an opportunity for the VS to detect threats to

itself that originate within VMs, and that may attempt to break out of the VM

and compromise the VMM or other VMs.

The hosting of malware detection software outside of the guest VM helps

protect the guest and helps ensure the integrity of the malware

detection/antivirus software. This capability can be implemented in the VMM

itself, but ideally it should be hosted by a Service VM so that it can be better

contained and does not introduce bugs into the VMM.

Assurance Activity

The evaluator shall examine the TSS documentation to verify that it describes
the interface for VM introspection and whether the introspection is performed
by the VMM or another VM.

The evaluator shall examine the operational guidance to ensure that it contains
instructions for configuration of the introspection mechanism.

FPT_ML_EXT.1 Measured Launch of Platform and VMM
FPT_ML_EXT.1.1 The TSF shall support a measured launch of the Virtualization System. Measured

components of the Virtualization system shall include the static executable

image of the Hypervisor and:

[selection:

a) Static executable images of the Management Subsystem,

 117

b) [assignment: list of (static images of) Service VMs],

c) [assignment: list of configuration files],

d) no other components

].

FPT_ML_EXT.1.2 The TSF shall make these measurements available to the Management

Subsystem.

Application Note: A measured launch of the platform and Virtualization System, demonstrates that

the proper TOE software was loaded. A measured launch process employs

verifiable integrity measurement mechanisms. For example, a VS may hash

components such as: the hypervisor, service VMs and/or the Management

Subsystem. A measured launch process only allows components to be executed

after the measurement has been recorded. An example process may add each

component’s hash before it is executed so that the final hash reflects the

evidence of a component’s state prior to execution. The measurement may be

verified as the system boots, but this is not required.

The Platform is outside of the TOE. However, this requirement specifies that the

VS must be capable of receiving Platform measurements if the Platform provides

them. This requirement is requiring TOE support for Platform measurements if

provided; it is not placing a requirement on the Platform to take such

measurements.

If available, hardware should be used to store measurements in such a manner

that they cannot be modified in any manner except to be extended. These

measurements should be produced in a repeatable manner so that a third party

can verify the measurements if given the inputs. Hardware devices, like Trusted

Platform Modules (TPM), TrustZone, and MMU are some examples that may

serve as foundations for storing and reporting measurements.

Platforms with a root of trust for measurement (RTM) should initiate the

measured launch process. This may include core BIOS or the chipset. The chipset

is the preferred RTM, but core BIOS or other firmware is acceptable. In system

without a traditional RTM, the first component that boots would be considered

the RTM, this is not preferred.

Assurance Activity

The evaluator shall verify that the TSS or Operational Guidance describes how
integrity measurements are performed and made available to the
Management Subsystem. The evaluator shall examine the operational
guidance to verify that it documents how to access the measurements in the
Management Subsystem.

The evaluator shall perform the following tests:

 118

Test 1: The evaluator shall start the VS, login as an Administrator, and verify
that the measurements for the specified components are viewable in the
Management Subsystem.

Auditable Events
Depending on the specific objective SFRs that are claimed by the ST/TOE, the ST author shall include the

appropriate auditable events listed below in the claims made for FAU_GEN.1.

Table 5: Auditable Events for Objective SFRs

Requirement Auditable Events Additional Audit Record Contents

FPT_DDI_EXT.1 176 None. 177 None.

FPT_IDV_EXT.1 178 None. 179 None.

FPT_INT_EXT.1 180 Introspection initiated/enabled 181 The VM introspected

FPT_ML_EXT.1 182 Integrity measurements collected 183 Integrity measurement values

 119

Annex D. Entropy Documentation and Assessment

The documentation of the entropy source should be detailed enough that, after reading, the evaluator
will thoroughly understand the entropy source and why it can be relied upon to provide entropy. This
documentation should include multiple detailed sections: design description, entropy justification,
operating conditions, and health testing. This documentation is not required to be part of the TSS.

D.1 Design Description

Documentation shall include the design of the entropy source as a whole, including the interaction of all
entropy source components. It will describe the operation of the entropy source to include how it works,
how entropy is produced, and how unprocessed (raw) data can be obtained from within the entropy
source for testing purposes. The documentation should walk through the entropy source design indicating
where the random comes from, where it is passed next, any post-processing of the raw outputs (hash,
XOR, etc.), if/where it is stored, and finally, how it is output from the entropy source. Any conditions
placed on the process (e.g., blocking) should also be described in the entropy source design. Diagrams and
examples are encouraged.

This design must also include a description of the content of the security boundary of the entropy source
and a description of how the security boundary ensures that an adversary outside the boundary cannot
affect the entropy rate.

D.2 Entropy Justification

There should be a technical argument for where the unpredictability in the source comes from and why
there is confidence in the entropy source exhibiting probabilistic behavior (an explanation of the
probability distribution and justification for that distribution given the particular source is one way to
describe this). This argument will include a description of the expected entropy rate and explain how you
ensure that sufficient entropy is going into the TOE randomizer seeding process. This discussion will be
part of a justification for why the entropy source can be relied upon to produce bits with entropy.

D.3 Operating Conditions

Documentation will also include the range of operating conditions under which the entropy source is
expected to generate random data. It will clearly describe the measures that have been taken in the
system design to ensure the entropy source continues to operate under those conditions. Similarly,
documentation shall describe the conditions under which the entropy source is known to malfunction or
become inconsistent. Methods used to detect failure or degradation of the source shall be included.

D.4 Health Testing

More specifically, all entropy source health tests and their rationale will be documented. This will include
a description of the health tests, the rate and conditions under which each health test is performed (e.g.,
at startup, continuously, or on-demand), the expected results for each health test, and rationale indicating
why each test is believed to be appropriate for detecting one or more failures in the entropy source.

 120

Annex E. References

Identifier Title

[CC] Common Criteria for Information Technology Security Evaluation –

 Part 1: Introduction and General Model, CCMB-2012-09-001, Version 3.1
Revision 4, September 2012

 Part 2: Security Functional Components, CCMB-2012-09-002, Version 3.1
Revision 4, September 2012

 Part 3: Security Assurance Components, CCMB-2012-09-003, Version 3.1
Revision 4, September 2012

[CEM] Common Methodology for Information Technology Security Evaluation, Evaluation
Methodology, CCMB-2012-09-004, Version 3.1 Revision 4, September 2012

 121

Annex F. Acronyms

Acronym Meaning

AES Advanced Encryption Standard

CC Common Criteria

CCEVS Common Criteria Evaluation and Validation Scheme

CCTL Common Criteria Testing Laboratory

CEM Common Evaluation Methodology

CPU Central Processing Unit

DEP Data Execution Prevention

DKM Derived Keying Material

DSS Digital Signature Standard

ECC Elliptic Curve Cryptography

EP Extended Package

FIPS Federal Information Processing Standard

FFC Finite-Field Cryptography

ID Identification

IEC International Electrotechnical Commission

ISO International Organization for Standardization

IP Internet Protocol

IT Information Technology

ITSEF Information Technology Security Evaluation Facility

KDF Key Derivation Function

MAC Message Authentication Code

NIAP National Information Assurance Partnership

NIST National Institute of Standards and Technology

NVLAP National Voluntary Laboratory Accreditation Program

OS Operating System

PKV Public Key Verification

PP Protection Profile

RSA Rivest, Shamir, Adleman

SAR Security Assurance Requirement

SFR Security Functional Requirement

SP Special Publication

SPD Security Policy Database

SSP System Security Policy

ST Security Target

SWID Software Identification

TOE Target of Evaluation

TSF TOE Security Functionality

TSS TOE Summary Specification

TPM Trusted Platform Module

VM Virtual Machine

VMM Virtual Machine Manager

VS Virtualization System

